JPH0121208B2 - - Google Patents

Info

Publication number
JPH0121208B2
JPH0121208B2 JP20577584A JP20577584A JPH0121208B2 JP H0121208 B2 JPH0121208 B2 JP H0121208B2 JP 20577584 A JP20577584 A JP 20577584A JP 20577584 A JP20577584 A JP 20577584A JP H0121208 B2 JPH0121208 B2 JP H0121208B2
Authority
JP
Japan
Prior art keywords
raw material
sintering
zone
layer
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20577584A
Other languages
Japanese (ja)
Other versions
JPS6184333A (en
Inventor
Minoru Sugawara
Masaru Ishikawa
Masanobu Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
IHI Corp
Original Assignee
IHI Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Kawasaki Steel Corp filed Critical IHI Corp
Priority to JP20577584A priority Critical patent/JPS6184333A/en
Publication of JPS6184333A publication Critical patent/JPS6184333A/en
Publication of JPH0121208B2 publication Critical patent/JPH0121208B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、粉状鉱石を焼き固めて塊状焼結鉱を
製造する竪型焼結機に関する。 〔従来の技術〕 粉状鉱石、例えば粉鉄鉱石を焼き固めて高炉用
焼結鉱を製造する装置としてエンドレス型火格子
の上に粉鉱石、粉コークスおよび副原料の混合物
をのせ、これを水平移動させつつ焼結するいわゆ
るドワイトロイド型焼結装置が一般的であるが、 焼成エネルギーが高い 漏風量が多く廃ガスが多い 成品顕熱の回収ができにくい 等の問題がある。 これらの問題を解決するために排ガス循環焼結
法、オンストランドクーリング法等が提案されて
いるが焼結鉱の品質が低下することや設備投資額
が大きい等の問題がある。 このため、一般的に熱効率の高い竪型式で焼結
する装置も提案されている。従来の堅型焼結炉と
しては、例えば第7図に示すような装置が提案さ
れている(Stahl u.Eisen 81(1961)Nr.7 S404〜
407)。この装置は原料供給ホツパ1と通気帯原料
ホツパ3とを頂部に備えた竪型焼結機で、中間部
に点火装置15、空気導入口11を設けて焼結帯
5を形成させ、通気帯原料ホツパ3を排ガス吸引
口とするものである。この装置は以下のような問
題点がある。 空気吹込み方式であるので焼結帯の位置を吹込
み口の前面に形成せざるを得ず、また外気(冷
風)を使用するため成品顕熱を燃焼用熱として有
効に利用できないほか、空気吹込圧力による原料
層6の流動化、飛び出しがあり、安定した原料層
を形成できないと共に粉塵飛散などの環境問題が
発生する。さらに、新に成品の冷却装置あるいは
成品顕熱回収装置が必要である。 また第8図は他の竪型焼結機の例であるが、原
料の降下を重力により行う他は現在のエンドレス
型焼結機を90゜回転しただけで、前述の種々の問
題点は何ら解決されていない。 またこの他の種々のアイデアが提案されてはい
るがいずれも単に可能性を示したに過ぎず、技術
的に練られておらず、実現に至つたものは皆無で
ある。 〔発明が解決しようとする問題点〕 本発明は熱効率の高い竪型焼結機を提供するも
ので、前述の問題点を解決することを目的とする
ものである。すなわち成品の顕熱を燃焼用熱源と
して活用し、燃焼用空気の圧力は原料層で受け
ず、成品層で受け、原料粉の流動化や飛び出しを
発生することがなく、また成品の冷却、顕熱回収
を完全に行い、さらに現状のエンドレス型焼結機
がかかえている問題点をも克服する装置を提供す
ることを目的とする。 本発明の装置によれば、従来利用できなかつた
成品の顕熱を燃焼用熱源として活用することがで
き、また成品の破砕、熱交換を一連のプロセスで
実施できるため、焼成エネルギーの低下が可能と
なる。また第7図の従来の竪型炉では原料層上端
における排ガスによる流動化、飛散が避けられな
いが本発明では防止できる。 〔問題点を解決するための手段〕 本発明の構成について第1図〜第6図に示した
図面に従つて説明する。第1図は竪型焼結機の全
体縦断面図である。本発明の竪型焼結機は粉状鉱
石を焼き固めて塊状焼結鉱を製造するプロセスに
適用されるものであるが、ここでは粉鉄鉱石を焼
結して溶鉱炉に装入する焼結鉱を製造する場合を
例として説明する。 本発明の竪型焼結機は第1図に示すように、上
端に焼結原料および通気帯原料を供給する装置を
備え、その下方に順次原料層6、焼結帯5、焼結
完了層7、1次成品冷却層7a、破砕室14、2
次成品冷却層10、成品排出口13を連接して構
成され、空気を2次成品冷却層10の下端近傍か
ら導入し、2次成品冷却層10、通気帯16、1
次成品冷却層7a、焼結帯5を経て吸引口4から
排ガスとして吸引する全体構造となつている。 原料供給装置は、焼結原料を供給する装置と通
気帯原料を供給する装置とからなる。焼結原料を
供給する装置は例えば第3図に斜視図を示したよ
うに原料供給ホツパ1と回転円筒式の原料供給ド
ラムフイーダ2、カツトゲート1aを備え、焼結
原料を原料層6へ定量供給する。この焼結原料は
図示しない前段工程において粉鉄鉱石、副原料お
よび所定量の粉コークスを混合し、水分調整して
擬似粒子を形成し、原料層6に供給される。 通気帯原料供給装置は、焼結原料層の横断面中
央部に通気帯16を形成するための通気帯原料を
供給する装置で例えば、第2図に斜視図を示した
ような通気帯原料供給ホツパ3を備える。通気帯
原料はドワイトロイド型焼結機における床敷鉱に
該当し、本発明装置の下方から導入された焼結用
空気を効率良く焼結帯5に供給するための通気帯
16を形成させるものである。通気帯原料には、
焼結原料より粒度の粗い粒体、例えば焼結成品を
整粒する過程で発生する粒体を用いる。その平均
粒径は通気帯の高さと後述のシール機能との関係
から焼結原料の平均粒径の1.5〜5倍が望ましい。 通気帯原料供給ホツパ3はその下部を下方に延
長して原料層6中に深く進入させ、その下端部が
焼結帯5の上端位置を決定するように形成し焼結
帯がこれ以上上方に伸張しないようにその位置決
めをする。またこの高さはこのホツパ内の通気帯
原料を通つて上方から空気が侵入するのを防止す
るために必要な充填層高さを有するように構成
し、いわゆる原料シール機能を持たせる。必要に
応じて別のシール装置を設けることもできる。第
2図は一例であつて、必ずしもこの形状に限定さ
れるものではなく、焼結原料層6の横断面中央部
に通気帯原料を供給でき、焼結帯位置を規制でき
る装置であればその形状、構造の如何を問わな
い。 原料層6は上方から供給された焼結原料が充填
され重力によつて下方に移動する充填層である。
この原料層6はこの原料層を通つて空気が吸引さ
れないように層高を確保する。 原料層6の下端には、水平横方向に排ガスを吸
引する吸引口が設けられる。この吸引口とほぼ同
レベルに焼結帯5が形成される。焼結帯5は成品
と熱交換した高温空気によつて、焼結原料中に所
定量混入している粉コークスを燃焼させ、粉鉄鉱
石を焼き固める帯域である。 焼結帯の下方には焼結完了層7および1次成品
冷却層7aが連設される。焼結完了層7および1
次成品冷却層7aには焼結層5で焼結された焼結
鉱が下降移動し、上昇空気が下方から上昇して向
流熱交換する。 1次成品冷却層7aの下方に破砕室14設けら
れ、破砕機8が配設されている。この破砕機8は
1次成品冷却層7aの移動方向と直交する水平方
向つまり、第1図における左右方向(矢印で示さ
れる)に往復運動をなすシヤフトにハンマー状の
ブロツクを備え、上方の1次成品冷却層7aから
降下してくる焼結鉱をハンマブロツクの衝撃力と
圧縮力により粗破砕する。 破砕室14の平面を第4図に例示した。第4図
では破砕機8が3連となつておりその往復運動方
向が矢印で示されている。 破砕室14の下方には2次成品冷却層10が設
けられる。2次成品冷却層10は粗破砕された成
品焼結鉱の充填層であつて、その下端に冷却用空
気導入管11が取り付けられている。2次成品冷
却層10では導入冷却用空気により高温焼結鉱が
さらに冷却され、一方冷却空気は昇温されて上昇
し、焼結用空気として用いられる。この熱交換は
充填層形式で行われるので、高い熱交換効率を得
ることができる。従つて、高温焼結鉱の保有顕熱
は焼結工程に有効に利用される。 2次成品冷却層10はその下端に成品排出口1
3を有し、成品冷却層全体が成品冷却ホツパを形
成する。 成品排出口13の下方には成品を運搬する運搬
装置例えば成品ベルトコンベヤ17が配設され
る。ベルトコンベア17は図示しない次の工程の
整粒装置に成品を輸送する。整粒装置は粗破砕成
品を高炉に装入する適度な粒度に焼結鉱を整粒す
る。 第5図は焼結帯5から排出されるガスを吸引す
る吸引口4の焼結原料に当接する部分4a形状を
示す。この吸引口の部分4aは排出ガスの分散を
考慮し、横方向のスリツトを数段重ねにする。 第6図は成品冷却ホツパ9の下端横部に設けら
れた冷却用空気の流入口であり、数段に斜板を設
け、それぞれの斜板間にスリツト状の空気流入口
がある。 本発明の焼結機は、一旦着火すればそれを火源
として連続的に着火が進行し、理論的には点火装
置は不要であるが、焼結作業開始時の着火および
連続着火後の補助、バツクアツプのために点火装
置15を設置する。 本発明の焼結機の焼結作業開始は次のように行
う。 焼結作業開始時に不活性物質、例えば既に焼結
した塊鉱等を下端から点火装置15の上レベルま
で通気性をもたせて充填し、その上方の原料層6
に粉コークスを混合した通常の焼結原料を充填す
る。その後、空気を吸引しながら、点火装置15
により着火し、破砕機8を運転し、不活性物質層
を所定のスピードで降下させ、通常の焼結作業に
移行する。一旦点火装置により着火し燃焼帯5を
形成すると降下してくる焼結原料中の粉コークス
に順次着火し、通常の焼結操業を続行することが
できる。この段階では点火装置15の運転は不要
となる。 また連続運転途中で何らかの理由で燃焼帯の部
分的欠落あるいは消滅した場合には点火装置を運
転し燃焼帯を形成させることができる。 〔作用〕 本発明の焼結機は全体を竪型に構成し焼結原料
は重力を利用して炉内を下降させ、燃焼用空気を
下から成品焼結鉱と向流に熱交換させて顕熱を回
収し、焼結に利用する。 また、摺動部や運動部がなく、漏風損失などが
なく、上記構成と相俣つて、熱効率が極めて高
く、着火も不要など低エネルギーを達成できる。 〔実施例〕 次に本発明の実施例を挙げてその効果を説明す
る。第1図の装置において焼結に必要な空気はま
ず成品冷却ホツパ9において加熱され、破砕室8
を経由して1次成品冷却層7aでさらに予熱さ
れ、原料中の粉コークスを燃焼させ焼結帯5を形
成した後、排ガスは吸引口4から排風される。以
上により、本発明装置では成品の顕熱を有効に利
用することができるので、焼成エネルギーを著し
く低下させることができる。これを従来の焼結機
と対比して示すと第1表の通りである。
[Industrial Field of Application] The present invention relates to a vertical sintering machine for producing lumpy sintered ore by baking and solidifying powdery ore. [Prior art] As a device for manufacturing sintered ore for blast furnaces by sintering powdered ore, such as powdered iron ore, a mixture of powdered ore, coke powder, and auxiliary raw materials is placed on an endless grate, and the mixture is horizontally The so-called Dwight Lloyd type sintering equipment, which sinters while moving, is common, but it has problems such as high firing energy, large amount of air leakage and waste gas, and difficulty in recovering the sensible heat of the finished product. To solve these problems, an exhaust gas circulation sintering method, an on-strand cooling method, etc. have been proposed, but there are problems such as a decrease in the quality of the sintered ore and a large amount of capital investment. For this reason, a vertical type sintering device that generally has high thermal efficiency has also been proposed. As a conventional rigid sintering furnace, for example, a device as shown in Fig. 7 has been proposed (Stahl u. Eisen 81 (1961) No. 7 S404~
407). This device is a vertical sintering machine equipped with a raw material supply hopper 1 and a ventilation zone raw material hopper 3 at the top, and an ignition device 15 and an air inlet 11 are provided in the middle part to form a sintered zone 5. The raw material hopper 3 is used as an exhaust gas suction port. This device has the following problems. Since it is an air blowing method, the sintering zone must be located in front of the blowing port, and since outside air (cold air) is used, the sensible heat of the product cannot be effectively used as combustion heat. The raw material layer 6 fluidizes and pops out due to the blowing pressure, making it impossible to form a stable raw material layer and causing environmental problems such as dust scattering. Furthermore, a new product cooling device or product sensible heat recovery device is required. Figure 8 is an example of another vertical sintering machine, but the present endless type sintering machine is simply rotated 90 degrees, except that the raw material is lowered by gravity, and it does not have the various problems mentioned above. Not resolved. In addition, various other ideas have been proposed, but all of them are merely possibilities; none have been technically developed, and none have been realized. [Problems to be Solved by the Invention] The present invention provides a vertical sintering machine with high thermal efficiency, and aims to solve the above-mentioned problems. In other words, the sensible heat of the product is utilized as a heat source for combustion, and the pressure of combustion air is not received by the raw material layer, but is received by the product layer, which prevents the raw material powder from fluidizing or flying out, and also allows the product to be cooled and combusted. The purpose of the present invention is to provide a device that completely recovers heat and also overcomes the problems faced by current endless sintering machines. According to the apparatus of the present invention, the sensible heat of the finished product, which could not be used in the past, can be used as a heat source for combustion, and the crushing of the finished product and heat exchange can be carried out in a series of processes, so the firing energy can be reduced. becomes. Further, in the conventional vertical furnace shown in FIG. 7, fluidization and scattering due to exhaust gas at the upper end of the raw material bed are unavoidable, but this can be prevented with the present invention. [Means for Solving the Problems] The structure of the present invention will be explained with reference to the drawings shown in FIGS. 1 to 6. FIG. 1 is an overall vertical sectional view of the vertical sintering machine. The vertical sintering machine of the present invention is applied to the process of producing bulk sintered ore by sintering powdered ore. The case of manufacturing ore will be explained as an example. As shown in FIG. 1, the vertical sintering machine of the present invention is equipped with a device for supplying sintering raw materials and aerated zone raw materials at the upper end, and below it is sequentially a raw material layer 6, a sintered zone 5, and a sintered completed layer. 7. Primary product cooling layer 7a, crushing chamber 14, 2
It is constructed by connecting the secondary product cooling layer 10 and the product discharge port 13, and air is introduced from near the lower end of the secondary product cooling layer 10, the ventilation zone 16, 1
The entire structure is such that the exhaust gas is sucked through the suction port 4 through the product cooling layer 7a and the sintering zone 5. The raw material supply device includes a device for supplying sintering raw materials and a device for supplying aeration zone raw materials. For example, as shown in a perspective view in FIG. 3, the device for supplying the sintering raw material includes a raw material supply hopper 1, a rotating cylindrical raw material supply drum feeder 2, and a cut gate 1a, and supplies a fixed amount of the sintering raw material to the raw material layer 6. . This sintering raw material is mixed with powdered iron ore, auxiliary raw materials, and a predetermined amount of coke powder in a pre-stage step (not shown), and the water content is adjusted to form pseudo particles, which are then supplied to the raw material layer 6. The aeration zone raw material supply device is a device for supplying aeration zone raw material for forming the aeration zone 16 at the center of the cross section of the sintered raw material layer, and for example, the aeration zone raw material supplying device as shown in a perspective view in FIG. Equipped with hopper 3. The aeration zone raw material corresponds to bedding ore in a Dwight Lloyd type sintering machine, and forms the aeration zone 16 for efficiently supplying the sintering air introduced from the bottom of the device of the present invention to the sintering zone 5. It is. The raw material for the vadose zone is
Particles having a coarser particle size than the sintering raw material, for example, particles generated in the process of sizing sintered products are used. The average particle size is desirably 1.5 to 5 times the average particle size of the sintered raw material in view of the relationship between the height of the ventilation zone and the sealing function described below. The aerated zone raw material supply hopper 3 extends its lower part downward to penetrate deeply into the raw material layer 6, and is formed so that its lower end determines the upper end position of the sintering zone 5, so that the sintered zone does not move further upwards. Position it so that it does not stretch. Moreover, this height is configured to have the height of the packed bed necessary to prevent air from entering from above through the aerated zone raw material in the hopper, and has a so-called raw material sealing function. Separate sealing devices can also be provided if necessary. FIG. 2 is an example, and the shape is not necessarily limited to this shape. Any device that can supply the aerated zone raw material to the center of the cross section of the sintered raw material layer 6 and regulate the position of the sintered zone can be used. Regardless of shape or structure. The raw material layer 6 is a packed bed filled with sintering raw materials supplied from above and moved downward by gravity.
This raw material layer 6 ensures a layer height so that air is not sucked through this raw material layer. A suction port is provided at the lower end of the raw material layer 6 to suck in exhaust gas in the horizontal and lateral directions. A sintered zone 5 is formed at approximately the same level as this suction port. The sintering zone 5 is a zone in which a predetermined amount of coke powder mixed in the sintering raw material is combusted by high-temperature air that has exchanged heat with the finished product, and the iron ore powder is sintered. A sintered completed layer 7 and a primary product cooling layer 7a are connected below the sintered zone. Sintered layers 7 and 1
The sintered ore sintered in the sintered layer 5 moves downward into the product cooling layer 7a, and rising air rises from below to exchange heat in a countercurrent manner. A crushing chamber 14 is provided below the primary product cooling layer 7a, and a crusher 8 is disposed therein. This crusher 8 is equipped with a hammer-shaped block on a shaft that reciprocates in the horizontal direction perpendicular to the moving direction of the primary product cooling layer 7a, that is, in the left-right direction (indicated by arrows) in FIG. The sintered ore descending from the product cooling layer 7a is roughly crushed by the impact force and compression force of the hammer block. The plane of the crushing chamber 14 is illustrated in FIG. In FIG. 4, three crushers 8 are arranged, and the direction of their reciprocating motion is indicated by an arrow. A secondary product cooling layer 10 is provided below the crushing chamber 14 . The secondary product cooling layer 10 is a packed bed of coarsely crushed finished sintered ore, and a cooling air introduction pipe 11 is attached to the lower end thereof. In the secondary product cooling layer 10, the high-temperature sintered ore is further cooled by the introduced cooling air, while the cooling air is heated and rises to be used as sintering air. Since this heat exchange is performed in a packed bed format, high heat exchange efficiency can be obtained. Therefore, the sensible heat possessed by the high-temperature sintered ore is effectively utilized in the sintering process. The secondary product cooling layer 10 has a product discharge port 1 at its lower end.
3, and the entire product cooling layer forms a product cooling hopper. A conveying device, such as a product belt conveyor 17, for transporting the product is disposed below the product discharge port 13. The belt conveyor 17 transports the product to a sizing device for the next step (not shown). The sintering device sizes the sintered ore to an appropriate particle size for charging the coarsely crushed product into the blast furnace. FIG. 5 shows the shape of a portion 4a of the suction port 4 which sucks the gas discharged from the sintering zone 5, which comes into contact with the sintering raw material. This suction port portion 4a has several horizontal slits stacked one on top of the other in consideration of dispersion of exhaust gas. FIG. 6 shows a cooling air inlet provided at the side of the lower end of the product cooling hopper 9. Swash plates are provided in several stages, and a slit-shaped air inlet is provided between each swash plate. Once the sintering machine of the present invention is ignited, the ignition progresses continuously using the ignition as a fire source, and theoretically no ignition device is required. , an ignition device 15 is installed for backup. The sintering operation of the sintering machine of the present invention is started as follows. At the start of the sintering operation, an inert substance, such as already sintered lump ore, is filled with air permeability from the lower end to the upper level of the igniter 15, and the raw material layer 6 above it is filled.
is filled with normal sintering raw materials mixed with coke powder. After that, while sucking air, the ignition device 15
ignition occurs, the crusher 8 is operated, the inert material layer is lowered at a predetermined speed, and normal sintering work begins. Once ignited by the igniter to form the combustion zone 5, the coke breeze in the falling sintering raw material is sequentially ignited, and normal sintering operations can be continued. At this stage, the ignition device 15 does not need to be operated. Further, if a combustion zone is partially missing or disappears for some reason during continuous operation, the ignition device can be operated to form a combustion zone. [Function] The sintering machine of the present invention has a vertical structure as a whole, and the sintering raw material is moved down in the furnace using gravity, and the combustion air is exchanged with the finished sintered ore from below in a countercurrent manner. Sensible heat is recovered and used for sintering. In addition, there are no sliding parts or moving parts, so there is no leakage loss, etc., and in conjunction with the above structure, thermal efficiency is extremely high, and low energy can be achieved without the need for ignition. [Example] Next, examples of the present invention will be given to explain the effects thereof. In the apparatus shown in FIG. 1, the air necessary for sintering is first heated in the product cooling hopper 9, and then
The exhaust gas is further preheated in the primary product cooling layer 7a, and after burning the coke powder in the raw material and forming the sintered zone 5, the exhaust gas is discharged from the suction port 4. As described above, in the apparatus of the present invention, the sensible heat of the finished product can be effectively utilized, so that the firing energy can be significantly reduced. Table 1 shows this in comparison with a conventional sintering machine.

【表】 第1表から明らかなように、燃焼空気量の減少
により排ガスとして持去る顕熱が減少する。また
成品は成品冷却層、成品冷却ホツパで空気と十分
に熱交換するので、成品持出し顕熱も大幅に減少
する。従つて焼結原料中に投入するコークス量は
従来の約2/3に低減することができる。 次に第9図は、従来の通気帯のない竪型焼結炉
と本発明の通気帯を設けた竪型焼結炉とにおける
原料層密度に対する通過風量、吸引圧力の関係を
図示したものである。本発明では通気帯16を形
成するので、吸引圧力が低く通過風量を増加させ
ることができ、また、原料層の降下も円滑とな
り、安定した操業が可能である。 〔発明の効果〕 本発明の装置によれば、成品の顕熱の回収が容
易でこれを直接焼結に利用することができ、点火
炉の連続燃焼が不要となり、熱経済性を著しく高
めることができる。また従来の堅型炉のように原
料層が流動化することもなく安定操業が可能であ
る。
[Table] As is clear from Table 1, the amount of sensible heat carried away as exhaust gas decreases as the amount of combustion air decreases. In addition, since the product sufficiently exchanges heat with air in the product cooling layer and product cooling hopper, the sensible heat taken out of the product is significantly reduced. Therefore, the amount of coke introduced into the sintering raw material can be reduced to about 2/3 of the conventional amount. Next, FIG. 9 illustrates the relationship between the passing air volume and suction pressure with respect to the raw material layer density in the conventional vertical sintering furnace without a ventilation zone and the vertical sintering furnace provided with the ventilation zone of the present invention. be. In the present invention, since the ventilation zone 16 is formed, the suction pressure is low and the amount of passing air can be increased, and the raw material layer can also descend smoothly, allowing stable operation. [Effects of the Invention] According to the apparatus of the present invention, the sensible heat of the product can be easily recovered and used directly for sintering, eliminating the need for continuous combustion in an ignition furnace, and significantly improving the thermal economy. Can be done. In addition, stable operation is possible without fluidization of the raw material layer unlike in conventional vertical furnaces.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の全体構成図を示す竪
型焼結機の全体断面図、第2図〜第6図はその部
分詳細図であり、第2図は通気帯原料供給ホツパ
の斜視図、第3図は原料供給ホツパの斜視図、第
4図は成品破砕装置の平面図、第5図は吸引口の
形状を示す斜視図、第6図は冷却用空気口の形状
を示す斜視図、第7図、第8図は従来の竪型焼結
機の縦断面図、第9図は従来の竪型焼結機と本発
明の焼結機の比較を示すグラフである。 1…原料ホツパ、2…原料供給ドラムフイー
ダ、3…通気帯原料供給ホツパ、4…吸引口、5
…焼結帯、6…焼結原料層、7…焼結完了層、7
a…1次成品冷却層、8…破砕機、9…成品冷却
ホツパ、10…2次成品冷却層、11…冷却用空
気管、12…空気導入口、13…成品排出口、1
4…破砕室、15…点火装置、16…通気帯、1
7…成品ベルトコンベア。
FIG. 1 is an overall sectional view of a vertical sintering machine showing the overall configuration of an embodiment of the present invention, FIGS. 2 to 6 are partial detailed views thereof, and FIG. FIG. 3 is a perspective view of the raw material supply hopper, FIG. 4 is a plan view of the product crushing device, FIG. 5 is a perspective view showing the shape of the suction port, and FIG. 6 is the shape of the cooling air port. The perspective view, FIGS. 7 and 8 are longitudinal sectional views of a conventional vertical sintering machine, and FIG. 9 is a graph showing a comparison between the conventional vertical sintering machine and the sintering machine of the present invention. 1... Raw material hopper, 2... Raw material supply drum feeder, 3... Ventilated zone raw material supply hopper, 4... Suction port, 5
... Sintered zone, 6... Sintered raw material layer, 7... Sintered completed layer, 7
a... Primary product cooling layer, 8... Crusher, 9... Product cooling hopper, 10... Secondary product cooling layer, 11... Cooling air pipe, 12... Air inlet, 13... Product discharge port, 1
4... Crushing chamber, 15... Ignition device, 16... Ventilation zone, 1
7... Finished product belt conveyor.

Claims (1)

【特許請求の範囲】[Claims] 1 上端に焼結原料および通気帯原料を供給する
装置をそれぞれ備え、その下方に原料層を設け、
該原料層の横断面中央部に上端から通気帯原料ホ
ツパの下端部分を下方に延長して挿入し、その下
方に焼結帯を形成し、該焼結帯の下方に、焼結完
了層、1次成品冷却層、破砕室、2次成品冷却
層、製品排出口を上下方向に順次連設し、前記2
次成品冷却層の最下端部に空気導入口を設け、前
記焼結帯の横方向に排ガス吸引口を設けると共
に、焼結帯より上方には焼結原料および通気体原
料層が吸引空気をシールする高さを付与したこと
を特徴とする竪型焼結機。
1 Equipped with a device for supplying sintering raw material and aeration zone raw material at the upper end, and a raw material layer provided below,
The lower end portion of the aeration zone raw material hopper is inserted from the upper end into the center of the cross section of the raw material layer, extending downward, and a sintered zone is formed below the sintered zone. A primary product cooling layer, a crushing chamber, a secondary product cooling layer, and a product discharge port are sequentially installed in the vertical direction, and the above-mentioned 2
An air inlet is provided at the bottom end of the cooling layer for the next product, and an exhaust gas suction port is provided in the lateral direction of the sintering zone, and above the sintering zone, a layer of sintering raw material and ventilating material seals the suction air. A vertical sintering machine characterized by being given a height of
JP20577584A 1984-10-01 1984-10-01 Vertical sintering machine Granted JPS6184333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20577584A JPS6184333A (en) 1984-10-01 1984-10-01 Vertical sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20577584A JPS6184333A (en) 1984-10-01 1984-10-01 Vertical sintering machine

Publications (2)

Publication Number Publication Date
JPS6184333A JPS6184333A (en) 1986-04-28
JPH0121208B2 true JPH0121208B2 (en) 1989-04-20

Family

ID=16512460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20577584A Granted JPS6184333A (en) 1984-10-01 1984-10-01 Vertical sintering machine

Country Status (1)

Country Link
JP (1) JPS6184333A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581269B (en) * 2012-03-02 2013-05-15 株洲弗拉德科技有限公司 Vertical continuous sintering furnace for metal powder
CN103697707B (en) * 2013-12-12 2015-04-01 王忠英 Vertical cooling and waste heat recovery furnace for sinters

Also Published As

Publication number Publication date
JPS6184333A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
JPH0121208B2 (en)
JP2000226618A (en) Method for recovering exhaust heat in cooler for sintered ore and cooler for sintered ore
JPS62164837A (en) Sintering method
JPS62199729A (en) Crushing device for vertical type sintering machine
JPH07100618B2 (en) Clinker cooling method and cooling device
TWI823628B (en) Control method of sintering machine
JPS5952694B2 (en) Sintered ore manufacturing method
KR0118997B1 (en) Method and apparatus for sintering ore
JP2732118B2 (en) Sintering operation method and sintering pallet
JP2510193B2 (en) Sinter production method
JP2805237B2 (en) Iron ore sintering method and sintering pallet
JPH051336A (en) Method for supplying bedding ore into pallet in sintering machine
JPH08246073A (en) Production of sintered ore and sintering machine therefor
JPH09178352A (en) Horizontal apparatus and method for sintering
JPS5879852A (en) Underground kiln type lime baking furnace
JPS60248830A (en) Production of quicklime for binder by sintering machine
JP2548649B2 (en) Sintering method of iron ore
JP2005281810A (en) Method and apparatus for feeding sintered ore to moving trough type cooling machine
JPS62199731A (en) Vertical type sintering machine
JPS61170524A (en) Operating method of sintering
JPS62166280A (en) Vertical type sintering machine
JPH059605A (en) Regulator of permeability in sintered layer
JPH0660791B2 (en) Sintering method and pallet for sintering
JPS6123727A (en) Method for supplying ore to cooling machine for sintered ore and device therefor
JPH05271796A (en) Production of sintered ore