JPH01210938A - Waveguide type optical logic element and optical limiter - Google Patents
Waveguide type optical logic element and optical limiterInfo
- Publication number
- JPH01210938A JPH01210938A JP3626888A JP3626888A JPH01210938A JP H01210938 A JPH01210938 A JP H01210938A JP 3626888 A JP3626888 A JP 3626888A JP 3626888 A JP3626888 A JP 3626888A JP H01210938 A JPH01210938 A JP H01210938A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- layer
- waveguide
- light
- limiter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 131
- 239000000463 material Substances 0.000 claims abstract description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 229920000642 polymer Polymers 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000005253 cladding Methods 0.000 description 33
- 238000010586 diagram Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- 239000000987 azo dye Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229920000015 polydiacetylene Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UVEWQKMPXAHFST-UHFFFAOYSA-N n,1-diphenylmethanimine Chemical compound C=1C=CC=CC=1C=NC1=CC=CC=C1 UVEWQKMPXAHFST-UHFFFAOYSA-N 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、非線形光学効果による屈折率変化を利用し、
入射光の等偏屈折率を光強度により変化させて光リミッ
タ動作および光論理動作を同一素子で行わせる導波路型
光論理素子および光リミッタに関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes refractive index changes due to nonlinear optical effects,
The present invention relates to a waveguide type optical logic element and an optical limiter that perform optical limiter operation and optical logic operation in the same element by changing the equipolarized refractive index of incident light depending on the optical intensity.
[従来の技術]
光通信システムの実用化が進むにつれ、さらに大容量・
多機能な高度の光通信および光情報処理システムが求め
られている。光情報処理を行う場合には、各チャンネル
から送られてくる光信号パルス列を所定強度にそろえる
光リミッタや、これらのパルス列の論理演算を行う光論
理素子が必要となる。また、光リミッタは光素子や光回
路にしきい値以上の大出力光が入射することを防ぐ保護
回路としても重要である。[Conventional technology] As the practical use of optical communication systems progresses, even higher capacity and
There is a need for multi-functional, advanced optical communication and optical information processing systems. When optical information processing is performed, an optical limiter that adjusts the optical signal pulse trains sent from each channel to a predetermined intensity and an optical logic element that performs logical operations on these pulse trains are required. The optical limiter is also important as a protection circuit that prevents high output light exceeding a threshold value from entering an optical element or an optical circuit.
第5図は従来の光論理素子および光リミッタの構成図で
ある。7.9は反射鏡、8は電極、10はハーフミラ−
111は電気光学結晶、12は光検出器、13は増幅器
である。この従来例では、その屈折率を電極8からの印
加電圧により変えることができる電気光学結晶11を反
射鏡7.9等で構成されるファプリーペロー共振器の中
に置き、光検出器12と増幅器13とにより透過光強度
IOおよび制御光強度IA、IBに比例した電圧を電気
光学結晶11に帰還、印加することによって(光−電気
)混成型の光論理素子または光リミッタが構成されてい
た。FIG. 5 is a block diagram of a conventional optical logic element and optical limiter. 7.9 is a reflecting mirror, 8 is an electrode, 10 is a half mirror
111 is an electro-optic crystal, 12 is a photodetector, and 13 is an amplifier. In this conventional example, an electro-optic crystal 11 whose refractive index can be changed by applying a voltage from an electrode 8 is placed in a Fapley-Perot resonator composed of a reflecting mirror 7, 9, etc., and a photodetector 12 and An amplifier 13 feeds back and applies a voltage proportional to the transmitted light intensity IO and the control light intensities IA and IB to the electro-optic crystal 11, thereby forming a (optical-electrical) hybrid optical logic element or optical limiter. .
[発明が解決しようとする課題]
しかしながら、上記従来の技術における光−電気混成型
の光論理素子または光リミッタでは、ファプリーペロー
共振器を用いているので、光学系の調整が厄介であり、
また光−電気(0/E )変換をするための装置が必要
であるために、装置系全体が大型になるという欠点があ
った。さらに、共振器を用いた光論理素子および光リミ
ッタでは、1つの構成で単一の論理動作もしくは光リミ
ッタ動作のいずれか一方の動作しかできないという欠点
があった。[Problems to be Solved by the Invention] However, in the optical-electrical hybrid optical logic element or optical limiter in the above-mentioned conventional technology, since a Fapley-Perot resonator is used, adjustment of the optical system is troublesome.
Furthermore, since a device for optical-to-electrical (0/E) conversion is required, there is a drawback that the entire device system becomes large. Furthermore, optical logic elements and optical limiters using resonators have the disadvantage that a single configuration can only perform either a single logic operation or an optical limiter operation.
本発明は、上記問題点を解決するために創案されたもの
で、その目的は構造が単純で安定性に優れ、かつ小形に
構成することが可能で、光論理動作と晃リミッタ動作を
同一素子で同時に行うことができる導波路型光論理素子
および光リミッタを提供することにある。The present invention was devised to solve the above problems, and its purpose is to have a simple structure, excellent stability, and be able to be configured in a compact size, and to perform optical logic operation and limiter operation in the same element. An object of the present invention is to provide a waveguide-type optical logic element and an optical limiter that can perform simultaneous operation.
[課題を解決するための手段]
上記の目的を達成するための本発明の導波路型光論理素
子および光リミッタの構成は、光照射によって屈折率が
増加する非線形光学物質層とそれに接する導波路層とか
ら成り、上記両層の接する方向の導波路層の一端を信号
光の入射端とするとともにその他端を上記信号光に対し
光リミッタ動作を示す出射端とし、上記導波路層の出射
端に隣接する上記非線形光学物質層の端部を上記信号光
に対し光論理動作が可能な微分利得特性を示す出射端と
するか、または、上記において、非線形光学物質層の両
側に二つの導波路層が接する構造とし、光リミッタを動
作を示す一方の導波路層の出射端に上記非線形光学物質
層を隔てて近接する他方の導波路層の端部を光論理動作
が可能な微分利得特性を示す出射端とすることを特徴と
する。[Means for Solving the Problems] The configuration of the waveguide type optical logic element and optical limiter of the present invention to achieve the above object includes a nonlinear optical material layer whose refractive index increases by light irradiation, and a waveguide in contact with the nonlinear optical material layer. one end of the waveguide layer in the direction in which the two layers contact is an input end for signal light, and the other end is an output end that exhibits an optical limiter operation for the signal light, and an output end of the waveguide layer. The end of the nonlinear optical material layer adjacent to the nonlinear optical material layer is used as an output end exhibiting a differential gain characteristic capable of optical logic operation for the signal light, or in the above, two waveguides are provided on both sides of the nonlinear optical material layer. The layers are in contact with each other, and the output end of one waveguide layer that exhibits an optical limiter operation has a differential gain characteristic that enables optical logic operation at the end of the other waveguide layer that is adjacent to the output end of the other waveguide layer across the nonlinear optical material layer. It is characterized by having the output end shown in FIG.
[作用]
本発明は、信号光を入射する導波路層の側面に非線形光
学物質層を接することにより、その非線形感受率を利用
して、入射光強度の増大とともに等偏屈折率を大きくし
、入射光パワーの中心を非線形光学物質層へ移行させて
、この導波路層を光リミッタとして機能させる。一方、
入射光パワーの中心が非線形光学物質層に移行するのに
際して、この層にしみ出すエバネセント波のパワーが入
射光強度の増大により急激に大きくなる特性(微分利得
特性)を利用し、このエバネセント波を非線形光学物質
層またはこの層に接する他の導波路層の出射端から得て
その光強度を判定することにより、光論理動作を可能に
する。[Function] The present invention uses the nonlinear susceptibility of the nonlinear optical material layer to contact the side surface of the waveguide layer into which the signal light is incident, thereby increasing the equipolarized refractive index as the intensity of the incident light increases. The center of the incident optical power is transferred to the nonlinear optical material layer, causing this waveguide layer to function as an optical limiter. on the other hand,
When the center of the incident light power shifts to the nonlinear optical material layer, the power of the evanescent wave seeping into this layer increases rapidly as the intensity of the incident light increases (differential gain characteristic). Optical logic operation is enabled by determining the light intensity obtained from the output end of the nonlinear optical material layer or other waveguide layer in contact with this layer.
[実施例]
以下、本発明の実施例を図面に基づいて詳細に説明する
。[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.
第1図(a)、(b)は本発明の光論理素子および光リ
ミッタの第1の実施例の構成を示す平面図(a)と側面
図(b)である。本実施例は、シリコン基板1を熱酸化
して形成したShowバッファ層2の上にRFスパッタ
法で形成したコーニング7059ガラス(米国コーニン
グガラスワーク社製)導波路層3と、それに接するよう
にS iOtバラフッ層2の上に、下記の構造式(1)
で示されるモノマ構造を有する4BCMUポリマから成
るクラッド層4が設置された構成をとっている。FIGS. 1(a) and 1(b) are a plan view (a) and a side view (b) showing the configuration of a first embodiment of an optical logic element and an optical limiter of the present invention. In this embodiment, a waveguide layer 3 of Corning 7059 glass (manufactured by Corning Glass Works, Inc., USA) is formed by RF sputtering on a show buffer layer 2 formed by thermally oxidizing a silicon substrate 1, and a S On the iOt barrier layer 2, the following structural formula (1) is applied.
The structure includes a cladding layer 4 made of 4BCMU polymer having a monomer structure shown in FIG.
R−C=C−C=C−R・・・(1) R=−+CH,う−。OCNHCH,COC,H。R-C=C-C=C-R...(1) R=-+CH, U-. OCNHCH, COC, H.
このクラッド層4が本発明の非線形光学物質層であり、
この層を形成する非線形光学材料はtQ−11esu以
上の大きな3次の非線形感受率χ0ゝを有している。両
層3,4の接する方向の導波路層3の断面の幅および厚
さは、例えば5μm程度に形成する。また、それに接す
るクラッド層4の断面の幅および厚みも同じく5μm程
度に形成する。This cladding layer 4 is the nonlinear optical material layer of the present invention,
The nonlinear optical material forming this layer has a large third-order nonlinear susceptibility χ0 of more than tQ-11esu. The width and thickness of the cross section of the waveguide layer 3 in the direction in which the two layers 3 and 4 are in contact are, for example, approximately 5 μm. Further, the width and thickness of the cross section of the cladding layer 4 in contact with the cladding layer 4 are also formed to be approximately 5 μm.
ここで、上記両層3.4の接する方向の導波路層3の一
端3aを信号光I i (IA、 In)の入射端と
することにより、その他端3bは上記信号光l1(IA
、IB)に対し光リミッタ動作を示す出射端となり、こ
の出射端3bに隣接しているクラッド層4の端部4bは
、導波路層3からしみ出し微分利得特性を示すエバネセ
ント波の出射端となる。Here, by setting one end 3a of the waveguide layer 3 in the direction in which the two layers 3.4 are in contact with each other as the input end of the signal light I i (IA, In), the other end 3b is used as the input end of the signal light I1 (IA, In).
, IB), and the end 4b of the cladding layer 4 adjacent to the output end 3b serves as the output end of the evanescent wave that seeps out from the waveguide layer 3 and exhibits a differential gain characteristic. Become.
本実施例に用いる導波路は特に種類を限定しないが、使
用波長域で低損失であればいずれも使用可能である。具
体的には石英系(SiOxにTiもしくはG e Ot
をドープ)導波路や上記のコーニング7059ガラス導
波路、TiあるいはH0拡散L i N b Os導波
路等を挙げることができる。The type of waveguide used in this embodiment is not particularly limited, but any waveguide can be used as long as it has low loss in the wavelength range used. Specifically, quartz-based (SiOx with Ti or GeOt
(doped) waveguide, the Corning 7059 glass waveguide mentioned above, a Ti or H0 diffused L i N b Os waveguide, and the like.
また、本実施例でクラッド層4に用いる有機非線形光学
材料は、臨界光強度(光リミッタであれば出射光パワー
が飽和を始める光強度)Icが実用的な光パワー(約I
MW/mm以下)で達成されるために、非線形感受率χ
131の値として約lXl0−”e s u以上の大き
な値を示すことが要求される。この要求を満たす材料で
あれば特に制限するものではないが、具体的には高χ′
3′材料として知られているポリジアセチレン、ポリ(
P−フェニレンビニレン)、ポリ(2,5−チェニレン
ビニレン)等の有機ポリマ、ベンジリデンアニリン系や
スチルベン系、アゾ系色素等の有機単結晶および有機多
結晶を挙げることができる。In addition, the organic nonlinear optical material used for the cladding layer 4 in this example has a critical light intensity (light intensity at which the output light power begins to be saturated in the case of an optical limiter) Ic, which is a practical optical power (approximately I
MW/mm), the nonlinear susceptibility χ
131 is required to exhibit a large value of about l
Polydiacetylene, poly(
Examples include organic polymers such as P-phenylene vinylene) and poly(2,5-chenylene vinylene), and organic single crystals and organic polycrystals such as benzylidene aniline, stilbene, and azo dyes.
以上のように構成した第1の実施例の作用を述べる。本
実施例による光論理素子および光リミッタは、有機非線
形光学材料からなるクラッド層4と、該クラッド層4と
接するように導波路層3を配した単純な構造を有してお
り、該クラッド層4を形成する有機非線形光学材料はI
O−”e s u以上の大きな3次の非線形感受率χ
(3)を有している。このクラッド層4の大きな非線形
感受率χl)のために、導波路層3に入射された入射光
は、その等価屈折率が光強度の増大と共に太き(なり、
光パワーの中心が該クラッド層4へ移行する。これに伴
って、導波路層3では出射光パワーが入射光パワーの増
加に追随しなくなり、ある臨界光強度!c以上では出射
光lotが飽和現象を呈して光リミッタ動作を示す。一
方、クラッド層4では、導波路層3の光パワーが一部エ
バネセント波としてしみ出しているが、この光パワーの
しみ出しくエバネセント波のパワー)は入射光の等価屈
折率が大きくなるに従って次第に大きくなり、入射光パ
ワーの中心が該クラッド層4へ移行してくるに際して、
臨界光強度1c以上で急激に大きくなる。このようにク
ラッド層4では導波路層3の入射光強度の増加に伴って
出射光lotは微分利得特性を示す。この微分利得特性
は光ORゲートやANDゲートのような光論理ゲートの
基本特性である(応用物理学会光学懇話会発行雑誌「光
学」第14巻。The operation of the first embodiment configured as above will be described. The optical logic element and optical limiter according to this embodiment have a simple structure including a cladding layer 4 made of an organic nonlinear optical material and a waveguide layer 3 disposed in contact with the cladding layer 4. The organic nonlinear optical material forming 4 is I
Large third-order nonlinear susceptibility χ greater than O−”e s u
(3). Due to the large nonlinear susceptibility χl) of the cladding layer 4, the equivalent refractive index of the incident light incident on the waveguide layer 3 increases as the light intensity increases.
The center of optical power shifts to the cladding layer 4. Along with this, in the waveguide layer 3, the output light power no longer follows the increase in the incident light power, and a certain critical light intensity is reached! Above c, the output light lot exhibits a saturation phenomenon and exhibits a light limiter operation. On the other hand, in the cladding layer 4, part of the optical power of the waveguide layer 3 seeps out as an evanescent wave, but the seepage of this optical power (the power of the evanescent wave) gradually increases as the equivalent refractive index of the incident light increases. When the center of the incident light power shifts to the cladding layer 4,
It increases rapidly above the critical light intensity 1c. In this way, in the cladding layer 4, the output light lot exhibits differential gain characteristics as the intensity of the light incident on the waveguide layer 3 increases. This differential gain characteristic is a basic characteristic of optical logic gates such as optical OR gates and AND gates (Optics, a magazine published by the Optics Conference of the Japan Society of Applied Physics, Vol. 14).
第1号、11〜18ページ参照)。このように、従来の
ファプリーベロー型共振器を用いた(光−電気)混成型
の光論理素子や光リミッタに比べて、本実施例の素子で
は、調整の厄介な反射鏡や光−電気(0/E)変換装置
を用いずに、簡単な構造の素子で安定にしかも同一素子
で光論理動作と光リミッタ動作が同時に行えるという利
点が得られる。No. 1, pages 11-18). In this way, compared to conventional (optical-electrical) hybrid optical logic devices and optical limiters that use Fabry bellows type resonators, the device of this embodiment does not require a reflective mirror or optical-electrical limiter that is difficult to adjust. The advantage is that an element with a simple structure can stably perform an optical logic operation and an optical limiter operation simultaneously without using a (0/E) converter, and the same element can perform an optical logic operation and an optical limiter operation simultaneously.
第2図(a)、(b)は上記第1の実施例における光導
波路層の出射端での出射光強度特性図(a)とクラッド
層の出射端での出射光強度特性図(b)であり、導波路
層3の厚さが5μm、クラッド層4の厚さが5μm、入
射端3aの入射光1iの波長が1.064μmの場合の
観測例を示している。図中、入射光強度および出射光強
度とも臨界光強度1cに対する相対光強度で示している
。導波路層の出射端3bにおいては、(a)に示すよう
に臨界光強度Ic(I t/Ic=1)の付近から出射
光1o+が飽和し光リミッタ動作を示すことがわかる。Figures 2 (a) and (b) are an output light intensity characteristic diagram (a) at the output end of the optical waveguide layer and an output light intensity characteristic diagram (b) at the output end of the cladding layer in the first embodiment. An observation example is shown in which the thickness of the waveguide layer 3 is 5 μm, the thickness of the cladding layer 4 is 5 μm, and the wavelength of the incident light 1i at the input end 3a is 1.064 μm. In the figure, both the incident light intensity and the outgoing light intensity are expressed as relative light intensities with respect to the critical light intensity 1c. At the output end 3b of the waveguide layer, as shown in (a), the output light 1o+ is saturated near the critical light intensity Ic (It/Ic=1), indicating an optical limiter operation.
またクラッド層の出射端4bにおいては、(b)に示す
ように臨界光強度1c(Ii/Ic=1)付近で出射光
■。、が急激に立ち上がる微分利待時性が得られること
がわかる。Further, at the output end 4b of the cladding layer, as shown in (b), the output light is near the critical light intensity 1c (Ii/Ic=1). It can be seen that a differential interest time property in which , rises rapidly is obtained.
本実施例による光論理素子の光論理動作は上記入射光I
i−出射光I。2間の微分利得特性を利用することによ
り可能である。第1図に示すように入射端3aから入射
される入射光Itを構成する信号光をIA、IBとし、
出射端4bからの出射光をIozとし、このI。、の検
出限界を例えば約0゜lXIcと設定しておく。この検
出限界は第2図(b)の微分利得特性図に基づき、光が
急激に立ち上がり始める入射光強度がIf/Ic=1の
付近の出射光強度に設定される。このようにして■。、
が検出できた場合を1.できない場合を0とすれば表1
に示すような真理値表が得られる。この表より信号光I
AおよびIBが微分利得特性の立ち上がり光強度1cよ
りも小さい場合にはANDゲート。The optical logic operation of the optical logic element according to this embodiment is based on the above incident light I.
i - Outgoing light I. This is possible by using the differential gain characteristics between the two. As shown in FIG. 1, the signal lights constituting the incident light It entering from the input end 3a are IA and IB,
Let Ioz be the light emitted from the output end 4b, and I. The detection limit of , for example, is set to about 0°lXIc. Based on the differential gain characteristic diagram of FIG. 2(b), this detection limit is set to an output light intensity in the vicinity of If/Ic=1, where the incident light intensity starts to rise rapidly. In this way■. ,
1. The case where can be detected. If the case where it is not possible is set as 0, Table 1
The truth table shown in is obtained. From this table, signal light I
If A and IB are smaller than the rising light intensity 1c of the differential gain characteristic, it is an AND gate.
Icより大きな場合にはORゲートとして動作すること
がわかる。It can be seen that when it is larger than Ic, it operates as an OR gate.
表1
次に本発明の第2の実施例を述べる。第3図はその構成
を示す平面図(a)と側面図(b)である。本実施例に
おいて第1図の実施例と同様の部材には同一の番号を付
して説明を行う。本実施例ではシリコン基板1を熱酸化
して形成したSiO、バッファ層2の上にRFスパッタ
法で形成した2本のコーニング7059ガラス(屈折率
n=1゜53)導波路層3,5が設置され、2本の導波
路層3.5の中間に下記構造式(2)のモノマ構造を有
するPTSポリマ(n=1.58)から成る中間クラッ
ド層6が設置された構成をとっている。Table 1 Next, a second embodiment of the present invention will be described. FIG. 3 is a plan view (a) and a side view (b) showing the configuration. In this embodiment, the same members as those in the embodiment shown in FIG. 1 are given the same numbers and will be explained. In this example, two Corning 7059 glass (refractive index n=1°53) waveguide layers 3 and 5 are formed by RF sputtering on a SiO buffer layer 2 formed by thermally oxidizing a silicon substrate 1. The structure is such that an intermediate cladding layer 6 made of a PTS polymer (n=1.58) having a monomer structure of the following structural formula (2) is installed between two waveguide layers 3.5. .
R’−C=C−C=C−R’ ・・・(2
)R’=−CHt−0−S−0−CHs
この中間クラッド層6が本発明の非線形光学物質層であ
る。各導波路層3.5は、中間クラッド層6ζこ接する
方向の断面の幅および厚さを例えばそれぞれ5μm程度
に形成する。また、その中間クラッド層6の断面の厚さ
は例えば0.4μm程度に形成する。ここで一方の導波
路層3における上記中間クラッド層6に接する方向の一
端3aを信号光I t (IA、 In)の入射端と
することにより、その他端3bは上記信号光1t(IA
、IFりに対し光リミッタ動作を示す出射端となり、こ
の出射端3bに中間クラッド層6を隔てて近接している
他方の導波路層5の端部5bは導波路層3から中間クラ
ッド層6を通してしみ出し微分利得特性を示す出射端と
なる。R'-C=C-C=C-R'...(2
)R'=-CHt-0-S-0-CHs This intermediate cladding layer 6 is the nonlinear optical material layer of the present invention. Each waveguide layer 3.5 has a cross-sectional width and thickness of, for example, about 5 μm in the direction in which it contacts the intermediate cladding layer 6ζ. Further, the thickness of the cross section of the intermediate cladding layer 6 is, for example, approximately 0.4 μm. Here, one end 3a of one waveguide layer 3 in the direction in contact with the intermediate cladding layer 6 is set as the input end for the signal light I t (IA, In), and the other end 3b is used as the input end for the signal light I t (IA, In).
, the end 5b of the other waveguide layer 5, which is close to the output end 3b with the intermediate cladding layer 6 in between, serves as an output end that exhibits an optical limiter operation with respect to IF. The output end exhibits differential gain characteristics.
本実施例に用いる導波路は特に種類を限定しないが、低
損失であること、および次に述べるように非線形感受率
χ′3′の大きな有機非線形光学材料よりも小さな屈折
率を示せばいずれも使用可能である。。具体的には石英
系(Sin、にTiもくしはG e O!をドープ)導
波路や上記コーニング7059ガラス導波路、Tiある
いはH゛拡散Li N b 03導波路等を挙げること
ができる。The type of waveguide used in this example is not particularly limited, but any type can be used as long as it has low loss and has a refractive index smaller than that of an organic nonlinear optical material with a large nonlinear susceptibility χ'3' as described below. Available for use. . Specifically, examples include a quartz-based (Sin, doped with Ti or G e O!) waveguide, the Corning 7059 glass waveguide, and a Ti or H diffused LiN b 03 waveguide.
また、本実施例で中間クラッド層6に用いる有機非線形
光学材料は、臨界光強度(光リミッタであれば出射光パ
ワーが飽和を始める光強度)ICが実用的な光パワー(
約I M W / m m ”以下)で達成されるため
に、非線形感受率χf31の値として約lXl0−’″
e S 11以上の大きな値を示すこと、ならびに光パ
ワーのしみ出しを大きくするために導波路層5よりも大
きな屈折率を示すことが望ましい。このような要求を満
たす材料であれば特に制限するものではないが、具体的
には高χ0ン材料として知られているポリジアセチレン
、ポリ(P−フェニレンビニレン)、ポリ(2,5−チ
ェニレンビニレン)等の有機ポリマー、ベンジリゾ、ン
アニリン系やスチルベン系、アゾ系色素等の有機単結晶
および有機多結晶を挙げることができる。In addition, the organic nonlinear optical material used for the intermediate cladding layer 6 in this embodiment has a critical light intensity (the light intensity at which the output light power begins to be saturated in the case of an optical limiter) and the practical optical power (
The value of the nonlinear susceptibility χf31 is approximately 1
It is desirable to exhibit a large value of e S 11 or more, and to exhibit a refractive index greater than that of the waveguide layer 5 in order to increase the seepage of optical power. There are no particular restrictions on materials that meet these requirements, but specific examples include polydiacetylene, poly(P-phenylenevinylene), and poly(2,5-chenylene), which are known as high χ0 materials. Examples include organic polymers such as vinylene), organic single crystals and organic polycrystals such as benzylizo, vinylene, stilbene, and azo dyes.
以上のように構成した上記本発明の第2の実施例の作用
を述べる。本実施例による光論理素子および光リミッタ
は、有機非線形材料からなる中間クラッド層6の両側に
、該クラッド!m6を接するように2つの導波路層3.
5を配した単純な構造を有しており、該中間クラッド層
6を形成する有機非線形材料は導波路層3.5よりも大
きな屈折率とl O”e s u以上の大きな3次の非
線形感受率χ(3)を有している。この中間クラッド層
6の大きな非線形感受率χ〈3)のために、2つの導波
路層3.5のうち一方の導波路層3の入射端より入射さ
れた入射光は、その等偏屈折率n artが光強度の増
大と共に大きくなり、パワーの中心が中間クラッド層6
へ移行する。これに伴って、入射側の導波路層3では出
射光パワーが入射光パワーの増加に追随しなくなり、あ
る臨界光強度!c以上では出射光1o+が飽和現象を呈
して光リミッタ動作を示す。一方、光を入射しなかった
導波路層5では、中間クラッド層6の屈折率が導波路層
5よりも大きいために入射側の導波路層3の光パワーが
中間クラッド層6にまで広がり、その一部がエバネセン
ト波としてこの導波路層5にまでしみ出してくる。この
光パワーのしみ出しくエバネセント波のパワー)は、入
射光の等偏屈折率net、が大きくなるに従って次第に
大きくなり、臨界光強度■。以上で急激に大きくなると
いう微分利得特性を示す。前述したようにこの微分利得
特性は光ORゲートや光ANDゲートのような光論理ゲ
ートの基本特性である。このように、本実施例において
も従来のファプリーペロー型共振器を用いた(光−電気
)混成型の光論理素子や光リミッタに比べて、調整の厄
介な反射鏡や光−電気(0/E)変換装置を用いずに、
簡単な構造の素子で安定にしかも簡−素子で光論理動作
と光リミッタ動作が同時に行えるという利点が得られる
。The operation of the second embodiment of the present invention constructed as described above will be described. The optical logic element and the optical limiter according to this embodiment have the cladding layer 6 on both sides of the intermediate cladding layer 6 made of an organic nonlinear material. Two waveguide layers 3.
The organic nonlinear material forming the intermediate cladding layer 6 has a refractive index larger than that of the waveguide layer 3.5 and a third-order nonlinear material larger than lO"e s u. It has a susceptibility χ(3). Because of the large nonlinear susceptibility χ<3) of the intermediate cladding layer 6, it is possible to The incident light has an equipolarized refractive index n art that increases as the light intensity increases, and the center of power is located at the intermediate cladding layer 6.
Move to. Along with this, in the waveguide layer 3 on the incident side, the output light power no longer follows the increase in the input light power, and a certain critical light intensity is reached! c or more, the emitted light 1o+ exhibits a saturation phenomenon and exhibits a light limiter operation. On the other hand, in the waveguide layer 5 where no light was incident, the refractive index of the intermediate cladding layer 6 is larger than that of the waveguide layer 5, so the optical power of the waveguide layer 3 on the incident side spreads to the intermediate cladding layer 6. A part of it seeps into this waveguide layer 5 as an evanescent wave. The evanescent wave power (the power of the evanescent wave seeping out of this optical power) gradually increases as the equipolarized refractive index net of the incident light increases, and reaches the critical light intensity ■. The above shows a differential gain characteristic that increases rapidly. As mentioned above, this differential gain characteristic is a basic characteristic of optical logic gates such as optical OR gates and optical AND gates. In this way, this embodiment also uses a reflective mirror and an optical-electrical (optical-electrical) optical limiter, which are difficult to adjust, compared to a conventional (optical-electrical) hybrid optical logic element or optical limiter using a Fabry-Perot type resonator. /E) Without using a conversion device,
The advantage is that an element with a simple structure can stably perform an optical logic operation and an optical limiter operation at the same time.
第4図(a)、(b)は上記第2の実施例における一方
の導波路層の出射端での出射光強度特性図(a)と他方
の導波路層の出射端での出射光強度特性図(b)であり
、導波路層3.5の厚さが5μm、中間クラッド層6の
厚さが0,4μm。FIGS. 4(a) and 4(b) show the output light intensity characteristic diagram (a) at the output end of one waveguide layer and the output light intensity at the output end of the other waveguide layer in the second embodiment. In the characteristic diagram (b), the thickness of the waveguide layer 3.5 is 5 μm, and the thickness of the intermediate cladding layer 6 is 0.4 μm.
入射端3aの入射光ifの波長がL064μmの場合の
観測例を示している。図中、入射光強度および出射光強
度とも臨界光強度I。に対する相対光強度で示している
。一方の導波路層の出射端3bにおいては、(a)に示
すように臨界光強度Ic(I i/Ic=1)の付近か
ら出射光1o1が飽和し光リミッタ動作を示すことがわ
かる。また他方の導波路層の出射端5bにおいては、C
b)に示すように臨界光強度Ic(I i/Ec=1)
付近で出射光rotが急激に立ち上がる微分利得特性が
得られることがわかる。An observation example is shown in which the wavelength of the incident light if at the input end 3a is L064 μm. In the figure, both the incident light intensity and the output light intensity are critical light intensity I. The relative light intensity is shown. At the output end 3b of one waveguide layer, as shown in (a), the output light 1o1 is saturated near the critical light intensity Ic (I i /Ic = 1), indicating an optical limiter operation. Moreover, at the output end 5b of the other waveguide layer, C
As shown in b), the critical light intensity Ic (I i/Ec = 1)
It can be seen that a differential gain characteristic is obtained in which the output light rot suddenly rises in the vicinity.
本実施例による光論理素子の光論理動作も第1の実施例
と同様に上記入射光1i−出射光I。を間の微分利得特
性を利用することにより可能である。The optical logic operation of the optical logic element according to this embodiment is the same as the first embodiment, where the input light 1i minus the output light I is used. This is possible by using the differential gain characteristics between.
第3図に示すように入射端3aから入射される入射光!
iを構成する信号光をIA、IBとし、出射端5bから
の出射光をIonとし、このlozの検出限界を例えば
約0.04X1.と設定しておく。この検出限界は第4
図(b)の微分利得特性図に基づき、光が急激に立ち上
がり始めるときの入射光強度がIf/Ie=1の付近の
出射光強度に設定される。このようにしてrozが検出
できた場合を1、できない場合を0とすれば前述した表
1に示す真理値表が得られる。この表より本実施例でも
、信号光■9およびIaが微分利得特性の立上がり光強
度■。よりも小さい場合にはANDゲー)、 reよ
り大きな場合にはORゲートとして動作することができ
る。Incident light enters from the input end 3a as shown in FIG. 3!
Let the signal lights constituting i be IA and IB, and let the emitted light from the output end 5b be Ion, and the detection limit of this loz is, for example, about 0.04X1. Set it as This detection limit is the fourth
Based on the differential gain characteristic diagram in Figure (b), the incident light intensity when the light starts to rise rapidly is set to the output light intensity near If/Ie=1. In this way, if roz is detected as 1, and if it cannot be detected as 0, the truth table shown in Table 1 described above is obtained. From this table, it can be seen that in this embodiment as well, the signal lights (9) and Ia have the rising light intensity (2) of differential gain characteristics. If it is smaller than re, it can act as an AND gate), and if it is larger than re, it can act as an OR gate.
なお本発明は、上記実施例に限定されるものではなく、
その主旨に沿って種々に応用され、種々の実施態様を取
り得ることは当然のことである。Note that the present invention is not limited to the above embodiments,
It is a matter of course that the present invention can be applied in various ways and can be implemented in various ways according to its main purpose.
[発明の効果]
以上の説明で明らかなように、本発明の導波路型光論理
素子および光リミッタによれば、非線形光学効果による
屈折率変化を利用し、入射光の等偏屈折率を光強度によ
り変化させて光リミッタ動作および光論理動作を同一素
子で行わせているので、構造が単純で安定性にすぐれ、
かつ小形に構成することが可能で、光論理動作と光リミ
ッタ動作を同時に行うことができるという利点がある。[Effects of the Invention] As is clear from the above description, according to the waveguide type optical logic element and optical limiter of the present invention, the uniform refractive index of incident light is changed by using the change in refractive index due to the nonlinear optical effect. The optical limiter operation and optical logic operation are performed by the same element by varying the intensity, so the structure is simple and highly stable.
It also has the advantage of being able to be configured in a compact size and allowing optical logic operation and optical limiter operation to be performed simultaneously.
第1図(a)、(b)本発明の第1の実施例の構成を示
す平面図と側面図、第2図(a)、(b)は上記第1の
実施例における光リミッタ特性と微分利得特性を示す出
射光特性図、第3図(a)。
(b)は本発明の第2の実施例の構成を示す平面図と側
面図、第4図(a)、(b)は上記第2の実施例におけ
る光リミッタ特性と微分利得特性を示す出射光特性図、
第5図は従来の光論理素子もしくは光リミッタの構成図
である。
3.5・・・導波路層、3a・・・入射端、3b・・・
光リミッタ特性を示す出射端、4・・・クラッド層(非
線形光学物質層)、4b、5b・・・微分利得特性を示
す出射端、6・・・中間クラッド層。
柑苅へ77 ftJiU!E、 H/Ic3回付At)
’lf−強、ff+1/■c(b)
第2図
相対人nが喫般隻1i/Ic
(G)
摺苅込刀か労膿口i/ Ic
(b)
第4図
第5図FIGS. 1(a) and (b) are a plan view and a side view showing the configuration of the first embodiment of the present invention, and FIGS. 2(a) and (b) are the optical limiter characteristics in the first embodiment described above. FIG. 3(a) is an output light characteristic diagram showing differential gain characteristics. (b) is a plan view and side view showing the configuration of the second embodiment of the present invention, and FIGS. 4(a) and (b) are outputs showing the optical limiter characteristics and differential gain characteristics in the second embodiment. Light emission characteristic diagram,
FIG. 5 is a block diagram of a conventional optical logic element or optical limiter. 3.5...Waveguide layer, 3a...Incidence end, 3b...
Output end exhibiting optical limiter characteristics, 4... Cladding layer (nonlinear optical material layer), 4b, 5b... Output end exhibiting differential gain characteristics, 6... Intermediate cladding layer. 77 ftJiU to Kankari! E, H/Ic 3 times At)
'lf-strong, ff+1/■c (b) Fig. 2 Relative person n is a blow 1i/Ic (G) Surikarikomito or Ryouguchi i/Ic (b) Fig. 4 Fig. 5
Claims (2)
層とそれに接する導波路層とから成り、上記両層の接す
る方向の導波路層の一端を信号光の入射端とするととも
にその他端を上記信号光に対し光リミッタ動作を示す出
射端とし、 上記導波路層の出射端に隣接する上記非線形光学物質層
の端部を上記信号光に対し光論理動作が可能な微分利得
特性を示す出射端としたことを特徴とする導波路型光論
理素子および光リミッタ。(1) Consisting of a nonlinear optical material layer whose refractive index increases with light irradiation and a waveguide layer in contact with it, one end of the waveguide layer in the direction in which both of the above layers contact is the input end of the signal light, and the other end is the above-mentioned waveguide layer. an output end that exhibits an optical limiter operation for the signal light, and an end of the nonlinear optical material layer adjacent to the output end of the waveguide layer that exhibits differential gain characteristics capable of optical logic operation for the signal light; A waveguide type optical logic element and an optical limiter characterized by the following.
層とそれに接する両側に導波路層を有する構造から成り
、 上記導波路層の一方における上記非線形光学物質層に接
する方向の一端を信号光の入射端とするとともにその他
端を上記信号光に対し光リミッタ動作を示す出射端とし
、 この光リミッタ動作を示す出射端に上記非線形光学物質
層を隔てて近接する他方の導波路層の端部を上記信号光
に対し光動作が可能な微分利得特性を示す出射端とした
ことを特徴とする導波路型光論理素子および光リミッタ
。(2) It consists of a structure having a nonlinear optical material layer whose refractive index increases by light irradiation and a waveguide layer on both sides in contact with the layer, and one end of one of the waveguide layers in the direction in contact with the nonlinear optical material layer is used for transmitting signal light. The other end is used as an input end, and the other end is used as an output end that exhibits an optical limiter operation for the signal light, and the end of the other waveguide layer that is close to the output end that exhibits an optical limiter operation across the nonlinear optical material layer is used as an input end. A waveguide type optical logic element and an optical limiter, characterized in that the output end exhibits differential gain characteristics capable of optical operation with respect to the signal light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3626888A JPH01210938A (en) | 1988-02-18 | 1988-02-18 | Waveguide type optical logic element and optical limiter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3626888A JPH01210938A (en) | 1988-02-18 | 1988-02-18 | Waveguide type optical logic element and optical limiter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01210938A true JPH01210938A (en) | 1989-08-24 |
Family
ID=12465021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3626888A Pending JPH01210938A (en) | 1988-02-18 | 1988-02-18 | Waveguide type optical logic element and optical limiter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01210938A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009222795A (en) * | 2008-03-13 | 2009-10-01 | Nippon Telegr & Teleph Corp <Ntt> | Optical limiter circuit and light receiving circuit |
EP2919063A1 (en) | 2013-12-16 | 2015-09-16 | Fujitsu Limited | Optical limiter, optical logic circuit, comparator, digital converter, optical transmission apparatus and optical processing method |
-
1988
- 1988-02-18 JP JP3626888A patent/JPH01210938A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009222795A (en) * | 2008-03-13 | 2009-10-01 | Nippon Telegr & Teleph Corp <Ntt> | Optical limiter circuit and light receiving circuit |
EP2919063A1 (en) | 2013-12-16 | 2015-09-16 | Fujitsu Limited | Optical limiter, optical logic circuit, comparator, digital converter, optical transmission apparatus and optical processing method |
US9354483B2 (en) | 2013-12-16 | 2016-05-31 | Fujitsu Limited | Optical limiter, optical logic circuit, comparator, digital converter, optical transmission apparatus and optical processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110729630B (en) | Laser with high-speed wavelength tuning made of lithium niobate material | |
Ohmachi et al. | LiNbO 3 TE-TM mode converter using collinear acoustooptic interaction | |
US5076658A (en) | Non-linear optical polymeric fiber waveguides | |
Torner et al. | New type of guided waves in birefringent media | |
US3849740A (en) | Integrated optical and/or gate | |
Yu et al. | Small form factor thin film polymer modulators for telecom applications | |
McCAUGHAN et al. | Crosstalk in Ti: LiNbO 3 directional coupler switches caused by Ti concentration fluctuations | |
JPH01210938A (en) | Waveguide type optical logic element and optical limiter | |
US5185831A (en) | Optical waveguide device | |
US6810182B2 (en) | Optical tunable grid-assisted add/drop filter in codirectional mode of operation | |
US3909113A (en) | Optical coupler | |
JP5164897B2 (en) | Optical filter | |
JP2936792B2 (en) | Waveguide type optical device | |
Kobayashi et al. | 2 x 2 Optical Waveguide Matrix Switch Using Nematic Liquid Crystal | |
EP1536273A1 (en) | Polarization-independent electro-optic modulator | |
Sampei et al. | PLZT fiber-optic switch | |
JPH10228039A (en) | Waveguide type optical arrester | |
Goldberg et al. | Optically activated switch/modulator using a photoconductor and two channel waveguides | |
Chang et al. | Fabrication and testing of optical channel waveguide total internal reflection (TIR) switching networks | |
Fukushima et al. | Compact 10-Gb/s APD receiver module with a microsecond-order-response variable optical attenuator | |
JP3106710B2 (en) | Light control device | |
JP2903700B2 (en) | Waveguide type optical device | |
Gabler et al. | High Nonresonant Third Order Nonlinearity in Low Loss DMOP-PPV Polymer Waveguides | |
JP2912039B2 (en) | Light control device | |
Ziari et al. | Nonlinear Neurons Using the Fieldshielding Effect in Photorefractive CdTe |