JPH01210898A - Irradiation assembly with instrumentation - Google Patents
Irradiation assembly with instrumentationInfo
- Publication number
- JPH01210898A JPH01210898A JP63035144A JP3514488A JPH01210898A JP H01210898 A JPH01210898 A JP H01210898A JP 63035144 A JP63035144 A JP 63035144A JP 3514488 A JP3514488 A JP 3514488A JP H01210898 A JPH01210898 A JP H01210898A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- permanent magnets
- pair
- magnetic
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000696 magnetic material Substances 0.000 claims abstract description 8
- 238000003466 welding Methods 0.000 abstract description 34
- 238000005452 bending Methods 0.000 abstract description 5
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 9
- 239000002826 coolant Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000008358 core component Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、計装付照射集合体に係る。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to an instrumented irradiation assembly.
(従来の技術)
原子炉内における核燃料や構造材料の挙動を解明するた
めに、オンライン計測の可能な計装付照射集合体が使用
されている。通常、この照射集合体には冷却材流量を測
定する流量計が設けである。(Prior Art) Instrumented irradiation assemblies capable of online measurement are used to elucidate the behavior of nuclear fuel and structural materials in nuclear reactors. The irradiation assembly is usually equipped with a flow meter to measure the coolant flow rate.
而して、流量計の測定出力を伝送する信号線は、高温で
高放射能の環境を経由して引出されている。Therefore, the signal line that transmits the measured output of the flowmeter is routed through a high temperature and highly radioactive environment.
そのため、流量計としては安定した出力信号が得られる
永久磁石式が使用されることが多い。For this reason, a permanent magnet type flow meter is often used because it provides a stable output signal.
第7図はその一例の横断面図である。この図において、
冷却材流路管1の流量測定を行うべき位置には、その一
つの直径上に位置して異極同士を対向させた1対の永久
磁石2、永久磁石3が設置されている。また、前記一直
径に直交する直径上に位置して電極4、電極5が対向し
て配置されている。図中、6は永久磁石2.3を包囲支
持するケーシング、7は電tf!4に接続された信号線
、8は電極5に接続された信号線をそれぞれを示してい
る。なお、各f!極4.5の材料は導電材料であれば任
意のものを使用し得るが、流路管1に溶接されるもので
あるから、これと同一の材料により構成することが望ま
しい。また、信号線7.8は高温、高放射能下で使用さ
れるものであるから、無機絶縁ケーブルとされている。FIG. 7 is a cross-sectional view of one example. In this diagram,
A pair of permanent magnets 2 and 3, which are located on one diameter of the coolant flow pipe 1 and have different polarities facing each other, are installed at the position where the flow rate measurement of the coolant flow pipe 1 is to be performed. Furthermore, electrodes 4 and 5 are disposed facing each other on a diameter perpendicular to the one diameter. In the figure, 6 is a casing that surrounds and supports the permanent magnet 2.3, and 7 is an electric tf! 4 indicates a signal line connected to the electrode 5, and 8 indicates a signal line connected to the electrode 5, respectively. In addition, each f! The material of the pole 4.5 may be any conductive material, but since it is to be welded to the flow pipe 1, it is preferable that the pole 4.5 be made of the same material. Furthermore, since the signal lines 7 and 8 are used under high temperature and high radiation conditions, they are made of inorganic insulated cables.
ケーブル心線にはオーステナイト系ステンレス鋼、銅ま
たは銅合金が使用され、絶縁物には酸化マグネシウム、
酸化アルミニウムが使用される。なお、被覆材にはオー
ステナイト系ステンレス鋼が使用される。さらに、永久
磁石2,3は通常、高温特性の優れた希土類マグネッ1
〜(例えばS m Co s )とされている。各信号
線の心線は各対応する電極と溶接または鑞付けによって
接続され、被覆材は流路管1と密封溶接される。The cable core is made of austenitic stainless steel, copper or copper alloy, and the insulation is magnesium oxide,
Aluminum oxide is used. Note that austenitic stainless steel is used for the covering material. Furthermore, the permanent magnets 2 and 3 are usually rare earth magnets with excellent high-temperature properties.
~ (for example, S m Cos ). The core wire of each signal line is connected to each corresponding electrode by welding or brazing, and the covering material is hermetically welded to the flow path pipe 1.
第8図は前記構成の永久磁石式流量計における磁力線分
布を示す図である。この図からも分かるように、永久磁
石3のN極から出た磁力線の大部分は冷却材流路管1を
横断して永久磁石2のS極に入り、永久磁石2のN極か
ら出た磁力線の大部分は冷却材流路管1ケーシング6を
迂回して永久磁石3のS極に入る。FIG. 8 is a diagram showing the distribution of magnetic lines of force in the permanent magnet flowmeter having the above configuration. As can be seen from this figure, most of the magnetic field lines coming out from the N pole of permanent magnet 3 cross the coolant flow pipe 1, enter the S pole of permanent magnet 2, and exit from the N pole of permanent magnet 2. Most of the magnetic field lines bypass the coolant flow pipe 1 casing 6 and enter the S pole of the permanent magnet 3.
上記構成の流量計において、流路管1内に電磁流体が流
れる時、磁力線と直角方向の起電力が電磁流体の流量に
比例して発生する。この起電力を電極4,5に接続した
信号線で原子炉外に取り出し、流量の計測を行う。In the flowmeter having the above configuration, when the electromagnetic fluid flows in the flow pipe 1, an electromotive force in a direction perpendicular to the lines of magnetic force is generated in proportion to the flow rate of the electromagnetic fluid. This electromotive force is taken out of the reactor through signal lines connected to the electrodes 4 and 5, and the flow rate is measured.
而して、信号線4,5の絶縁性を維持し材料の劣化を防
止するとともに、永久磁石の材料の劣化を防止するため
、これ等の両者はケーシング6によって不活性ガスまた
は乾燥空気中に密封されている。この密封構造を形成す
るには、流量計の設置場所が高温、高放射能の環境であ
るから、溶接構造とすることが必要である。ところが、
溶接のアークは高温のプラズマであり、荷電粒子の流れ
であるから、強力な永久磁石2.3からの磁力線との間
で電磁的相互作用を起す。In order to maintain the insulation properties of the signal lines 4 and 5 and prevent material deterioration, and to prevent the material of the permanent magnet from deteriorating, both of these wires are immersed in inert gas or dry air by a casing 6. Sealed. In order to form this sealed structure, it is necessary to use a welded structure because the flowmeter is installed in a high-temperature, highly radioactive environment. However,
Since the welding arc is a high temperature plasma and a stream of charged particles, it causes electromagnetic interaction with the magnetic field lines from the strong permanent magnet 2.3.
すなわち、信号線7,8、永久磁石2.3をケーシング
6内に密封するための溶接は、ケーシング6を一周して
なされるのであるが、この溶接がなされる間に前記溶接
のアークは磁力線分布の影響を受けて曲げられる。その
ため、溶接線は永久磁石2,3からなるべく遠い位置に
設定されるのが通常である。ところが、そうすると磁力
線の分布は三次元のものとなる。しかも、それでも磁力
線の影響を完全に逃れることはできない。従って、溶接
を実施するに際しては、磁力線分布によって溶接アーク
の曲げられる状態を考慮しなければならず、溶接作業は
非常に困難なものであった。That is, the welding for sealing the signal lines 7, 8 and the permanent magnets 2.3 inside the casing 6 is done around the casing 6, but while this welding is being done, the welding arc is caused by the lines of magnetic force. It is bent under the influence of distribution. Therefore, the welding line is usually set as far away from the permanent magnets 2 and 3 as possible. However, in this case, the distribution of magnetic lines of force becomes three-dimensional. Moreover, it is still not possible to completely escape the influence of magnetic field lines. Therefore, when performing welding, it is necessary to take into account the bending of the welding arc due to the distribution of magnetic lines of force, making the welding work extremely difficult.
実際には、何部かの試作を行って十分な習熟を得てから
溶接を実施するようにしているが、そのための練習時間
、練習材料の浪費を無視することはできず、また十分な
練習を積んだ後でも製品の歩留は低く、コストの上昇は
避けられなかった。In reality, we try to make several prototypes and gain sufficient proficiency before welding, but we cannot ignore the waste of practice time and practice materials, and the need for sufficient practice. Even after loading, the product yield was low, and an increase in costs was unavoidable.
(発明が解決しようとする課題)
上記のように、従来構造の永久磁石式流量計を具えた計
装付照射集合体では、流量計信号線、永久磁石を密封す
る溶接作業に際して、溶接アークが磁力線分布の影響を
受けて曲がるため、溶接作業が極めて困難で流量計の製
作費が高くなるだけでなく、製作に長期間を必要とした
。(Problems to be Solved by the Invention) As described above, in an instrumentation irradiation assembly equipped with a conventional permanent magnet flowmeter, welding arc is generated during welding work to seal the flowmeter signal line and the permanent magnet. Because it bends under the influence of the magnetic field distribution, welding is extremely difficult, which not only increases the manufacturing cost of the flowmeter, but also requires a long period of time to manufacture.
これを避けるためには、溶接線における磁力線を大幅に
減らす必要がある。最も簡単には、溶接部を永久磁石か
ら十分に離間させ磁力線が溶接部に届かないようにすれ
ばよい。ところが、計装付照射集合体は原子炉の炉心に
燃料集合体、制御棒と同様に装架されるものであるから
、その形状や寸法を任意に設定することはできず、燃料
集合体、制御棒と形状寸法を合せる必要がある。そのた
め、前記流量計はコンパクトに構成しなければならず、
前記のように溶接部と永久磁石とを十分に離間させるこ
とはできない。To avoid this, it is necessary to significantly reduce the magnetic field lines at the weld line. The simplest method is to place the welded part sufficiently away from the permanent magnet so that the lines of magnetic force do not reach the welded part. However, since the instrumented irradiation assembly is installed in the reactor core in the same way as the fuel assembly and control rods, its shape and dimensions cannot be set arbitrarily, and the fuel assembly, It is necessary to match the shape and dimensions with the control rod. Therefore, the flowmeter must be configured compactly,
As mentioned above, the welded portion and the permanent magnet cannot be sufficiently spaced apart.
本発明は上記の事情に基づきなされたもので、コンパク
トな構造でしかも磁力線分布の影響を受けることなく、
容易に信号線、永久磁石の密封を得るための溶接を、簡
単且つ容易に行うことができる計装付照射集合体を提供
することを目的としている。The present invention has been made based on the above circumstances, and has a compact structure and is not affected by the distribution of magnetic lines of force.
It is an object of the present invention to provide an irradiation assembly with instrumentation that allows simple and easy welding for sealing signal lines and permanent magnets.
[発明の構成コ
(課題を解決するための手段)
本発明の計装付照射集合体は、一端にハンドリングヘッ
ドを具え他端にエントランスノズルを具えたラッパ管と
、このラッパ管内に設けられた照射試料部と、その一端
において前記エントランスノズル開口に連なり他端にお
いて前記照射試料部に連なる流路管と、この流路管の一
直径両端に位置して設置され異極同士を対向させた1対
の永久磁石および前記流路管に装着され前記一直径と垂
直な直径上に位置する1対の電極を具えた永久磁石式流
量計とを有するものにおいて、前記1対の永久磁石間の
円周方向間隙には磁性材料からなる保持金具を装着した
ことを特徴とする。[Structure of the Invention (Means for Solving the Problems) The instrumented irradiation assembly of the present invention includes a trumpet tube provided with a handling head at one end and an entrance nozzle at the other end, and a trumpet tube provided within the trumpet tube. an irradiation sample section, a channel tube that is connected to the entrance nozzle opening at one end and connected to the irradiation sample section at the other end; A permanent magnet flowmeter comprising a pair of permanent magnets and a pair of electrodes mounted on the flow pipe and located on a diameter perpendicular to the one diameter, wherein a circle between the pair of permanent magnets is provided. It is characterized in that a holding metal fitting made of a magnetic material is attached to the circumferential gap.
(作用)
上記構成の本発明の計装付照射集合体においては、その
流量計を構成する1対の永久磁石間に磁性材料からなる
保持金具を装着しであるから、磁力線の漏洩を激減させ
ることができ、溶接作業時の溶接アークの曲がりを生じ
るおそれはない。従って、永久磁石、信号線等を密封し
原子炉冷却材から隔離する空間を形成するための溶接は
非常に容易となる。また、溶接部位は永久磁石に近接し
た部位であっても差し支えがないので、計装付照射焦合
体の軸方向寸法を他の炉心構成要素と容易に合致させる
ことができる。(Function) In the irradiation assembly with instrumentation of the present invention having the above configuration, a holding fitting made of a magnetic material is attached between the pair of permanent magnets constituting the flowmeter, so that leakage of magnetic lines of force is drastically reduced. There is no risk of bending of the welding arc during welding work. Therefore, welding for forming a space for sealing permanent magnets, signal lines, etc. and isolating them from the reactor coolant becomes very easy. Further, since the welding site may be a site close to the permanent magnet, the axial dimension of the instrumented irradiation focusing body can be easily matched with other core components.
(実施例)
第1図は本発明一実施例の縦断面図、第7図、第8図と
同一部分には同一符号を付した第2図は永久磁石式流量
計の横断面図、第3図は前記流量計の90°交叉した断
面を同時に示す縦断面図である。まず、第1図につき本
発明の実施例の詳細を説明する。この図において、一端
にハンドリングヘッド11を有するラッパ管12の他端
には、冷却材の流入するエントランスノズル13が設け
られ、エントランスノズル13の開口部とラッパ管内の
照射試料部14とを連ねる流路管1を包囲して、永久磁
石式流量系15が設けられている。(Embodiment) Fig. 1 is a longitudinal sectional view of an embodiment of the present invention, and Fig. 2, in which the same parts as in Figs. FIG. 3 is a longitudinal cross-sectional view simultaneously showing a 90° cross section of the flowmeter. First, details of an embodiment of the present invention will be explained with reference to FIG. In this figure, an entrance nozzle 13 into which a coolant flows is provided at the other end of a wrapper tube 12 having a handling head 11 at one end, and a flow connecting the opening of the entrance nozzle 13 and the irradiation sample portion 14 inside the wrapper tube is provided. A permanent magnet flow system 15 is provided surrounding the pipe 1 .
なお、図中16はエントランスノズル入口部に設けられ
たオリフィスを示している。Note that 16 in the figure indicates an orifice provided at the entrance part of the entrance nozzle.
第2図において、永久磁石2、同3との間には、純鉄等
の磁性材料からなる保持金具9、保持金具10が取り付
けられている。保持金具9.10はヨークを形成し、磁
力線のケーシング6外への漏洩は殆どなくなる。また、
ケーシング6は他の炉心内構造物と同様に、オーステナ
イト系ステンレス鋼例えば5O5316等の非磁性材料
により構成されているから、その内部を通る磁力線は無
視することができる。In FIG. 2, a holding metal fitting 9 and a holding metal fitting 10 made of a magnetic material such as pure iron are attached between the permanent magnets 2 and 3. The holding fittings 9 and 10 form a yoke, and leakage of magnetic lines of force to the outside of the casing 6 is almost eliminated. Also,
Since the casing 6 is made of a non-magnetic material such as austenitic stainless steel, such as 5O5316, like other core internal structures, the lines of magnetic force passing through the inside of the casing 6 can be ignored.
従って、永久磁石2.3に近い位置で溶接を行っても、
溶接アークに対する磁力線の影響は全くなく、通常の溶
接と同様に簡単且つ容易に溶接を行うことができる。な
お、電極4.5と流路管1゜電極4.5と信号線7,8
との溶接は永久磁石2.3と流路管1との組立前になさ
れるので、これ等の溶接は容易になされることは云うま
でもないところである。Therefore, even if welding is performed at a position close to the permanent magnet 2.3,
There is no influence of magnetic lines of force on the welding arc, and welding can be performed simply and easily in the same way as normal welding. In addition, electrode 4.5 and flow pipe 1° electrode 4.5 and signal lines 7 and 8
It goes without saying that these welds can be easily done since the welding is done before the permanent magnet 2.3 and the flow pipe 1 are assembled.
上記のように永久磁石等を密封するのに溶接を永久磁石
の近傍で行うことができるから、永久磁石式流量計15
はその軸方向寸法を小さくしコンパクトに構成すること
ができるので1本発明の計装付照射集合体は燃料集合体
等の他の炉心装架物と外形、寸法を合致させることがで
きる。As mentioned above, since welding can be performed near the permanent magnet to seal it, the permanent magnet flowmeter 15
Since the axial dimension of the irradiation assembly can be reduced and made compact, the instrumentation irradiation assembly of the present invention can be matched in external shape and dimensions with other core equipment such as fuel assemblies.
さらに、上記実施例において、保持金具9.1Oにより
2箇の永久磁石2.3が結合されているため、効率のよ
い磁気回路が形成されることとなり、磁気回路のパーミ
アンス係数が大きくなって、永久磁石2,3にはさまれ
た流路管1内の磁束密度が増大される。その結果、性能
の等しい永久磁石を使用した場合において、従来の流量
計よりも得られる流量信号レベルが高くなり、S/N比
が向上され、高性能の流量計とすることができる。Furthermore, in the above embodiment, since the two permanent magnets 2.3 are connected by the holding fitting 9.1O, an efficient magnetic circuit is formed, and the permeance coefficient of the magnetic circuit becomes large. The magnetic flux density within the channel tube 1 sandwiched between the permanent magnets 2 and 3 is increased. As a result, when permanent magnets with the same performance are used, the flow signal level obtained is higher than that of conventional flowmeters, the S/N ratio is improved, and a high-performance flowmeter can be obtained.
前各図と同一部分には同一符号を付した第4図は本発明
の第2の実施例要部の斜視図である。この実施例におい
ては、保持金具9.10はそれぞれ窓孔(図には保持金
具lOの窓孔10aのみが示されている)を設け、保持
金具の表面積を増大させている6保持金具の材質を適当
に選定すれば、前記の窓孔を設けても磁気的に十分な特
性を示し。FIG. 4, in which the same parts as in the previous figures are denoted by the same reference numerals, is a perspective view of the main parts of the second embodiment of the present invention. In this embodiment, the holding fittings 9, 10 are each provided with a window hole (only the window hole 10a of the holding fitting 10 is shown in the figure), and the material of the holding fitting 6 increases the surface area of the holding fitting. If it is selected appropriately, it will exhibit sufficient magnetic properties even if the above-mentioned window hole is provided.
前記実施例と同様の作用、効果が得られる。また、上記
のように表面積を増大させることにより、熱の放散が良
くなり中性子、ガンマ線等の照射による温度上昇を抑制
することができる。The same functions and effects as in the embodiment described above can be obtained. Furthermore, by increasing the surface area as described above, heat dissipation is improved and temperature rise due to irradiation with neutrons, gamma rays, etc. can be suppressed.
第5図は本発明の第3の実施例を示す斜視図である。こ
の実施例においては、保持金具9.10は軸方向に離間
して配置した2箇の円弧状部材(図には保持金具10を
構成する部材10工、10□のみが示されている)によ
り構成されている。FIG. 5 is a perspective view showing a third embodiment of the present invention. In this embodiment, the holding fittings 9 and 10 are formed by two arc-shaped members (only members 10 and 10□ constituting the holding fitting 10 are shown in the figure) spaced apart in the axial direction. It is configured.
この実施例においても、前記第2の実施例と同様の作用
、効果が得られる。In this embodiment as well, the same functions and effects as in the second embodiment can be obtained.
第6図は本発明の第4の実施例要部の横断面図である。FIG. 6 is a cross-sectional view of a main part of a fourth embodiment of the present invention.
この実施例においては、溶接時にのみケーシング6の外
周の永久磁石2.3に対応する位置に2分割構成の円筒
状磁路2oを装着しである。In this embodiment, a two-part cylindrical magnetic path 2o is attached to the outer periphery of the casing 6 at a position corresponding to the permanent magnet 2.3 only during welding.
この実施例においても磁力線の漏洩は防止され、永久磁
石近傍で溶接作業を行っても溶接アークが曲げられるこ
とはない。In this embodiment as well, leakage of magnetic lines of force is prevented, and the welding arc will not be bent even if welding work is performed near the permanent magnet.
[発明の効果]
上記構成の本発明の計装付照射集合体においては、その
流量計を構成する1対の永久磁石間に磁性材料からなる
保持金具を装着しであるから、磁力線の漏洩を激減させ
ることができ、溶接作業時の溶接アークの曲がりを生じ
るおそれはない。従って、永久磁石、信号線等を密封し
原子炉冷却材から隔離する空間を形成するための溶接を
施す部位は、永久磁石に近接した部位であっても差し支
えがないので、計装付照射集合体の軸方向寸法を他の炉
心構成要素と容易に合致させることができる。また、前
記保持金具は永久磁石間の磁路を形成しているため、流
路管内の磁束密度を高くすることができ、高感度でしか
もS/N比の良い計装付照射集合体とすることができる
。[Effects of the Invention] In the irradiation assembly with instrumentation of the present invention having the above configuration, a holding fitting made of a magnetic material is attached between a pair of permanent magnets constituting the flowmeter, so that leakage of magnetic lines of force is prevented. There is no risk of bending of the welding arc during welding work. Therefore, the parts to be welded to seal the permanent magnets, signal lines, etc. and to form a space to isolate them from the reactor coolant may be in close proximity to the permanent magnets. The axial dimensions of the body can be easily matched to other core components. Furthermore, since the holding metal fittings form a magnetic path between the permanent magnets, the magnetic flux density within the flow pipe can be increased, resulting in an instrumented irradiation assembly with high sensitivity and a good S/N ratio. be able to.
第1図は本発明一実施例の縦断面図、第2図はその要部
の横断面図、第3図は前記要部の拡大横断面図、第4図
は前記要部の一変形例の斜視図、第5図は前記要部の他
の変形例の斜視図、第6図は前記要部のさらに他の変形
例の横断面図、第7図は従来の永久磁石式流量計の横断
面図、第8図はその磁力線の分布を示す模式図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, FIG. 2 is a cross-sectional view of the main part thereof, FIG. 3 is an enlarged cross-sectional view of the main part, and FIG. 4 is a modified example of the main part. FIG. 5 is a perspective view of another modification of the main part, FIG. 6 is a cross-sectional view of still another modification of the main part, and FIG. 7 is a diagram of a conventional permanent magnet flowmeter. The cross-sectional view, FIG. 8, is a schematic diagram showing the distribution of the lines of magnetic force.
Claims (1)
ズルを具えたラッパ管と、このラッパ管内に設けられた
照射試料部と、その一端において前記エントランスノズ
ル開口に連なり他端において前記照射試料部に連なる流
路管と、この流路管の一直径両端に位置して設置され異
極同士を対向させた1対の永久磁石および前記流路管に
装着され前記一直径と垂直な直径上に位置する1対の電
極を具えた永久磁石式流量計とを有するものにおいて、
前記1対の永久磁石間の円周方向間隙には磁性材料から
なる保持金具を装着したことを特徴とする計装付照射集
合体。A trumpet tube equipped with a handling head at one end and an entrance nozzle at the other end, an irradiation sample section provided within the trumpet tube, and a flow path that connects to the entrance nozzle opening at one end and to the irradiation sample section at the other end. a pair of permanent magnets placed at both ends of one diameter of this channel tube with opposite poles facing each other; and a pair of permanent magnets installed on the channel tube and located on a diameter perpendicular to the one diameter. A permanent magnet flowmeter equipped with an electrode,
An irradiation assembly with instrumentation, characterized in that a holding fitting made of a magnetic material is attached to the circumferential gap between the pair of permanent magnets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63035144A JPH0634075B2 (en) | 1988-02-19 | 1988-02-19 | Irradiation assembly with instrumentation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63035144A JPH0634075B2 (en) | 1988-02-19 | 1988-02-19 | Irradiation assembly with instrumentation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01210898A true JPH01210898A (en) | 1989-08-24 |
JPH0634075B2 JPH0634075B2 (en) | 1994-05-02 |
Family
ID=12433710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63035144A Expired - Lifetime JPH0634075B2 (en) | 1988-02-19 | 1988-02-19 | Irradiation assembly with instrumentation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0634075B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109585043A (en) * | 2018-12-03 | 2019-04-05 | 四川大学 | Safe adjustable irradiation sample stopple and hanging basket flange |
-
1988
- 1988-02-19 JP JP63035144A patent/JPH0634075B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109585043A (en) * | 2018-12-03 | 2019-04-05 | 四川大学 | Safe adjustable irradiation sample stopple and hanging basket flange |
CN109585043B (en) * | 2018-12-03 | 2019-11-08 | 四川大学 | Safe adjustable irradiation sample stopple and hanging basket flange |
Also Published As
Publication number | Publication date |
---|---|
JPH0634075B2 (en) | 1994-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3355579B2 (en) | Current and voltage converters for metal-filled gas-insulated high-voltage devices | |
JPH07198436A (en) | Electromagnetic-flowmeter-type detector | |
RU2339005C2 (en) | Electromagnetic flowmeter | |
US3043954A (en) | Fission chamber assembly | |
EP0045646B1 (en) | Unitary electromagnetic flowmeter with sealed coils | |
JP5328598B2 (en) | Radiation monitor | |
JPH01210898A (en) | Irradiation assembly with instrumentation | |
JP2016532131A (en) | Improved magnetic core configuration for electromagnetic flowmeters | |
JPH0432327B2 (en) | ||
Poornapushpakala et al. | An analysis on eddy current flowmeter—A review | |
Baker | Electromagnetic flowmeters for fast reactors | |
KR101559099B1 (en) | apparatus and manufacturing method of LVDT(Linear Variable Differential Transformer) for high-temperature irradiation | |
CA3157602A1 (en) | Self-powered excore detector arrangement for measuring flux of a nuclear reactor core | |
JPH08262063A (en) | Direct current sensor | |
Bak et al. | Performance test of sample coils in the Korea superconducting tokamak advanced research magnetic diagnostics test chamber | |
KR830000412Y1 (en) | Electronic flow meter | |
JPS5463861A (en) | Electromagnetic flow meter | |
RU46108U1 (en) | IONIZATION DIVISION CAMERA | |
JP2655925B2 (en) | Damaged fuel detector | |
JPS6011168A (en) | Eddy current-type current meter | |
JP2620202B2 (en) | Electromagnetic flow meter detector | |
JPH022544B2 (en) | ||
JPH034951Y2 (en) | ||
JPH03205513A (en) | Detector of electromagnetic flow meter | |
JP2879927B2 (en) | Optical CT for multiple conductors |