JPH0121137B2 - - Google Patents

Info

Publication number
JPH0121137B2
JPH0121137B2 JP58111818A JP11181883A JPH0121137B2 JP H0121137 B2 JPH0121137 B2 JP H0121137B2 JP 58111818 A JP58111818 A JP 58111818A JP 11181883 A JP11181883 A JP 11181883A JP H0121137 B2 JPH0121137 B2 JP H0121137B2
Authority
JP
Japan
Prior art keywords
fluorophenols
added
bromofluorobenzene
bromofluorobenzenes
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58111818A
Other languages
Japanese (ja)
Other versions
JPS604144A (en
Inventor
Seiro Suzuki
Shozo Kaneda
Toshikazu Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP58111818A priority Critical patent/JPS604144A/en
Publication of JPS604144A publication Critical patent/JPS604144A/en
Publication of JPH0121137B2 publication Critical patent/JPH0121137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフルオロフエノール類の製造に関する
ものである。さらに詳しくは、ブロムフルオロベ
ンゼン類を先ずフルオロアニソール類とししかる
のちにフルオロフエノール類を製造する方法に関
するものである。 フルオロフエノール類は医農薬の中間原料とし
て有用な物質である。従来フルオロフエノール類
の製造方法に関しては、例えば(1)ブロムフルオロ
ベンゼン類を水酸化カルシウム及び水の存在下溶
融する方法(J.Org.Chem.、26 4641(1961))、
(2)アミノフエノール類をジアゾニウム塩とした後
加熱分解する方法(J.Amer.Chem.Soc.、71
1863(1949))、(3)フエネチジン類をジアゾニウム
塩とした後加熱又は光分解して得られるフルオロ
フエネトール類を加水分解する方法(J.Amer.
Chem.Soc.、61 165(1939))および(4)フエノー
ルをフツ素でフツ素化する方法(J.Fluorine
Chem.、21 191(1982))などが知られている。 しかしながらこれらの方法においては、(1)の方
法では高温高圧を要する上に選択率が低く又副生
するフエノール類の物性が目的とするフルオロフ
エノール類の物性と酷似しているため高純度のフ
ルオロフエノール類を単離することが困難であ
る。(2)および(3)の方法では収率が低く又選択率も
低いため工業的製法とは言い難い。(4)の方法では
フルオロフエノールの異性体の混合物が得られ、
これら異性体の物性が酷似しているため、目的と
するフルオロフエノールを単離する事は極めて困
難である。 本発明者らはフルオロフエノール類を穏和な条
件下に工業的に有利に製造する方法を提供するこ
とを目的とし、特に異性体及びフエノールの副生
しないフルオロフエノール類の製造方法について
鋭意検討した結果、ブロムフルオロベンゼン類を
銅および/またはコバルト化合物の触媒存在下ア
ルカリ金属メチラートと反応せしめてフルオロア
ニソール類とし、次いで加水分解する事により少
くとも99%以上の高純度のフルオロフエノール類
が好収率で得られる事を見い出し本発明に到達し
た。 本発明によれば一般式
The present invention relates to the production of fluorophenols. More specifically, the present invention relates to a method for first converting bromofluorobenzenes into fluoroanisoles and then producing fluorophenols. Fluorophenols are useful substances as intermediate raw materials for medicines and agrochemicals. Conventional methods for producing fluorophenols include (1) a method of melting bromofluorobenzenes in the presence of calcium hydroxide and water (J.Org.Chem., 26 4641 (1961));
(2) Method of thermally decomposing aminophenols after converting them into diazonium salts (J.Amer.Chem.Soc., 71
1863 (1949)), (3) A method of hydrolyzing fluorophenetols obtained by converting phenetidines into diazonium salts and then heating or photolyzing them (J.Amer.
Chem.Soc., 61 165 (1939)) and (4) Method for fluorinating phenols with fluorine (J.Fluorine
Chem., 21 191 (1982)). However, in these methods, method (1) requires high temperature and high pressure, has low selectivity, and the physical properties of the by-product phenols are very similar to those of the target fluorophenols, so high purity fluorinated phenols cannot be obtained. Phenols are difficult to isolate. Methods (2) and (3) have low yields and low selectivities, so they cannot be called industrial production methods. In method (4), a mixture of fluorophenol isomers is obtained,
Since the physical properties of these isomers are very similar, it is extremely difficult to isolate the desired fluorophenol. The present inventors aimed to provide an industrially advantageous method for producing fluorophenols under mild conditions, and as a result of intensive study on a method for producing fluorophenols that does not produce by-products of isomers or phenols. By reacting bromofluorobenzenes with alkali metal methylates in the presence of copper and/or cobalt compound catalysts to form fluoroanisoles, and then hydrolyzing them, fluorophenols with a purity of at least 99% can be obtained in good yields. The present invention has been achieved by discovering what can be obtained. According to the invention, the general formula

【式】 (但しn=1〜5)で示されるブロムフルオロベ
ンゼン類をアルカリ金属メチラートと触媒存在下
無溶媒又は有機溶媒中加熱する事によりフルオロ
アニソール類が好収率で製造でき、次いで常法に
従い加水分解する事により容易に目的物を製造す
る事ができる。しかも該方法によれば異性体は全
く副生せず又フエノールも副生しないため、蒸留
式いは再結晶によつて目的物を容易に単離する事
が可能な点で工業的にも極めて有利である。 本発明の方法で用いられる一般式で表わされる
ブロムフルオロベンゼン類は例えばo−ブロムフ
ルオロベンゼン、m−ブロムフルオロベンゼン、
p−ブロムフルオロベンゼン、3,4−ジフルオ
ロブロムベンゼン、3,5−ジフルオロブロムベ
ンゼン、2,5−ジフルオロブロムベンゼン、
2,6−ジフルオロブロムベンゼン、および2,
3,4,5−テトラフルオロブロムベンゼンなど
がある。 アルカリ金属メチラートとしてはナトリウムメ
チラート、カリウムメチラート、リチウムメチラ
ートなどが使用されるが経済的にはナトリウムメ
チラートが好ましい。 アルカリ金属メチラートの使用量は理論的には
ブロムフルオロベンゼン類に対し当モル必要であ
り通常理論量の少過剰を使用すればよく、特に限
定されるものではなく経済性を考慮して決めるべ
きで通常当モル〜7モルの範囲である。 触媒としては銅化合物および/またはコバルト
化合物が使用でき例えば塩化第一銅、塩化第二
銅、臭化第一銅、臭化第二銅、沃化第一銅、酸化
第一銅、酸化第二銅、ナフテン酸銅、塩化コバル
ト、沃化コバルト、臭化コバルト、およびナフテ
ン酸コバルトなどがあげられるが、特に反応時間
を短縮する目的のためには臭化第一銅、沃化第一
銅が好ましい。これら触媒の使用量はブロムフル
オロベンゼン類に対し1%以上必要であるが、反
応時間の短縮を計るためには5〜30%とする事が
好ましいが特に限定されるものではない。 又有機溶媒としてはメタノール、エタノール、
プロピルアルコール等のアルコール、ジメチルホ
ルムアミド、ジエチルホルムアミド、ジメチルア
セトアミド、エチレンジアミン、アセトニトリ
ル、ジメチルスルホキサイド、スルホラン、およ
びジメチルスルホン等の通常の非プロトン極性溶
媒が使用できる。 加熱温度は一般に60〜250℃であり反応の進行
はガスクロマトグラフイーにより追跡し、大部分
のブロムフルオロベンゼン類が消失した時点で反
応時間は決められる。 加水分解に際しては臭化水素、沃化水素酸など
のハロゲン化水素酸と加熱還流する方法、あるい
は、ベンゼン、四塩化炭素などの不活性溶媒中、
塩化アルミニウム、塩化鉄、臭化亜鉛などのルイ
ス酸を用いて加水分解する公知の方法が使用でき
る。 以下本発明を実施例について詳細に説明するが
本発明はこれら特別な実施例のみに限定されるも
のではない。 実施例 1 500mlガラス製反応器にp−ブロムフルオロベ
ンゼン100g、28%ナトリウムメトキサイドのメ
タノール溶液231g(2.1倍モル)沃化銅15.2gを
窒素雰囲気下に加え、9時間加熱還流(80℃)し
た。反応は定量的に進行しp−ブロムフルオロベ
ンゼンの転化率99.9%、p−フルオロアニソール
の選択率100%であつた。放冷後水300mlを加えて
セライト濾過し下層に分液したp−フルオロアニ
ソールを単離後、更に水層をn−ヘキサン抽出し
てp−フルオロアニソールを回収した。収量60.0
g(収率83%)次いでこのp−フルオロアニソー
ル60gに47%臭化水素酸246gを加え10時間加熱
還流(110℃)した。放冷後上層に分離した有機
層を分液し蒸留して純度99.9%以上のp−フルオ
ロフエノール49gを得た。収率92%、沸点74℃/
11mmHg。尚、他の副生物の生成は認められなか
つた。 実施例 2 p−ブロムフルオロベンゼン2g、ナトリウム
メトキサイド2.2g(3.5倍モル)沃化銅0.2g、ジ
メチルホルムアミド10gを加え3時間加熱還流
(150℃)した。実施例1と同様に後処理して得ら
れたp−フルオロアニソールを臭化水素酸で加水
分解して純度99.9%以上のp−フルオロフエノー
ル1.16gを得た。収率91%。 実施例 3 p−ブロムフルオロベンゼン10g、カリウムメ
トキサイド4.8g(1.2倍モル)、ナフテン酸コバ
ルト1.1gを加え150℃で1.5時間撹拌下反応した。
放冷後水5mlを加えた後実施例1と同様の後処理
をしてp−フルオロアニソールを得たこのp−フ
ルオロアニソールに塩化アルミニウム16gを加え
ベンゼン溶媒中で5時間還流した後水を加え、塩
化メチレンで抽出し濃縮液をn−ヘキサンより再
結晶し、純度99.9%以上のp−フルオロフエノー
ル4.16gを得た。収率65%。融点47℃。 実施例 4 o−ブロムフルオロベンゼン2g、28%ナトリ
ウムメトキサイドのメタノール溶液8g(3.6倍
モル)、臭化銅0.2gを使用して実施例1と同様の
操作によりo−フルオロフエノール0.96gを得
た。収率75%。沸点172℃。 実施例 5 2,4−ジフルオロブロムベンゼン3.0g、28
%ナトリウムメトキサイドのメタノール溶液8g
(2.5倍モル)、沃化銅0.5gを窒素雰囲気下に加え
9時間還流(80℃)し、放冷後水10mlを加えてセ
ライト濾過し、下層に分離した2,4−ジフルオ
ロアニソールを分液し、47%臭化水素酸10gを加
え20時間加熱還流(110℃)した。放冷後上層に
分離した有機層を分液し、蒸留して純度99.9%以
上の2,4−ジフルオロフエノール1.8gを得た。
収率85%。沸点150℃。
[Formula] Fluoroanisoles can be produced in good yield by heating bromofluorobenzenes represented by (where n = 1 to 5) with an alkali metal methylate in the presence of a catalyst without a solvent or in an organic solvent, and then by a conventional method. The desired product can be easily produced by hydrolysis according to the following. Moreover, according to this method, no isomers or phenols are produced as by-products, so the target product can be easily isolated by distillation or recrystallization, making it extremely industrially possible. It's advantageous. The bromofluorobenzenes represented by the general formula used in the method of the present invention include, for example, o-bromofluorobenzene, m-bromofluorobenzene,
p-bromofluorobenzene, 3,4-difluorobromobenzene, 3,5-difluorobromobenzene, 2,5-difluorobromobenzene,
2,6-difluorobrombenzene, and 2,
Examples include 3,4,5-tetrafluorobrombenzene. As the alkali metal methylate, sodium methylate, potassium methylate, lithium methylate, etc. are used, but sodium methylate is economically preferred. The amount of alkali metal methylate to be used is theoretically equivalent to the equivalent mole of bromofluorobenzenes, and it is usually sufficient to use a small excess of the theoretical amount; there is no particular limitation and it should be determined in consideration of economic efficiency. It is usually in the range of equimole to 7 moles. As a catalyst, a copper compound and/or a cobalt compound can be used, such as cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, cuprous oxide, cupric oxide, etc. Examples include copper, copper naphthenate, cobalt chloride, cobalt iodide, cobalt bromide, and cobalt naphthenate, but especially for the purpose of shortening the reaction time, cuprous bromide and cuprous iodide are used. preferable. The amount of these catalysts used is required to be 1% or more based on the bromofluorobenzene, but is not particularly limited, although it is preferably 5 to 30% in order to shorten the reaction time. Also, as organic solvents, methanol, ethanol,
Common aprotic polar solvents can be used, such as alcohols such as propyl alcohol, dimethylformamide, diethylformamide, dimethylacetamide, ethylenediamine, acetonitrile, dimethylsulfoxide, sulfolane, and dimethylsulfone. The heating temperature is generally 60 to 250°C, the progress of the reaction is monitored by gas chromatography, and the reaction time is determined when most of the bromofluorobenzenes have disappeared. Hydrolysis can be carried out by heating under reflux with a hydrohalic acid such as hydrogen bromide or hydriodic acid, or in an inert solvent such as benzene or carbon tetrachloride.
A known method of hydrolysis using a Lewis acid such as aluminum chloride, iron chloride, or zinc bromide can be used. The present invention will be described below in detail with reference to Examples, but the present invention is not limited to these specific Examples. Example 1 100 g of p-bromofluorobenzene, 231 g (2.1 times the mole) of a methanol solution of 28% sodium methoxide, and 15.2 g of copper iodide were added to a 500 ml glass reactor under nitrogen atmosphere, and the mixture was heated under reflux (80°C) for 9 hours. did. The reaction proceeded quantitatively, with a conversion rate of p-bromofluorobenzene of 99.9% and a selectivity of p-fluoroanisole of 100%. After cooling, 300 ml of water was added and filtered through Celite to isolate p-fluoroanisole, which was separated into a lower layer.The aqueous layer was further extracted with n-hexane to recover p-fluoroanisole. Yield 60.0
(Yield: 83%) Next, 246 g of 47% hydrobromic acid was added to 60 g of this p-fluoroanisole, and the mixture was heated under reflux (110° C.) for 10 hours. After cooling, the upper organic layer was separated and distilled to obtain 49 g of p-fluorophenol with a purity of 99.9% or higher. Yield 92%, boiling point 74℃/
11mmHg. Note that no other by-products were observed. Example 2 2 g of p-bromofluorobenzene, 2.2 g (3.5 times the mole) of sodium methoxide, 0.2 g of copper iodide, and 10 g of dimethylformamide were added, and the mixture was heated under reflux (150° C.) for 3 hours. The p-fluoroanisole obtained by post-treatment in the same manner as in Example 1 was hydrolyzed with hydrobromic acid to obtain 1.16 g of p-fluorophenol with a purity of 99.9% or more. Yield 91%. Example 3 10 g of p-bromofluorobenzene, 4.8 g (1.2 times the mole) of potassium methoxide, and 1.1 g of cobalt naphthenate were added and reacted at 150° C. for 1.5 hours with stirring.
After cooling, 5 ml of water was added and the same post-treatment as in Example 1 was carried out to obtain p-fluoroanisole. 16 g of aluminum chloride was added to this p-fluoroanisole, refluxed in a benzene solvent for 5 hours, and then water was added. The extract was extracted with methylene chloride, and the concentrated solution was recrystallized from n-hexane to obtain 4.16 g of p-fluorophenol with a purity of 99.9% or higher. Yield 65%. Melting point 47℃. Example 4 0.96 g of o-fluorophenol was obtained in the same manner as in Example 1 using 2 g of o-bromofluorobenzene, 8 g of a methanol solution of 28% sodium methoxide (3.6 times the mole), and 0.2 g of copper bromide. Ta. Yield 75%. Boiling point 172℃. Example 5 2,4-difluorobrombenzene 3.0g, 28
% sodium methoxide in methanol 8g
(2.5 times the mole) and 0.5 g of copper iodide were added under nitrogen atmosphere and refluxed (80°C) for 9 hours. After cooling, 10 ml of water was added and filtered through Celite. The 2,4-difluoroanisole separated in the lower layer was separated. The liquid was drained, 10 g of 47% hydrobromic acid was added, and the mixture was heated under reflux (110°C) for 20 hours. After cooling, the upper organic layer was separated and distilled to obtain 1.8 g of 2,4-difluorophenol with a purity of 99.9% or higher.
Yield 85%. Boiling point 150℃.

Claims (1)

【特許請求の範囲】 1 一般式、 【式】 (但しn=1〜5)で表わされるブロムフルオロ
ベンゼン類を銅および/またはコバルト化合物の
触媒存在下、アルカリ金属メチラートと反応させ
フルオロアニソール類としたのち、加水分解する
ことを特徴とするフルオロフエノール類の製造方
法。
[Claims] 1 Bromofluorobenzenes represented by the general formula, [Formula] (where n = 1 to 5) are reacted with alkali metal methylates in the presence of a catalyst of copper and/or cobalt compounds to form fluoroanisoles. A method for producing fluorophenols, which is characterized in that the fluorophenols are then hydrolyzed.
JP58111818A 1983-06-23 1983-06-23 Production of fluorophenol Granted JPS604144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58111818A JPS604144A (en) 1983-06-23 1983-06-23 Production of fluorophenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111818A JPS604144A (en) 1983-06-23 1983-06-23 Production of fluorophenol

Publications (2)

Publication Number Publication Date
JPS604144A JPS604144A (en) 1985-01-10
JPH0121137B2 true JPH0121137B2 (en) 1989-04-19

Family

ID=14570926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111818A Granted JPS604144A (en) 1983-06-23 1983-06-23 Production of fluorophenol

Country Status (1)

Country Link
JP (1) JPS604144A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940821A (en) * 1989-03-20 1990-07-10 The Dow Chemical Company Preparation of fluorophenols

Also Published As

Publication number Publication date
JPS604144A (en) 1985-01-10

Similar Documents

Publication Publication Date Title
KR0177802B1 (en) Processes for producing 5-fluorobenzoic acids and their intermediate
JPH01301636A (en) Production of 1,2,2,2-tetrafluoroethyl difluoromethyl ether
JP4407896B2 (en) Method for producing 2- (alkyl) cycloalkenone
CN107641067B (en) Alpha-bromination method of o-diketone
JPH0121137B2 (en)
JP3663229B2 (en) Process for producing 4-halo-2'-nitrobutyrophenone compound
CA2113973A1 (en) 2,3-difluoro-6-nitrobenzonitrile and 2-chloro-5, 6-difluorobenzonitrile(2,3-difluoro-6-chlorobenzonitrile), process for their preparation and their use for the preparation of 2,3,6-trifluorobenzoic acid
JPH04224535A (en) Production of 1,3,5-trifluorobenzene
JPS6133829B2 (en)
EP1094053B1 (en) Method of preparing fluoroaromatic compounds
HU188068B (en) Process for producing 3-bromo-4-fluoro-benzaldehyde-acetales
JP2793090B2 (en) Method for producing bromopentafluorobenzene
US20180029964A1 (en) Methods for producing 2,6-dimethyl-1,5-heptadien-3-ol and 2,6-dimethyl-1,5-heptadien-3-yl acetate
CA1144947A (en) Process for the preparation of 3-bromo-4- fluorotoluene
EP1185491B1 (en) Process for the preparation of tetrafluorohalogenbenzenes
EP0038223B1 (en) Process for the preparation of trifluoromethylbenzoyl halides
JP5000031B2 (en) Method for producing aromatic-o-dialdehyde compound
JPH0733340B2 (en) Method for converting carbonyl group to difluoromethylene group
EP0421385B1 (en) Process for producing p-hydroxyneophyl m-phenoxybenzyl ether
US3388155A (en) 4, 4-dihalo-2-(4-biphenylyl)-3-butenoic acids
JPH0572895B2 (en)
JPH0841005A (en) Production of 4-fluoroalkoxycynnamonitrile compound
US4982010A (en) Method of producing 4-biphenyl p-tolyl ether
JPH0780805B2 (en) Method for producing benzylpropyl ether derivative
CN117342931A (en) Preparation method of 5-alkyl resorcinol compound