JPH01211976A - Manufacture of mis type semiconductor device using gallium arsenide - Google Patents

Manufacture of mis type semiconductor device using gallium arsenide

Info

Publication number
JPH01211976A
JPH01211976A JP3697188A JP3697188A JPH01211976A JP H01211976 A JPH01211976 A JP H01211976A JP 3697188 A JP3697188 A JP 3697188A JP 3697188 A JP3697188 A JP 3697188A JP H01211976 A JPH01211976 A JP H01211976A
Authority
JP
Japan
Prior art keywords
gaas
semiconductor device
gallium arsenide
gallium
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3697188A
Other languages
Japanese (ja)
Other versions
JPH07107936B2 (en
Inventor
Shinji Fujieda
信次 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3697188A priority Critical patent/JPH07107936B2/en
Publication of JPH01211976A publication Critical patent/JPH01211976A/en
Publication of JPH07107936B2 publication Critical patent/JPH07107936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve reproducibility, by a method wherein, after a gallium arsenide surface is made a gallium stabilized surface, specified anionic element is bonded or radical or molecule containing anionic element is deposited, and then an insulator film is deposited at 450 deg.C or less. CONSTITUTION:A process to eliminate a natural oxide film using GaAs epitaxial growth or heat treatment of a GaAs substrate in an As atmosphere is performed, in order that the natural oxide film may not be contained previously in the GaAs substrate. The GaAs surface is made a Ga stabilized surface, and one anionic element out of phosphous(P), selenium(Se), sulfur(S) and fluorine is bonded. As an insulator film, non-oxide system insulator such as nitride and fluoride is deposited at 450 deg.C or less, thereby increasing the reproducibility of manufacturing process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造方法、更に詳しくはヒ化ガリ
ウムを用いたMIS(金属−絶縁体一半導体)型半導体
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a MIS (metal-insulator-semiconductor) type semiconductor device using gallium arsenide.

(従来の技術) ヒ化ガリウム(以降GaAsと記す)を用いたMIS型
半導体装置の特性は絶縁体膜とGaAsとの界面特性に
大きく依存する。従来、良好な界面特性を得る方法とし
ては、絶縁体膜形成前に、■GaAs表面を82、N2
、NH3等のプラズマで処理する方法(ジャーナル・オ
ブ・アプライド・フィジクス(Journal of 
the Applied Physics> 5□(1
981)3515−3519)、■GaAs表面を高純
度流水で処理する方法(アプライド・フィジスク・レタ
ーズ(Applied Physics Letter
s)i止(1987) 256−258 )等が検討さ
れてきた。これらは、n型GaAsを用いたMIS型半
導体装置においてGaAs表面の過剰Asが表面ポテン
シャルをピンニングしてしまい界面特性を劣化させてし
まうという問題の解決を目的としたものである。
(Prior Art) The characteristics of a MIS type semiconductor device using gallium arsenide (hereinafter referred to as GaAs) largely depend on the interface characteristics between an insulating film and GaAs. Conventionally, the method of obtaining good interface properties was to heat the GaAs surface with 82 and N2 before forming the insulator film.
, a method of treatment with plasma such as NH3 (Journal of Applied Physics)
the Applied Physics> 5□(1
981) 3515-3519), ■Method of treating GaAs surfaces with high-purity running water (Applied Physics Letters)
s) i Stop (1987) 256-258), etc. have been studied. These are aimed at solving the problem that in a MIS type semiconductor device using n-type GaAs, excess As on the GaAs surface pins the surface potential and deteriorates the interface characteristics.

(発明が解決しようとする問題点) しかし、■の場合プラズマ条件によってはGaAs表面
が損傷を受ける危険性がある。すなわち、プラズマ処理
時間やプラズマ出力条件等の最適化が必要になる。また
■の場合には流水処理後絶縁体膜を形成するまでの間に
GaAs表面を大気に晒してはならず特別の工夫が必要
とされ再現性に問題がある。本発明の目的は、再現性の
良い半導体装置の製造方法を得ることにある。
(Problems to be Solved by the Invention) However, in the case of (2), there is a risk that the GaAs surface may be damaged depending on the plasma conditions. That is, optimization of plasma processing time, plasma output conditions, etc. is required. In the case of (2), the GaAs surface must not be exposed to the atmosphere after the water treatment and before the insulating film is formed, which requires special measures and there is a problem with reproducibility. An object of the present invention is to obtain a method for manufacturing a semiconductor device with good reproducibility.

(問題を解決するための手段) 本発明は、ヒ化ガリウム上に非酸化物系絶縁体膜を形成
する方法であって、該絶縁体膜形成前にヒ化ガリウム表
面をガリウム安定化面とした後リン(P)、セレニウム
(Se)、硫黄(S)、フッ素(F)のうち1つの陰イ
オン性元素を結合させるかまたは陰イオン性元素を含む
ラジカルあるいは分子を吸着させた上にこれに該絶縁体
膜を450℃以下で堆積する工程を含むことを特徴とす
るヒ化ガリウムを用いたMIS型半導体装置の製造方法
を提供するものである。
(Means for Solving the Problem) The present invention is a method for forming a non-oxide insulator film on gallium arsenide, in which the gallium arsenide surface is converted into a gallium stabilizing surface before forming the insulator film. After that, one of the anionic elements of phosphorus (P), selenium (Se), sulfur (S), and fluorine (F) is bonded, or radicals or molecules containing anionic elements are adsorbed, and then this is added. The present invention provides a method for manufacturing an MIS type semiconductor device using gallium arsenide, which comprises a step of depositing the insulating film at 450° C. or lower.

(作用) 上記問題を解決するための手段を検討した結果、特許願
61−191307.同61−191379において記
載した方法などが有用であることを見いだした。すなわ
ち、(11G a A s基板上に成長させたGaAs
エピタキシャル成長層の上に絶縁体膜として■腹壁化物
を被着させる工程において該■腹壁化物堆積直前に(1
−1>As原料、■腹壁化物の■族原料、N原料を順に
供給するかあるいは(1−2)Ga原料、N原料を順に
供給する方法、または(21GaAs工ピタキシヤル成
長層あるいはGaAs基板のAs雰囲気中熱処理の後5
00−550℃において(2−1)高純度H2中あるい
は高真空中または(2−2)燐雰囲気中で熱処理を行っ
た後450℃以下で非酸化物系絶縁体膜を被着させる方
法を採ることにより比較的簡便に特性の再現性を改善す
ることが可能であった。しがしながら、依然として、再
現性に問題があった。その原因を検討したところ、上記
方法の場合には製造工程の繰り返しに伴い製造装置内の
内壁などにG a A sやAsが付着する結実装置内
に制御されないAs分圧が生じ、GaAs表面における
過剰Asの生成の防止を意図した上記工程の制御性が悪
化することが分かった。さらにこのAs分圧の変動が過
剰As生成の防止に与える影響は、絶縁体膜を堆積させ
るGaAs表面の状S(初期状態)によって異ることが
分った。
(Operation) As a result of examining means for solving the above problem, we found that patent application No. 61-191307. It has been found that the method described in No. 61-191379 is useful. That is, (GaAs grown on a 11G a As substrate)
Immediately before the deposition of the (1) abdominal wall compound in the step of depositing the (1) abdominal wall compound as an insulating film on the epitaxial growth layer,
-1> A method of sequentially supplying an As raw material, a group II raw material for the abdominal wall compound, and a N raw material, or (1-2) a method of sequentially supplying a Ga raw material and a N raw material, or (21) a method of supplying a Ga raw material and a N raw material in this order, or After heat treatment in atmosphere 5
After heat treatment at 00-550°C in (2-1) high-purity H2 or high vacuum or (2-2) phosphorous atmosphere, a method of depositing a non-oxide insulator film at 450°C or lower. By adopting this method, it was possible to improve the reproducibility of characteristics relatively easily. However, there were still problems with reproducibility. When we investigated the cause of this, we found that in the case of the above method, an uncontrolled As partial pressure occurs in the fruiting device where GaAs and As adhere to the inner walls of the manufacturing device as the manufacturing process is repeated, and It has been found that the controllability of the above process intended to prevent the generation of excess As deteriorates. Furthermore, it has been found that the influence of this As partial pressure fluctuation on prevention of excessive As generation differs depending on the state S (initial state) of the GaAs surface on which the insulating film is deposited.

GaAs表面の初期状態をGa安定化面とし、P、Se
、S、Fのうちいづれが一つの陰イオン性元素を結合さ
せるかまたは陰イオン性元素を含むラジカルあるいは分
子を吸着させることにより工程の繰り返しに伴い製造装
置内に生ずる制御されないAs分圧の影響を抑制できる
ことを見いだした。すなわち、イオン性から考えてGa
との結合がAsよりも強いと予想される上記陰イオン性
元素をGa安定化面に結合させることにより装置内残留
AsがGaとの結合することを抑制するわけである。
The initial state of the GaAs surface is assumed to be a Ga-stabilized surface, and P, Se
, S, and F combine with one anionic element or adsorb radicals or molecules containing anionic elements, resulting in the influence of uncontrolled As partial pressure that occurs in the production equipment as the process is repeated. We found that it is possible to suppress the In other words, considering the ionicity, Ga
By bonding the anionic element, which is expected to have a stronger bond with Ga than As, to the Ga stabilizing surface, the As remaining in the device is inhibited from bonding with Ga.

本発明では、GaAs表面にはあらかじめ自然酸化膜が
含まれぬようGaAsエピタキシャル成長あるいはGa
As基板のAs雰囲気熱処理による自然酸化膜除去の工
程を行っである。この後GaAs表面をGa安定化面と
し、陰イオン性元素を結合させておく、絶縁体膜として
は窒化物、フッ化物等非酸化物系絶縁体を450℃以下
で堆積するものとする。酸化物系の絶縁体膜はその堆積
がGaAs表面酸化膜・過剰As生成の原因となるため
に除外する。
In the present invention, GaAs epitaxial growth or Ga
A natural oxide film removal process was performed on the As substrate by heat treatment in an As atmosphere. Thereafter, the GaAs surface is used as a Ga stabilization surface and an anionic element is bonded thereto. As an insulator film, a non-oxide insulator such as nitride or fluoride is deposited at 450° C. or lower. Oxide-based insulator films are excluded because their deposition causes formation of a GaAs surface oxide film and excess As.

(実施例) 以下、本発明を実施例により説明する。(Example) The present invention will be explained below using examples.

第1や実施例においては非酸化物系絶縁体としてフッ化
カルシウム(CaF2 )を用いてMTS型電界効果ト
ランジスタ(MI 5FET>を作製した。また陰イオ
ン性元素としてはセレニウム(Se)をガリウム安定化
面に結合させることとした。工程はガスソース分子線エ
ピタキシー(MOMBE)装置で行った。まず化学的エ
ツチングを行った半絶縁性(,100) G a A 
s基板(ソース。
In the first example and the examples, an MTS field effect transistor (MI5FET) was fabricated using calcium fluoride (CaF2) as a non-oxide insulator.Also, as an anionic element, selenium (Se) was used to stabilize gallium. The process was carried out using a gas source molecular beam epitaxy (MOMBE) device. First, chemical etching was performed to form a semi-insulating (,100) G a A
s substrate (source.

ドレインn+コンタクト領域を形成したもの)を装置内
に導入し、As分子線(AS4強度:1x10 ”C1
l−2sec−’ )を照射しながら昇温し650℃で
2分間熱処理することにより基板表面の自熱酸化膜を除
去した。次に200’ Cまで降温しくAs分子線照射
は550℃で停止した) G a分子線(1x 101
3c諧−2sec−’ )を1分間照射後再び620℃
まで昇温してGa安定化面を得た。このとき反射高速電
子線回折(RHEED)パタンは4x6構造を示した。
A drain n+ contact region formed) was introduced into the device, and an As molecular beam (AS4 intensity: 1
The autothermal oxide film on the surface of the substrate was removed by increasing the temperature while irradiating the substrate with 1-2 sec-') and performing heat treatment at 650° C. for 2 minutes. Next, the temperature was lowered to 200'C, and As molecular beam irradiation was stopped at 550°C.) Ga molecular beam (1x 101
3c-2sec-') for 1 minute and then heated to 620℃ again.
A Ga-stabilized surface was obtained by increasing the temperature to . At this time, the reflection high-speed electron diffraction (RHEED) pattern showed a 4x6 structure.

引き続き装置内、500℃でHz S e (0、05
cc/5in)を供給し1分間熱処理後降温し400℃
でH2Se供給を停止後CaF2を厚さ50nm蒸着し
た。得られたCaF2/GaAs試料にアルミニウム(
AI)を蒸着後バターニングしゲートを形成した。
Subsequently, in the apparatus, Hz S e (0,05
cc/5in) was supplied, and after heat treatment for 1 minute, the temperature was lowered to 400°C.
After stopping the supply of H2Se, CaF2 was deposited to a thickness of 50 nm. Aluminum (
After depositing AI), buttering was performed to form a gate.

最後にソース、ドレインn+コンタクト上に金・ゲルマ
ニウム・ニッケル(AuGeNi )電極を形成り、M
ISFBTとした。本方法で作製したMISFETは蓄
積型の動作を示した。ゲート長1μmのとき相互コンダ
クタンス(gm)は平均45m5/mmであり、この平
均glは10回の製造回数で±15%の分布範囲内にあ
り、本実施例が良好な再現性を持つことがわかった。
Finally, gold-germanium-nickel (AuGeNi) electrodes are formed on the source and drain n+ contacts, and M
It was named ISFBT. The MISFET manufactured by this method exhibited storage type operation. When the gate length is 1 μm, the average mutual conductance (gm) is 45 m5/mm, and this average gl is within a distribution range of ±15% after 10 manufacturing cycles, which indicates that this example has good reproducibility. Understood.

第2の実施例では非酸化物系絶縁体として窒化アルミニ
ウム(A又N)をトリメチルアlレミニウム(TMA)
−ヒドラジン(N2 H4)系原料により堆積してMI
S型電界効果トランジスタ(MISFET)を作製した
。また陰イオン性元素としてはリン(P)をガリウム安
定化面に結合させることとした。本実施例ではガスソー
ス分子線エピタキシャル(MOMBE)装置により工程
を行った。第1の実施例と同じGaAs基板を装置内に
導入し、As分子線(As4強度:1xlO”clll
−2sec−1)を照射しながら昇温し650″Cで2
分間熱処理することにより基板表面の自然酸化膜を除去
した。次に550℃″(’As分子線を停止した後1分
間H2(0、1cc/5in)雰囲気中で熱処理を行い
Ga安定化面を得た。引き続きフォスフイン(P H3
+ 0 、05cc/5in)を供給しながら400″
Cまで降温した後N2H,,TMAの供給を順に開始し
厚さ1100nのA又N膜を堆積した。本方法で作製し
たMISFETは蓄積型の動作を示した。ゲート長1μ
mのとき相互コンダクタンス(g−)は平均50m5/
amであり、この平均g■は10回製造回数で±15%
の分布範囲内にあり、本実施例が良好な再現性を持つこ
とがわかった。
In the second embodiment, aluminum nitride (A or N) is used as a non-oxide insulator, and trimethylaluminum (TMA) is used as the non-oxide insulator.
- MI by depositing with hydrazine (N2 H4)-based raw material
An S-type field effect transistor (MISFET) was manufactured. Further, as an anionic element, phosphorus (P) was bonded to the gallium stabilizing surface. In this example, the process was performed using a gas source molecular beam epitaxial (MOMBE) apparatus. The same GaAs substrate as in the first embodiment was introduced into the apparatus, and the As molecular beam (As4 intensity: 1xlO"clll
-2sec-1) while raising the temperature to 650″C.
The natural oxide film on the surface of the substrate was removed by heat treatment for a minute. Next, a Ga-stabilized surface was obtained by heat treatment at 550°C (1 minute after stopping the As molecular beam) in an H2 (0.1cc/5in) atmosphere.
+0,05cc/5in) while supplying 400″
After the temperature was lowered to C, supply of N2H, TMA was started in order, and an A or N film with a thickness of 1100 nm was deposited. The MISFET manufactured by this method exhibited storage type operation. Gate length 1μ
When m, the mutual conductance (g-) is on average 50m5/
am, and this average g■ is ±15% for 10 manufacturing times.
It was found that this example had good reproducibility.

第3の実施例では第2の実施例におけるPH3をH2S
 (0、05cc/sin>に変えガリウム安定化面に
硫黄(S)を結合させることとした。本方法で作製した
MISFETは蓄積型の動作を示した。ゲート長1μm
のとき相互コンダクタンス(gm)は平均45m5/a
mであり、この平均glは10回の製造回数で±15%
の分布範囲内にあり、本実施例が良好な再現性を持つこ
とがわかった。
In the third example, PH3 in the second example was replaced with H2S.
(0.05cc/sin>), we decided to bond sulfur (S) to the gallium stabilizing surface.The MISFET fabricated using this method exhibited accumulation type operation.Gate length: 1 μm
The average mutual conductance (gm) is 45 m5/a when
m, and this average gl is ±15% for 10 manufacturing times.
It was found that this example had good reproducibility.

第4の実施例では第1の実施例におけるH2SeをN 
F S  (0、05cc/win)に変えガリウム安
定化面にフッ素(F)を結合させることとした。ただし
この場合NF、はフッ化アルゴンエキシマ−レーザー光
を用いて分解を行った0本方法で作製したMISFET
は蓄積型の動作を示した。ゲート長1μmのとき相互コ
ンダクタンス(g■)は平均50m5/amであり、こ
の平均gmは10回の製造回数で±15%の分布範囲内
にあり、本実施例が良好な再現性を持つことがわかりた
In the fourth example, H2Se in the first example was replaced with N
Instead of F S (0.05 cc/win), fluorine (F) was bonded to the gallium stabilized surface. However, in this case, NF is a MISFET manufactured using the 0-wire method in which decomposition was performed using argon fluoride excimer laser light.
showed an accumulation-type behavior. When the gate length is 1 μm, the mutual conductance (g■) is on average 50 m5/am, and this average gm is within a distribution range of ±15% after 10 manufacturing times, indicating that this example has good reproducibility. I understand.

以上の結果は従来法のうちでも最良の場合の40%より
も改善されたものである。
The above results are an improvement over the best case of 40% among the conventional methods.

実施例においてはGaAs基板上に直接、絶縁体膜を被
着したが、基板上にGaAsのエピタキシャル成長層を
形成させ、その成長層の表面をGa安定化面とした後、
絶縁体膜を形成させても良い、また絶縁体膜としては、
CaF2やAINに限られたものではなく、SiNxや
BNなど他の酸素を含まない絶縁体膜でも良い。
In the example, an insulating film was deposited directly on the GaAs substrate, but after forming an epitaxial growth layer of GaAs on the substrate and making the surface of the growth layer a Ga stabilizing surface,
An insulating film may be formed, and as an insulating film,
The material is not limited to CaF2 or AIN, but may be other oxygen-free insulating films such as SiNx or BN.

絶縁体膜の成長方法も分子線エピタキシー以外の気相成
長方法を用いることができる。
A vapor phase growth method other than molecular beam epitaxy can also be used to grow the insulator film.

(発明の効果) 以上に述べたように、本発明によればヒ化ガリウムを用
いたMIS型半導体装置の製造工程の再現性を向上させ
ることができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to improve the reproducibility of the manufacturing process of a MIS type semiconductor device using gallium arsenide.

Claims (1)

【特許請求の範囲】[Claims]  ヒ化ガリウム上に非酸化物系絶縁体膜を形成させ、M
IS型半導体装置を製造する方法であって、該絶縁体膜
形成前にヒ化ガリウム表面をガリウム安定化面とした後
リン(P)、セレニウム(Se)、硫黄(S)、フッ素
(F)のうち1つの陰イオン性元素を結合させるかまた
は陰イオン性元素を含むラジカルあるいは分子を吸着さ
せた上にこれに該絶縁体膜を450℃以下で堆積する工
程を含むことを特徴とするヒ化ガリウムを用いたMIS
型半導体装置の製造方法。
A non-oxide insulator film is formed on gallium arsenide, and M
A method for manufacturing an IS type semiconductor device, the method comprising: forming a gallium arsenide surface as a gallium stabilizing surface before forming the insulator film; A heat treatment method comprising the step of bonding one of the anionic elements or adsorbing radicals or molecules containing the anionic element, and then depositing the insulating film thereon at 450°C or lower. MIS using gallium chloride
A method for manufacturing a type semiconductor device.
JP3697188A 1988-02-18 1988-02-18 Method for manufacturing MIS type semiconductor device using gallium arsenide Expired - Lifetime JPH07107936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3697188A JPH07107936B2 (en) 1988-02-18 1988-02-18 Method for manufacturing MIS type semiconductor device using gallium arsenide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3697188A JPH07107936B2 (en) 1988-02-18 1988-02-18 Method for manufacturing MIS type semiconductor device using gallium arsenide

Publications (2)

Publication Number Publication Date
JPH01211976A true JPH01211976A (en) 1989-08-25
JPH07107936B2 JPH07107936B2 (en) 1995-11-15

Family

ID=12484631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3697188A Expired - Lifetime JPH07107936B2 (en) 1988-02-18 1988-02-18 Method for manufacturing MIS type semiconductor device using gallium arsenide

Country Status (1)

Country Link
JP (1) JPH07107936B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004943A1 (en) * 1999-07-07 2001-01-18 Matsushita Electric Industrial Co., Ltd. Multilayered body, method for fabricating multilayered body, and semiconductor device
JP2009260325A (en) * 2008-03-26 2009-11-05 Univ Of Tokyo Semiconductor substrate, method for manufacturing semiconductor substrate and semiconductor device
JP2011091394A (en) * 2009-10-02 2011-05-06 Imec Method for manufacturing low defect interface between dielectric, and group iii/v compound
JP2013165144A (en) * 2012-02-10 2013-08-22 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing mos structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004943A1 (en) * 1999-07-07 2001-01-18 Matsushita Electric Industrial Co., Ltd. Multilayered body, method for fabricating multilayered body, and semiconductor device
JP2009260325A (en) * 2008-03-26 2009-11-05 Univ Of Tokyo Semiconductor substrate, method for manufacturing semiconductor substrate and semiconductor device
CN101978503A (en) * 2008-03-26 2011-02-16 国立大学法人东京大学 Semiconductor wafer, method of manufacturing a semiconductor wafer, and semiconductor device
JP2011091394A (en) * 2009-10-02 2011-05-06 Imec Method for manufacturing low defect interface between dielectric, and group iii/v compound
JP2013165144A (en) * 2012-02-10 2013-08-22 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing mos structure

Also Published As

Publication number Publication date
JPH07107936B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US5512519A (en) Method of forming a silicon insulating layer in a semiconductor device
US20070178676A1 (en) Method of forming semiconductor multi-layered structure
US8722526B2 (en) Growing of gallium-nitrade layer on silicon substrate
US3984263A (en) Method of producing defectless epitaxial layer of gallium
US4789421A (en) Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal
JPH01211976A (en) Manufacture of mis type semiconductor device using gallium arsenide
JPH01211975A (en) Manufacture of mis type semiconductor using gallium arsenide
JPH01211974A (en) Manufacture of mis type semiconductor device using gallium arsenide
JPH0797567B2 (en) Method of forming thin film
JP3240847B2 (en) Manufacturing method of SOI structure
JPH0194662A (en) Manufacture of mis type semiconductor using gallium arsenide
JPH0194663A (en) Manufacture of mis type semiconductor using gallium arsenide
JPS5928330A (en) Vapor growth method of semiconductor
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH04312915A (en) Surface treatment of gaas(111) a-plane substrate
JP2853226B2 (en) Semiconductor device and manufacturing method thereof
CN112687523A (en) Preparation method of III-group nitride template
JPH0266944A (en) Manufacture of semiconductor device
JP2810175B2 (en) Vapor growth method
JP2617485B2 (en) (III) Heat treatment method for -V compound semiconductor
KR20230147669A (en) Wafer for uniform CVD growth of graphene and manufacturing method thereof
JPH0266945A (en) Manufacture of semiconductor device
CN117727781A (en) Semiconductor epitaxial structure and preparation method thereof
KR950002178B1 (en) Delta doping method by mocvd of gaas epitaxial layer
JP2830386B2 (en) Method for producing compound semiconductor crystal having insulating layer on surface