JPH0121179B2 - - Google Patents

Info

Publication number
JPH0121179B2
JPH0121179B2 JP56122947A JP12294781A JPH0121179B2 JP H0121179 B2 JPH0121179 B2 JP H0121179B2 JP 56122947 A JP56122947 A JP 56122947A JP 12294781 A JP12294781 A JP 12294781A JP H0121179 B2 JPH0121179 B2 JP H0121179B2
Authority
JP
Japan
Prior art keywords
weight
parts
organic peroxide
mfr
copolymer rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56122947A
Other languages
Japanese (ja)
Other versions
JPS5825342A (en
Inventor
Shuichi Nakayama
Masahiro Goto
Tatsumi Tsuji
Hideo Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP12294781A priority Critical patent/JPS5825342A/en
Publication of JPS5825342A publication Critical patent/JPS5825342A/en
Publication of JPH0121179B2 publication Critical patent/JPH0121179B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、モノオレフイン共重合ゴムと結晶性
ポリプロピレンを主成分とし、改良された射出成
形性(流動性)、すなわち高メルトフローレート
インデツクス(MFR)と優れた機械的強度を有
する軟質オレフイン系樹脂組成物の製造法に関す
るものである。 モノオレフイン共重合ゴムと結晶性ポリプロピ
レンを主成分とする軟質オレフイン系樹脂は、比
重が小さく耐熱性、耐候性に優れ、しかも比較的
安価な材料であるため、主として自動車部品分野
で金属部品からの代替による軽量化、コストダウ
ン、ABS樹脂やRIMウレタン部品からの代替に
よる部品寿命の向上、コストダウンを目的とし
て、近年急速に注目されつつある。 特に、自動車バンパー、インストルメントパネ
ル等の大型部品を軟質オレフイン系樹脂に代替す
ることは、軽量化、コストダウンの効果も大きく
業界の課題となつている。 ところが、モノオレフイン共重合ゴムと結晶性
ポリプロピレンを主成分とする軟質オレフイン系
樹脂は、ゴム成分が含まれるため流動性が悪く、
大型品の成形は不可能か、できたとしてもフロー
マークの発生等の問題により満足できるものでは
なかつた。本発明の目的は、従来のモノオレフイ
ン共重合ゴムと結晶性ポリプロピレンを主成分と
する軟質オレフイン系樹脂に関し、機械的強度を
損うことなく、射出成形性、、すなわち流動性を
大巾に改良し大型部品の成形を可能にすることに
ある。 例えば従来のオレフイン系共重合ゴム、結晶性
ポリプロピレン、有機過酸化物非架橋型炭化水素
ゴムおよび/または鉱物油を有機過酸化物の存在
下熱処理した反応物を、更にオレフイン系プラス
チツクで希釈する方法(特公昭56−15740号公報、
同56−15743号公報)では射出成形性が悪く、本
発明の目的は達成されない。 従来からある結晶性ポリプロピレンとモノオレ
フイン共重合ゴムを主成分とする軟質オレフイン
系樹脂は、ゴム成分が配合されているため大型部
品を射出成形した場合著しくフローマークが発生
する等射出成形性に難点があり、用途が大巾に制
限されているのが現状である。従つて射出成形
性、機械的強度に優れた軟質オレフイン系樹脂の
開発は、当業界の重要な課題となつている。 結晶性ポリプロピレンとモノオレフイン共重合
ゴムからなる軟質オレフイン系樹脂の射出成形性
(流動性)改良手法として、単純には、高MFR結
晶性ポリプロピレンを原料として使用するとか、
鉱物油系軟化剤の添加があるが、高MFR結晶性
ポリプロピレンを使用した場合はモノオレフイン
共重合ゴムと流動性が著しく異なることに起因す
ると思われる成形品表面の層状はく離現象が現れ
たり、鉱物油系軟化剤の添加は耐熱変形性が著し
く損なわれるという欠点があり満足のいくもので
はなかつた。 本発明者らは、従来の軟質オレフイン系樹脂の
欠点である射出成形性を改良し、本材料の大型射
出成形品への適用を可能にするべく鋭意検討を重
ねた結果、特定の原料及び製造方法を採用するこ
とにより、目的を達することが可能であることを
見出し、かかる知見に基づいて本発明を達成し
た。すなわち本発明は原料として230℃で測定さ
れるMFRが0.5〜3.0、好ましくは0.5〜2.0の結晶
性プロピレン単一重合体樹脂(A)50〜80重量部、モ
ノオレフイン共重合ゴム(B)50〜20重量部、(A)+(B)
100重量部に対して鉱物油(C)を5〜20重量部を用
い、製造方法としては、(A)、(B)、(C)成分の全量を
予め均一に融解混合したのち、粒状物に細断し粒
状物表面に有機過酸化物を0.05〜0.5重量%、好
ましくは0.2〜0.4重量%、均一に付着させたのち
押出機型混練り機中で有機過酸化物を分解作用さ
せて連続的に造粒する方法である。ここで、
MFRが3.0を越える結晶性プロピレン単一重合体
樹脂を使用した場合、機械的強度が著しく損なわ
れまた結晶性プロピレン・エチレン共重合体樹脂
を使用した場合は、流動性が改善されず射出成形
性の点で満足できない。 成分(A)、(B)の構成割合において、成分(A)が50重
量%より少ない場合は、射出成形品にフローマー
クの発生が見られ、また成分(A)が80重量%を越え
る場合は柔軟性が不足し、軟質オレフイン系樹脂
とはいえなくなる。鉱物油(C)の添加量が20重量%
を越えると成形品にベタ付きが発生するとともに
耐熱変形性が悪化する。5重量%未満の場合は射
出成形性の改良効果が十分でない。有機過酸化物
量は0.05重量%未満の場合、流動性改良効果が十
分ではなく、更にはモノオレフイン共重合ゴムの
架橋度が少なく、生成物の耐熱性が劣る。0.5重
量%を越える場合は反応生成物のMFRが著しく
上がるため、製造時の造粒が困難となる。 製造方法に関して、本発明以外の方法では目的
を達成することは不可能である。すなわち成分
(A)、(B)、(C)及び有機過酸化物の構成割合を全く同
一にし成分(A)の1部分と(B)、(C)を予め有機過酸化
物で処理し、残りの(A)成分で希釈する方法では流
動性が改善されず、成形品にフローマークが発生
する。また成分(A)の1部分と(B)、(C)を予め融解混
合したのち、粒状化し残りの(A)成分の混合と有機
過酸化物の付着を、同時に実施し押出機中で有機
過酸化物を作用させる方法は本明の方法によつて
得られるものに比較して機械的強度の低下が著し
く大きく採用できない。 本発明を更に詳細に説明する。予め加熱された
ロールミル、バンバリーミキサー、加圧型ニーダ
ー等の混練り機に、所定量の結晶性ポリプロピレ
ン樹脂(A)、モノオレフイン共重合ゴム(B)、鉱物油
(C)を投入し、5〜10分間混練りする。均一に融解
混合された混合物をとり出し、ロールミルで冷却
固化させながらシート状にし、このシートを角切
りペレタイザーでペレツトとする。次にV型ブレ
ンダー、タンブラー、ヘンシエルミキサー中にペ
レツト及び所定量の有機過酸化物を投入し、ペレ
ツト表面に有機過酸化物が均一に付着するまで混
合する。該混合物を、約170〜250℃に加熱された
通常の押出機中で混練りしながら有機過酸化物を
分解作用させると同時に、ダイスより流出する反
応生産物を冷却固化しつつ連続的に造粒すること
によつて、目的とする射出成型性、機械的強度に
優れた軟質オレフイン系樹脂組成物が得られる。
以上の工程において、いずれの段階で各種顔料、
耐熱安定剤、耐候安定剤、充填剤を加えても良
い。 次に本発明に使用される成分(A)、(B)、(C)及び有
機過酸化物について説明する。成分(A)は、プロピ
レンをチーグラー・ナツタ系触媒によつて重合し
た高度の結晶性を有するアイソタクチツク、シン
ジオタクチツクポリプロピレンで、230℃で測定
されるMFRが0.5〜3.0の範囲のものである。成分
(B)は、2種以上のモノオレフインおよびそれらと
共重合しうる少くとも1種のポリエンを、バナジ
ウム化合物とアルミニウム化合物の組合せからな
るチーグラー・ナツク系触媒で共重合した本質的
無定形なランダム共重合体である。一般的にはエ
チレン・プロピレン・ジシクロペンタジエン共重
合体ゴム、エチレン・プロピレン・エチリデンノ
ルボルネン共重合体ゴム、エチレン・プロピレ
ン・1,4−ヘキサジエン共重合体ゴムが入手可
能で好適に使用される。成分(c)はゴムの加工助
剤、軟化剤として一般的に使用されているアロマ
チツク系、ナフテン系、パラフイン系鉱物油であ
り、これらの混合物であつてもよい。有機過酸化
物としては2,5−ジメチル2,5−ジ(t−ブ
チルパーオキシ)ヘキシン−3、ジ−t−ブチル
パーオキシド、2,5−ジメチル−2,5−ジ
(t−ブチルパーオキシ)ヘキサン、ジ−t−ブ
チルパーオキシジイソプロピルベンゼン、ジクミ
ルパーオキサイド、t−ブチルパーオキシベンゾ
エート、1,1−ビス(t−ブチルパーオキシ)
−3,3,5−トリメチルシクロヘキサン、2,
4−ジクロルベンゾイルパーオキサイド、ベンゾ
イルパーオキサイド、p−クロルベンゾイルパー
オキサイドなどがあげられるが、より好適には高
温分解型のものが選択的に使用される。 次に本発明の効果について述べれば、、後記実
施例1〜2、比較例1〜5に、結晶性ポリプロピ
レン樹脂の種類を変えて本発明の方法によつて得
られた反応生成物の性状を示しているが、本発明
以外の樹脂、すなわちプロピレンの単一重合体樹
脂であつて、MFRが高いものは生成物の破断点
伸度(EB)が50〜70%であり、本発明の530〜
570%に比較して著しく低く(実施例1、2と比
較例1、2)、また結晶性ポリプロピレン樹脂の
代わりに結晶性プロピレン・エチレン共重合体樹
脂を用いた場合は、生成物の破断点伸度が著しく
低かつたり(比較例3、4)、流動性(MFR)、
成形外観(フローマーク)が悪い。(比較例5)。 比較例6、7に本発明の製造方法と異なつた方
法により得られた生成物の性状を示しているが、
結晶性ポリプロピレン樹脂の1部と、モノオレフ
イン共重合ゴム、及び鉱物油をバンバリーミキサ
ー中で有機過酸化物を作用させて得られる生成物
と、残りの結晶性ポリプロピレン樹脂を希釈混合
して得られた組成物は機械的強度は優れるが、射
出成形外観が著しく悪い(比較例6)。また、結
晶性ポリプロピレン樹脂の1部とモノオレフイン
共重合ゴム及び鉱物油を予めバンバリーミキサー
中で融解混合したのち角ペレツトとし、該角ペレ
ツトに有機過酸化物を付着させると同時に残りの
結晶性ポリプロピレンを追加ドライブレンドした
ものを、押出機中で混合して得られた生成物の破
断点伸度、射出成形外観は本発明のものに比べて
著しく悪い(比較例7)。 次に実施例によつて本発明を更に具体的に説明
する。 以下の実施例、比較例に用いた各成分の詳細は
次のとおりである。 (1) 結晶性ポリプロピレン樹脂 PP(1)……(MFR、1.0、密度:0.90、プロピレ
ンホモポリマー) PP(2)……(MFR;0.6、密度:0.90、プロピレ
ンホモポリマー) PP(3)……(MFR;11.0、密度:0.90、プロピ
レンホモポリマー) PP(4)……(MFR;5.0、密度:0.90、プロピレ
ンホモポリマー) PP(5)……(MFR;6.5、密度:0.90、プロピレ
ン・エチレンブロツクポリマー) PP(6)……(MFR;2.7、密度:0.90、プロピレ
ン・エチレンブロツクポリマー) PP(7)……(MFR;1.8、密度:0.90、プロピレ
ン・エチレンブロツクポリマー) (2) エチレン・プロピレン・エチリデンノルボル
ネン共重合ゴム(EPDM) EP(1)……(プロピレン含量;28wt%、ヨウ素
価;15、伸展油;パラフインオイル50PHR、
ML1+4100=50) EP(2)……(プロピレン含量;43wt%、ヨウ素
価;15、ML1+4100=105) EP(3)……(プロピレン含量;43wt%、ヨウ素
価;26、ML1+4100=83) EP(4)……(プロピレン含量;28wt%、ヨウ素
価;15、ML1+4100=90) (3) 鉱物油 オイル(1)……パラフイン系プロセスオイル(比
重;0.8971、動粘度;194cst(37.8℃)、粘度
指数;92.0) (4) 有機過酸化物 PO(1)……2,5ジメチル−2,5−ジ(t−
ブチルパーオキシ)ヘキサン 実施例1〜5、比較例1〜5 結晶性ポリプロピレン樹脂70重量部(種類は1
表に示す)、エチレンプロピレン・エチリデンノ
ルボルネン共重合ゴム30重量部(種類は第1表に
示す)、鉱物油15重量部を予め110℃に加熱された
内容積4のバンバリーミキサー(合同重工製)
中で、5分間ローター回転数60rpmで混合した。
混合物を取り出し10インチロールで厚み約2mmの
シートとした。このシートを角切りペレタイザー
にかけ約2mm3のベレツトとした。このペレツト
100重量部に0.35重量部の有機過酸化物PO(1)をタ
ンブラー・ミキサーに投入して5分間混合し、ペ
レツト表面に有機過酸化物を均一に付着させた。
次にシリンダー温度200℃に設定した、55φベン
ト式押出機(L/D=28、フルフライトスクリユ
ー)によつて有機過酸化付着ペレツトを混練り造
粒した。(以上の製法を製造法Aとする。)得られ
た生成物を射出成形機(3.5オンス、成形温度240
℃)にて、100×100×2mmのテストピースに成形
し、物性評価に供した。評価結果を第1表に示
す。 比較例 6 原料は実施例5と全く同一にし、以下の手順に
よつて軟化オレフイン系樹脂を製造した。すなわ
ちPP(1)40重量部、EP(4)60重量部、オル(1)30重量
部を、予め110℃に加熱されたバンバリー・ミキ
サーで3分間混練りしたのちPO(1)を0.62重量部
添加し、POが100%作用するまで更に7分間混練
りを続けた。バンバリー・ミキサーより取り出し
た生成物は10インチロールにて厚み約2mmのシー
トとし、角切りペレタイザーで約2mm3のペレツ
トとした。このペレツト56.5重量部、PP(1)43.5重
量部をタンブラー・ミキサーに投入して5分間ド
ライブレンドしたのち、55φベント式押出機によ
つて混練り造粒した。(以上の製法を製造法Bと
する。)物性評価は実施例1〜5、比較例1〜5
と同じ手順で実施した。物性評価結果を第2表に
示す。 比較例 7 PP(1)40重量部、EP(4)60重量部、オイル(1)30重
量部を予め110℃に加熱されたバンバリー・ミキ
サーで5分間混練りしたのち、、混合物を取り出
し10インチロールにてシートにし角切りペンタイ
ザーによつてペレツトとした。このペレツトを
56.5重量部、PP(1)を43.5重量部、PO(1)を0.35重
量部タンブラー・ミキサーに投入し、5分間混合
を行いPOを均一に付着させた。PO付着混合物を
55φベント式押出機によつて混練り造粒した。
(以上の製法を製造法Cとする。) 物性評価結果を第2表に示す。第2表に示した
実施例5、比較例6〜7の最終生成物は原料の成
分及び構成割合は全く同一となつている。 実施例 6〜11 原料としてPP(1)、EP(4)、オイル(1)、PO(1)を
用い、製造法Aにより、原料の構成割合を変えた
場合の例を第3表に示した。 第1表〜第3表に示す物性評価項目の試験方法
を列挙すれば次のとおりである。 (1) MFR;ASTM D1238(230℃) (2) シヨアーD硬度;ASTM D2240 (3) 曲げ弾性率;ASTM D790 (4) TB(破断点強度);JISK6301 (5) EB(破断点伸度); 〃 (6) フローマーク;100×100×2mmの射出成形板
を目視判定。(無し;〇、やや有り;△、著し
く有る;×) (7) ベトツキ;100×100×2mmの射出成形板を重
ねあわせたのち、引き離す時に抵抗のないも
の;〇、やや抵抗のあるもの;、粘着激しいも
の;×。
The present invention is based on a soft olefin copolymer rubber and crystalline polypropylene as main components, and has improved injection moldability (flowability), that is, a high melt flow rate index (MFR), and excellent mechanical strength. The present invention relates to a method for producing a resin composition. Soft olefin resin, whose main components are monoolefin copolymer rubber and crystalline polypropylene, has a low specific gravity, excellent heat resistance and weather resistance, and is a relatively inexpensive material. In recent years, it has been rapidly attracting attention for the purpose of reducing weight and cost by replacing ABS resin and RIM urethane parts, improving the lifespan of parts and reducing costs. In particular, replacing large parts such as automobile bumpers and instrument panels with soft olefin resins is a major challenge in the industry, as it can significantly reduce weight and cost. However, soft olefin resins whose main components are monoolefin copolymer rubber and crystalline polypropylene have poor fluidity because they contain rubber components.
It is either impossible to mold large products, or even if it is possible, it is not satisfactory due to problems such as the occurrence of flow marks. The purpose of the present invention is to significantly improve the injection moldability, that is, the fluidity, of conventional soft olefin resins whose main components are monoolefin copolymer rubber and crystalline polypropylene, without compromising mechanical strength. The purpose is to enable the molding of large parts. For example, a method in which conventional olefinic copolymer rubber, crystalline polypropylene, organic peroxide non-crosslinked hydrocarbon rubber, and/or mineral oil is heat treated in the presence of an organic peroxide, and the reaction product is further diluted with olefinic plastic. (Special Publication No. 56-15740,
No. 56-15743) has poor injection moldability and cannot achieve the object of the present invention. Conventional soft olefin resins, which are mainly composed of crystalline polypropylene and monoolefin copolymer rubber, have problems with injection moldability, such as the occurrence of flow marks when large parts are injection molded because they contain rubber components. At present, its uses are largely limited. Therefore, the development of soft olefin resins with excellent injection moldability and mechanical strength has become an important issue in the industry. As a method for improving the injection moldability (flowability) of soft olefin-based resins made of crystalline polypropylene and mono-olefin copolymer rubber, it is simple to use high MFR crystalline polypropylene as a raw material.
Mineral oil-based softeners are added, but when high MFR crystalline polypropylene is used, delamination phenomena may occur on the surface of the molded product, which is thought to be due to a marked difference in fluidity from monoolefin copolymer rubber, and mineral oil softeners may be added. Addition of an oil-based softener has the drawback of significantly impairing heat deformation resistance, and has not been satisfactory. The inventors of the present invention have made intensive studies to improve the injection moldability, which is a drawback of conventional soft olefin resins, and to make it possible to apply this material to large injection molded products. The inventors have discovered that the object can be achieved by employing this method, and have achieved the present invention based on this knowledge. That is, the present invention uses as raw materials 50 to 80 parts by weight of a crystalline propylene homopolymer resin (A) with an MFR of 0.5 to 3.0, preferably 0.5 to 2.0, as measured at 230°C, and 50 to 80 parts by weight of a monoolefin copolymer rubber (B). 20 parts by weight, (A) + (B)
Mineral oil (C) is used in an amount of 5 to 20 parts by weight per 100 parts by weight, and the manufacturing method is as follows: After uniformly melting and mixing all the components (A), (B), and (C) in advance, the granules are mixed. After 0.05 to 0.5% by weight, preferably 0.2 to 0.4% by weight, of organic peroxide is uniformly adhered to the surface of the granules, the organic peroxide is decomposed in an extruder type kneader. This is a continuous granulation method. here,
If a crystalline propylene homopolymer resin with an MFR exceeding 3.0 is used, the mechanical strength will be significantly impaired, and if a crystalline propylene/ethylene copolymer resin is used, the flowability will not be improved and injection moldability will be impaired. I am not satisfied with this point. In the composition ratio of components (A) and (B), if component (A) is less than 50% by weight, flow marks will appear on the injection molded product, and if component (A) exceeds 80% by weight. lacks flexibility and cannot be called a soft olefin resin. Added amount of mineral oil (C) is 20% by weight
If it exceeds this, the molded product will become sticky and its heat deformation resistance will deteriorate. When the amount is less than 5% by weight, the effect of improving injection moldability is not sufficient. When the amount of organic peroxide is less than 0.05% by weight, the fluidity improving effect is not sufficient, and furthermore, the degree of crosslinking of the monoolefin copolymer rubber is low, resulting in poor heat resistance of the product. If it exceeds 0.5% by weight, the MFR of the reaction product increases significantly, making granulation during production difficult. Regarding the manufacturing method, it is impossible to achieve the objective using any method other than the method of the present invention. i.e. ingredients
The composition ratios of (A), (B), (C) and organic peroxide are exactly the same, and one part of component (A) and (B) and (C) are treated with organic peroxide in advance, and the remaining part is treated with organic peroxide. Diluting with component (A) does not improve fluidity and causes flow marks on the molded product. In addition, one part of component (A), (B), and (C) are melted and mixed in advance, and then granulated, and the remaining component (A) is mixed and the organic peroxide is attached at the same time in an extruder. The method of applying peroxide cannot be used because the mechanical strength is significantly lower than that obtained by the method of the present invention. The present invention will be explained in more detail. A predetermined amount of crystalline polypropylene resin (A), monoolefin copolymer rubber (B), and mineral oil are added to a preheated kneading machine such as a roll mill, Banbury mixer, or pressure kneader.
Add (C) and knead for 5 to 10 minutes. The uniformly melted and mixed mixture is taken out, cooled and solidified using a roll mill and formed into a sheet, and this sheet is made into pellets using a cube pelletizer. Next, the pellets and a predetermined amount of organic peroxide are placed in a V-type blender, tumbler, or Henschel mixer, and mixed until the organic peroxide is uniformly attached to the surface of the pellets. The mixture is kneaded in an ordinary extruder heated to about 170 to 250°C to decompose the organic peroxide, and at the same time, the reaction product flowing out from the die is cooled and solidified to continuously produce the mixture. By granulating, a soft olefin resin composition having excellent injection moldability and mechanical strength can be obtained.
In the above process, at any stage various pigments,
Heat stabilizers, weather stabilizers, and fillers may also be added. Next, components (A), (B), (C) and organic peroxide used in the present invention will be explained. Component (A) is highly crystalline isotactic or syndiotactic polypropylene obtained by polymerizing propylene using a Ziegler-Natsuta catalyst, and has an MFR of 0.5 to 3.0 as measured at 230°C. component
(B) is an essentially amorphous random copolymer of two or more types of monoolefins and at least one type of polyene that can be copolymerized with them using a Ziegler-Nack catalyst consisting of a combination of a vanadium compound and an aluminum compound. It is a copolymer. In general, ethylene/propylene/dicyclopentadiene copolymer rubber, ethylene/propylene/ethylidenenorbornene copolymer rubber, and ethylene/propylene/1,4-hexadiene copolymer rubber are available and preferably used. Component (c) is an aromatic, naphthenic, or paraffinic mineral oil commonly used as a rubber processing aid or softener, and may be a mixture thereof. Examples of organic peroxides include 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, di-t-butylperoxide, 2,5-dimethyl-2,5-di(t-butyl peroxy)hexane, di-t-butylperoxydiisopropylbenzene, dicumyl peroxide, t-butylperoxybenzoate, 1,1-bis(t-butylperoxy)
-3,3,5-trimethylcyclohexane, 2,
Examples include 4-dichlorobenzoyl peroxide, benzoyl peroxide, p-chlorobenzoyl peroxide, and more preferably a high-temperature decomposition type is selectively used. Next, to describe the effects of the present invention, Examples 1 to 2 and Comparative Examples 1 to 5 below show the properties of reaction products obtained by the method of the present invention by changing the type of crystalline polypropylene resin. However, for resins other than the present invention, i.e., propylene homopolymer resins with high MFR, the elongation at break (E B ) of the product is 50 to 70%, and the 530 ~
570% (Examples 1 and 2 and Comparative Examples 1 and 2), and when crystalline propylene/ethylene copolymer resin was used instead of crystalline polypropylene resin, the break point of the product Extremely low elongation and stiffness (Comparative Examples 3 and 4), fluidity (MFR),
Molding appearance (flow marks) is poor. (Comparative Example 5). Comparative Examples 6 and 7 show the properties of products obtained by a method different from the production method of the present invention.
A product obtained by reacting a part of crystalline polypropylene resin, monoolefin copolymer rubber, and mineral oil with an organic peroxide in a Banbury mixer, and diluting and mixing the remaining crystalline polypropylene resin. Although the composition had excellent mechanical strength, the injection molded appearance was extremely poor (Comparative Example 6). In addition, a part of the crystalline polypropylene resin, monoolefin copolymer rubber, and mineral oil are melt-mixed in advance in a Banbury mixer to form square pellets, and at the same time, the remaining crystalline polypropylene resin is attached to the square pellets. The elongation at break and the injection molded appearance of the product obtained by dry-blending the mixture in an extruder are significantly worse than those of the present invention (Comparative Example 7). Next, the present invention will be explained in more detail with reference to Examples. Details of each component used in the following Examples and Comparative Examples are as follows. (1) Crystalline polypropylene resin PP(1)...(MFR, 1.0, density: 0.90, propylene homopolymer) PP(2)...(MFR; 0.6, density: 0.90, propylene homopolymer) PP(3)... ...(MFR; 11.0, density: 0.90, propylene homopolymer) PP(4)...(MFR; 5.0, density: 0.90, propylene homopolymer) PP(5)...(MFR; 6.5, density: 0.90, propylene PP(6)...(MFR; 2.7, density: 0.90, propylene/ethylene block polymer) PP(7)...(MFR; 1.8, density: 0.90, propylene/ethylene block polymer) (2) Ethylene・Propylene ethylidene norbornene copolymer rubber (EPDM) EP(1)...(Propylene content: 28wt%, iodine value: 15, extension oil: paraffin oil 50PHR,
ML 1+4 100=50) EP(2)...(Propylene content; 43wt%, iodine value; 15, ML 1+4 100=105) EP(3)...(Propylene content; 43wt%, iodine value; 26, ML 1+4 100=83) EP(4)...(Propylene content; 28wt%, iodine value; 15, ML 1+4 100=90) (3) Mineral oil Oil (1)...Paraffin-based process Oil (specific gravity: 0.8971, kinematic viscosity: 194cst (37.8℃), viscosity index: 92.0) (4) Organic peroxide PO(1)...2,5dimethyl-2,5-di(t-
butylperoxy)hexane Examples 1 to 5, Comparative Examples 1 to 5 70 parts by weight of crystalline polypropylene resin (type: 1
(shown in the table), 30 parts by weight of ethylene propylene/ethylidene norbornene copolymer rubber (types are shown in Table 1), and 15 parts by weight of mineral oil (Banbury mixer with internal volume 4 (manufactured by Godo Heavy Industries) preheated to 110°C)
The mixture was mixed for 5 minutes at a rotor speed of 60 rpm.
The mixture was taken out and rolled into a sheet with a thickness of about 2 mm using a 10-inch roll. This sheet was diced into pellets of about 2 mm 3 using a pelletizer. This pellet
100 parts by weight and 0.35 parts by weight of organic peroxide PO(1) were added to a tumbler mixer and mixed for 5 minutes to uniformly adhere the organic peroxide to the pellet surface.
Next, the organic peroxide-adhered pellets were kneaded and granulated using a 55φ vented extruder (L/D=28, full-flight screw) with a cylinder temperature of 200°C. (The above manufacturing method is referred to as manufacturing method A.) The obtained product is molded using an injection molding machine (3.5 oz, molding temperature 240°C).
℃) into a test piece of 100 x 100 x 2 mm and subjected to physical property evaluation. The evaluation results are shown in Table 1. Comparative Example 6 Using the same raw materials as in Example 5, a softened olefin resin was produced according to the following procedure. That is, 40 parts by weight of PP (1), 60 parts by weight of EP (4), and 30 parts by weight of Or (1) were kneaded for 3 minutes in a Banbury mixer preheated to 110°C, and then 0.62 parts by weight of PO (1) was mixed. % was added and kneading was continued for an additional 7 minutes until 100% of the PO was added. The product taken out from the Banbury mixer was rolled into a sheet with a thickness of about 2 mm using a 10-inch roll, and into pellets with a size of about 2 mm 3 using a cube pelletizer. 56.5 parts by weight of the pellets and 43.5 parts by weight of PP(1) were put into a tumbler mixer, dry blended for 5 minutes, and then kneaded and granulated using a 55φ vented extruder. (The above manufacturing method is referred to as manufacturing method B.) Physical property evaluation is Examples 1 to 5 and Comparative Examples 1 to 5.
It was carried out using the same procedure. The physical property evaluation results are shown in Table 2. Comparative Example 7 After kneading 40 parts by weight of PP (1), 60 parts by weight of EP (4), and 30 parts by weight of oil (1) in a Banbury mixer preheated to 110°C for 5 minutes, the mixture was taken out and 10 parts by weight were mixed. It was made into a sheet using an inch roll and made into pellets using a cube cutter. This pellet
56.5 parts by weight, 43.5 parts by weight of PP(1), and 0.35 parts by weight of PO(1) were put into a tumbler mixer, and mixed for 5 minutes to uniformly adhere PO. PO adhesion mixture
The mixture was kneaded and granulated using a 55φ vented extruder.
(The above manufacturing method is referred to as manufacturing method C.) The physical property evaluation results are shown in Table 2. The final products of Example 5 and Comparative Examples 6 to 7 shown in Table 2 have exactly the same raw material components and composition ratios. Examples 6 to 11 Table 3 shows examples where PP (1), EP (4), oil (1), and PO (1) are used as raw materials, and the composition ratio of the raw materials is changed according to manufacturing method A. Ta. The test methods for the physical property evaluation items shown in Tables 1 to 3 are listed below. (1) MFR; ASTM D1238 (230℃) (2) Shore D hardness; ASTM D2240 (3) Flexural modulus; ASTM D790 (4) T B (strength at break); JISK6301 (5) E B (elongation at break) (6) Flow mark: Visually judge injection molded plate of 100 x 100 x 2 mm. (None; 〇, Slightly present; △, Significantly; ×) (7) Stickiness: No resistance when pulling apart injection molded plates of 100 x 100 x 2 mm after stacking them; 〇, Some resistance; , Severely sticky; ×.

【表】【table】

【表】【table】

【表】【table】

【表】 比較例 8、9 実施例5において、PP(1)、EP(4)、オイル(1)、
PO(1)を一括投入した場合(比較例8)、PP(1)と
EP(4)を混練後オイル(1)とPO(1)を添加混練した場
合(比較例9)の生成物の物性評価結果を第4表
に示す。
[Table] Comparative Examples 8 and 9 In Example 5, PP (1), EP (4), oil (1),
When PO(1) is added all at once (Comparative Example 8), PP(1) and
Table 4 shows the evaluation results of the physical properties of the product obtained when EP (4) was kneaded and then oil (1) and PO (1) were added and kneaded (Comparative Example 9).

【表】【table】

【表】 実施例5に比較して、比較例8のものはTB
EBの低下、フローマークの発生が見られ、機械
的性質、加工性に劣る。また、比較例9の如くオ
イルを後添加すると、押出し機にかみ込みが著し
く悪く、作業性が極めて悪くなる。さらに、TB
EBの機械的性質の低下およびフローマーク、ベ
トツキの発生が見られ劣る。
[Table] Compared to Example 5, Comparative Example 8 has T B ,
A decrease in E B and the occurrence of flow marks were observed, and the mechanical properties and workability were poor. Further, when oil is added afterward as in Comparative Example 9, it is extremely difficult to get caught in the extruder, resulting in extremely poor workability. Furthermore, T B ,
E B 's mechanical properties deteriorated and flow marks and stickiness were observed.

Claims (1)

【特許請求の範囲】[Claims] 1 230℃で測定されるメルトフローレートイン
デツクス(MFR)が0.5〜3.0である結晶性プロピ
レン単一重合体樹脂(A)を50〜80重量部、モノオレ
フイン共重合ゴム(B)を50〜20重量部、(A)+(B)100
重量部に対して鉱物油(C)を5〜20重量部均一に融
解混合したのち、混合物を粒状化し粒状物表面に
0.05〜0.5重量部の有機過酸化物を均一に付着さ
せ、押出機型混練り機中で有機過酸化物を作用さ
せながら連続的に造粒することを特徴とする射出
成形性(流動性)、機械的強度に優れた軟質ポリ
オレフイン系樹脂組成物の製造法。
1 50 to 80 parts by weight of a crystalline propylene homopolymer resin (A) with a melt flow rate index (MFR) of 0.5 to 3.0 measured at 230°C, and 50 to 20 parts by weight of monoolefin copolymer rubber (B). Weight part, (A) + (B) 100
After uniformly melting and mixing 5 to 20 parts by weight of mineral oil (C), the mixture is granulated and coated on the surface of the granules.
Injection moldability (fluidity) characterized by uniformly depositing 0.05 to 0.5 parts by weight of an organic peroxide and continuously granulating it in an extruder-type kneader while allowing the organic peroxide to act. , a method for producing a soft polyolefin resin composition with excellent mechanical strength.
JP12294781A 1981-08-07 1981-08-07 Production of non-rigid polyolefin resin composition Granted JPS5825342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12294781A JPS5825342A (en) 1981-08-07 1981-08-07 Production of non-rigid polyolefin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12294781A JPS5825342A (en) 1981-08-07 1981-08-07 Production of non-rigid polyolefin resin composition

Publications (2)

Publication Number Publication Date
JPS5825342A JPS5825342A (en) 1983-02-15
JPH0121179B2 true JPH0121179B2 (en) 1989-04-20

Family

ID=14848551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12294781A Granted JPS5825342A (en) 1981-08-07 1981-08-07 Production of non-rigid polyolefin resin composition

Country Status (1)

Country Link
JP (1) JPS5825342A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506842B1 (en) * 1997-01-29 2003-01-14 Dupont Dow Elastomers L.L.C. Rheology-modified thermoplastic elastomer compositions and articles fabricated therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139845A (en) * 1975-05-15 1976-12-02 Standard Oil Co Polypropylene compositions and method of molding
JPS53149240A (en) * 1977-06-01 1978-12-26 Mitsui Petrochem Ind Ltd Production of thermoplastic elastomer composition
JPS5450057A (en) * 1977-09-29 1979-04-19 Ube Ind Ltd Preparation of polypropylene composition having improved impact resistance
JPS56125442A (en) * 1980-03-10 1981-10-01 Showa Denko Kk Production of crystalline polypropylene composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139845A (en) * 1975-05-15 1976-12-02 Standard Oil Co Polypropylene compositions and method of molding
JPS53149240A (en) * 1977-06-01 1978-12-26 Mitsui Petrochem Ind Ltd Production of thermoplastic elastomer composition
JPS5450057A (en) * 1977-09-29 1979-04-19 Ube Ind Ltd Preparation of polypropylene composition having improved impact resistance
JPS56125442A (en) * 1980-03-10 1981-10-01 Showa Denko Kk Production of crystalline polypropylene composition

Also Published As

Publication number Publication date
JPS5825342A (en) 1983-02-15

Similar Documents

Publication Publication Date Title
KR100632603B1 (en) Thermoplastic Elastomer Compositions and Method of Making the Same
CA1199142A (en) Polypropylene compositions with high impact strength
JP5513503B2 (en) Process for preparing a modified polypropylene composition
JP4250212B2 (en) Masterbatch formulations for polyolefin applications
JP6470402B2 (en) Resin composition and synthetic wood using the same
JPH0252648B2 (en)
CA1107885A (en) Compositions comprising polybytene, epom and polyolefin
JPH03292342A (en) Thermoplastic elastomer composition
JP2011528733A5 (en)
JPH036251A (en) Thermoplastic olefin alloy and production thereof
JP2000072924A (en) Star-wise branched rubber/thermoplastic elastomer vulcanizate
JPS5815544A (en) Polyolefin composition
JP3418013B2 (en) Thermoplastic olefin based elastomer composition and method for producing the same
US6034177A (en) Propylene resin composition
JP5349720B2 (en) Multi-layer pellets with rubber core
EP1124899B1 (en) A process and composition for manufacturing articles by powder moulding and articles thus obtained
JPS6259139B2 (en)
JPS60152543A (en) Polypropylene composition
US6187869B1 (en) Modifiers based on ethylenes or amorphous olefin elastomers for reducing the surface tack of amorphous polypropylenes
JPH0121179B2 (en)
JPH01103639A (en) Olefinic thermoplastic elastomer composition
JP3523353B2 (en) Thermoplastic resin composition
JP2019147944A (en) Thermoplastic elastomer composition and molded article thereof
KR20040054899A (en) Polypropylene resin composition with superior scratch resistance and impact strength
JPS59221346A (en) Thermoplastic elastomer composition having excellent surface gloss and its production