JPH01210878A - Variable type mechanism isolation apparatus - Google Patents

Variable type mechanism isolation apparatus

Info

Publication number
JPH01210878A
JPH01210878A JP3640688A JP3640688A JPH01210878A JP H01210878 A JPH01210878 A JP H01210878A JP 3640688 A JP3640688 A JP 3640688A JP 3640688 A JP3640688 A JP 3640688A JP H01210878 A JPH01210878 A JP H01210878A
Authority
JP
Japan
Prior art keywords
magnetic
signal
magnetic sensor
iris
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3640688A
Other languages
Japanese (ja)
Inventor
Tatsuo Inoue
龍夫 井上
Yuji Iwata
裕司 岩田
Yoshihiro Ishizaki
嘉宏 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECTI KK
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
ECTI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, ECTI KK filed Critical Aisin Seiki Co Ltd
Priority to JP3640688A priority Critical patent/JPH01210878A/en
Publication of JPH01210878A publication Critical patent/JPH01210878A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To expand the range of a strength possible to measure by providing a magnetic sensor, magnetism isolation unit with a variable shape and device to process a signal received from the magnetic sensor, and making an isolation level of the magnetic sensor to be adjustable. CONSTITUTION:Along with that an SQUID7 in a magnetism measuring apparatus is shielded from magnetic noise by a magnetism shield 9, a shielding device for a detecting coil 10 is constituted of a sliding cylinder 13 of 'Permalloy(R)', iris diaphragm 14 and iris control ring 15. The magnetic signal received from a measuring object is conducted to a signal input coil 8 through a coil 10 and outputted by passing through a high frequency amplifier 16 and an electronics device 7 for the detection. Then an opening aperture diameter of the iris 14 and a length of the cylinder 13 are adjusted in accordance with the signal strength of a magnetic signal source 18 which is arranged under the iris. The range of the strength for the object signal possible to measure can be thus expanded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は可変型磁気遮断装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a variable magnetic isolation device.

(従来の技術) いろいろな磁気的計測に用いられる磁気センサーは、検
出すべき磁気信号の大きさ、変化量そして測定精度に応
じて多様なものが使われている。
(Prior Art) Various types of magnetic sensors are used for various magnetic measurements, depending on the magnitude, amount of change, and measurement accuracy of the magnetic signal to be detected.

高感度な磁気センサーとしては、超伝導量子干渉計(以
下5QUIDとよぶ)、フラックスゲート、ホール素子
などがある。現存する磁気センサーで最も高感度なもの
は5QUIDでありその感度は磁束にして10−”G−
cI11程の検出も可能となっている。
Highly sensitive magnetic sensors include superconducting quantum interferometers (hereinafter referred to as 5QUID), flux gates, and Hall elements. The most sensitive existing magnetic sensor is the 5QUID, whose sensitivity is 10-"G- in terms of magnetic flux.
It is also possible to detect cI11.

(発明が解決しようとする課題) 一方このセンサーでは数ガウス以上の大きな磁気信号の
時間変化を検出することは極めて困難である。一般に磁
気センサーの感度調節は、検出した出力信号を電気的に
増幅あるいは減衰させて行っているがそれにも限度があ
り、特にS口旧りでは許容以上の大きな時間変化の信号
には検出側が応答できず電気的な処理では対処できない
問題である。このように特に高感度の磁気センサーで変
化量の大きな信号を検出すること、言い替えるとセンサ
ーの検出レベルの範囲を極端に広げることは電気的な方
法では出来にくいという欠点があった。
(Problem to be Solved by the Invention) On the other hand, with this sensor, it is extremely difficult to detect a temporal change in a large magnetic signal of several Gauss or more. Generally, the sensitivity of a magnetic sensor is adjusted by electrically amplifying or attenuating the detected output signal, but there is a limit to this, especially in the case of the old S-port, the detection side responds to signals with larger than permissible changes over time. This is a problem that cannot be solved by electrical processing. In this way, there is a drawback that it is difficult to detect a signal with a large amount of change using a particularly highly sensitive magnetic sensor, or in other words, it is difficult to extremely expand the detection level range of the sensor using an electrical method.

それ故に、本発明は、センサーの検出レベルの範囲を容
易に可能ならしめることを技術的課題とする。
Therefore, the technical problem of the present invention is to easily enable a range of sensor detection levels.

(発明の構成] (課題を解決するための手段) 上記した技術的課題を解決するために本発明において講
じた技術的手段は、磁気センサー、前記磁気センサーを
包囲し且つ形状が可変の磁気遮断体および前記磁気セン
サーと連結され前記磁気センサーからの信号を処理する
装置を備える可変型磁気遮断装置を構成したことである
(Structure of the Invention) (Means for Solving the Problems) The technical means taken in the present invention to solve the above-mentioned technical problems include a magnetic sensor, a magnetic shield that surrounds the magnetic sensor and has a variable shape. The present invention provides a variable magnetic cutoff device including a device that is connected to the body and the magnetic sensor and processes a signal from the magnetic sensor.

(作用) この構成においては、磁気センサーを包囲する磁気遮断
体の形状が可変となっているので、磁気センサーの遮断
レベルを調節することができる。
(Function) In this configuration, since the shape of the magnetic shield surrounding the magnetic sensor is variable, the shielding level of the magnetic sensor can be adjusted.

従って磁気センサーが検知する信号の強度もまた可変と
なり、信号の相対的変化量の測定を行うに当たり、対象
信号の計測可能な強度範囲を著しく広げることが出来る
Therefore, the intensity of the signal detected by the magnetic sensor is also variable, and the measurable intensity range of the target signal can be significantly expanded when measuring the relative amount of change in the signal.

(実施例) 以下、本発明の実施例を、添付図面に基づいて説明する
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図および第2図に本発明の基本的な構造を示す。第
1図において、磁気遮蔽体2.3の材料としては、パー
マロイ(μメタル)などの強磁性体か、或いは超伝導体
を用いる。遮蔽装置の形状及びその遮蔽レベルの調節方
法について以下に述べる。遮蔽体の形状は磁気センサー
の検出部1をほぼ中心軸としてその周囲を覆う形で円筒
或いは多角形筒状の側面部2を持ち、さらに測定信号源
側に開口部5を持った底板3を設けている。
1 and 2 show the basic structure of the present invention. In FIG. 1, the magnetic shield 2.3 is made of a ferromagnetic material such as permalloy (μ metal) or a superconductor. The shape of the shielding device and the method of adjusting its shielding level will be described below. The shape of the shield is such that it has a cylindrical or polygonal cylindrical side surface 2 that surrounds the detecting section 1 of the magnetic sensor as its central axis, and a bottom plate 3 that has an opening 5 on the measurement signal source side. It is set up.

遮蔽レベルの調節は側面2及び底板3の形状を変化させ
ることで行う。即ち第1図に示すように側面2はスライ
ド動作が可能な構造になっており、筒形の全長り、を可
変にしている。
The shielding level is adjusted by changing the shapes of the side surfaces 2 and the bottom plate 3. That is, as shown in FIG. 1, the side surface 2 has a structure that allows sliding movement, and the total length of the cylinder shape is variable.

また、底板3は第2図に示すように扇形の薄板4数片を
環のように組み合わせて中央にほぼ円形の開口部5を持
つ形状で、その周辺部のリング6などを回すことでその
間口径dを自由に変えられるいわゆる写真機の虹彩絞り
と同様の機構となっている。一般に筒状の磁気遮蔽の内
部の遮蔽効果はその中心軸上では、開口端からの深さL
2及び開口径dのふたつのパラメタで大きく変化する。
As shown in Fig. 2, the bottom plate 3 has a shape in which four pieces of fan-shaped thin plates are assembled like a ring and has an approximately circular opening 5 in the center. It has a mechanism similar to the so-called iris diaphragm in a camera, which allows you to freely change the aperture d. Generally, the internal shielding effect of a cylindrical magnetic shield is measured at a depth L from the open end on its central axis.
2 and the aperture diameter d.

従って本発明のような磁気遮蔽体の可変機構及び材料を
適当に選ぶことで、非常に広範囲な磁気信号強度に対す
る感度調節を、内部に収納した磁気センサー1に対して
行うことが出来る。
Therefore, by appropriately selecting the variable mechanism and material of the magnetic shield according to the present invention, it is possible to adjust the sensitivity of the magnetic sensor 1 housed within a very wide range of magnetic signal intensities.

また、特に磁気遮蔽剤が超伝導体の場合には、遮蔽体に
接するように電気ヒータ線などを巻き、それに通電して
遮蔽体の温度をその超伝導転移温度以上に上げることで
磁気遮蔽能力をなくすことでも遮蔽効果の調節は行うこ
とができる。このヒータによる調節はヒータと複数部分
に分割することでそのどの部分のヒータに通電するかを
選ぶことできめの綱かい調節も可能になる。
In addition, especially when the magnetic shielding material is a superconductor, the magnetic shielding ability can be improved by winding an electric heater wire or the like so that it is in contact with the shielding material and increasing the temperature of the shielding material above its superconducting transition temperature by energizing it. The shielding effect can also be adjusted by eliminating. This heater adjustment can be done by dividing the heater into multiple parts, and by selecting which part of the heater is energized, it is possible to make tight adjustments.

第3図は本発明の磁気遮蔽装置を5QUIDを用いた磁
気計測装置に適用した例である。この例では5QUID
 7は液体ヘリウム温度の4.2にで働くものとしてあ
り、ヘリウムデユワ−11内に貯められた液体ヘリウム
12中に浸されている。検出された磁界変動に因る5Q
UIDからの電気信号は室温部に置かれた高周波増幅器
16やその他の検出用エレクトロニクス機器17を通し
て目的に応じた出力形態(例えばブラウン管、記録紙な
ど)で出力される。一般的に5QUID 7は直接対象
とする磁気信号にさらされることはなく、第3図のよう
に超伝導体による磁気遮蔽9によって完全に外来の磁気
雑音から遮蔽されている。測定対象からの磁気信号は5
QUIDへの信号入力コイル8と超伝導的につながった
検出コイルlOに直接与えられる。本発明の遮蔽装置は
この検出コイル10の周囲に設置されている。この実施
例ではほぼ室温部に置かれた(低温部に設置も可)パー
マロイのスライド型円筒13、虹彩絞り14と絞り調節
リング15(第2図示のものと同一構造)によって遮蔽
装置は構成されている。磁気信号源18は図のように絞
りの下方に位置し、その信号強度に応じて絞りの開口径
及び円筒部の長さを調節することで検出コイルに検知さ
れる信号の強度を自由に調節できる。
FIG. 3 is an example in which the magnetic shielding device of the present invention is applied to a magnetic measuring device using 5QUID. In this example 5QUID
7 is designed to work at a liquid helium temperature of 4.2, and is immersed in liquid helium 12 stored in a helium dewar 11. 5Q due to detected magnetic field fluctuations
The electrical signal from the UID is outputted in a desired output format (for example, a cathode ray tube, recording paper, etc.) through a high frequency amplifier 16 and other detection electronics equipment 17 placed at room temperature. Generally, the 5QUID 7 is not directly exposed to the target magnetic signal, but is completely shielded from external magnetic noise by a magnetic shield 9 made of superconductor as shown in FIG. The magnetic signal from the measurement target is 5
The signal input to the QUID is directly applied to the detection coil IO superconductingly connected to the input coil 8. The shielding device of the present invention is installed around this detection coil 10. In this embodiment, the shielding device is composed of a permalloy sliding cylinder 13 placed at approximately room temperature (it can also be placed in a low temperature area), an iris diaphragm 14, and an iris adjustment ring 15 (same structure as that shown in the second figure). ing. The magnetic signal source 18 is located below the aperture as shown in the figure, and the intensity of the signal detected by the detection coil can be freely adjusted by adjusting the aperture diameter and the length of the cylindrical part of the aperture according to the signal strength. can.

要するに、本発明においては、磁気センサー自身をある
程度外来信号から磁気的に遮断し、その遮断レベルを調
整することにより、磁気センサーの感度と被検出磁気信
号の相対的な大きなに応じた検出感度の調節を可能にし
たことである。
In short, in the present invention, by magnetically shielding the magnetic sensor itself from external signals to some extent and adjusting the level of shielding, the detection sensitivity is adjusted according to the sensitivity of the magnetic sensor and the relative magnitude of the magnetic signal to be detected. This allows for adjustment.

〔発明の効果] 以上述べたように、本発明においては、磁気センサーを
包囲する磁気遮断体の形状を可変ならしめたので、磁気
センサーの遮断レベルを調節することができる。従って
磁気センサーが検知する信号の強度もまた可変となり、
信号の相対的変化量の測定を行うに当たり、対象信号の
計測可能な強度範囲を著しく広げることが出来る。
[Effects of the Invention] As described above, in the present invention, since the shape of the magnetic shield surrounding the magnetic sensor is made variable, the shielding level of the magnetic sensor can be adjusted. Therefore, the strength of the signal detected by the magnetic sensor is also variable.
When measuring the amount of relative change in a signal, the measurable intensity range of the target signal can be significantly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示す断面図、第2図は第1図A
方向矢示図および第3図は本発明を磁気計測装置に適用
した場合を示す断面図である。 1.7・・・磁気センサー。 2.3,13.14・・・磁気遮断体。 17・・・信号処理装置。
Figure 1 is a sectional view showing the principle of the present invention, Figure 2 is Figure 1A
The direction arrow diagram and FIG. 3 are cross-sectional views showing the case where the present invention is applied to a magnetic measuring device. 1.7...Magnetic sensor. 2.3, 13.14...Magnetic shield. 17...Signal processing device.

Claims (1)

【特許請求の範囲】[Claims] 磁気センサー、前記磁気センサーを包囲し且つ形状が可
変の磁気遮断体および前記磁気センサーと連結され前記
磁気センサーからの信号を処理する装置を備える可変型
磁気遮断装置。
A variable magnetic shielding device comprising a magnetic sensor, a magnetic shielding body surrounding the magnetic sensor and having a variable shape, and a device connected to the magnetic sensor and processing a signal from the magnetic sensor.
JP3640688A 1988-02-18 1988-02-18 Variable type mechanism isolation apparatus Pending JPH01210878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3640688A JPH01210878A (en) 1988-02-18 1988-02-18 Variable type mechanism isolation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3640688A JPH01210878A (en) 1988-02-18 1988-02-18 Variable type mechanism isolation apparatus

Publications (1)

Publication Number Publication Date
JPH01210878A true JPH01210878A (en) 1989-08-24

Family

ID=12468958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3640688A Pending JPH01210878A (en) 1988-02-18 1988-02-18 Variable type mechanism isolation apparatus

Country Status (1)

Country Link
JP (1) JPH01210878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035327A (en) * 1999-07-22 2001-02-09 Sumitomo Metal Ind Ltd Capacitance type proximity sensor
JP2018025413A (en) * 2016-08-08 2018-02-15 富士通株式会社 Magnetic measuring device and geological exploration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035327A (en) * 1999-07-22 2001-02-09 Sumitomo Metal Ind Ltd Capacitance type proximity sensor
JP2018025413A (en) * 2016-08-08 2018-02-15 富士通株式会社 Magnetic measuring device and geological exploration system

Similar Documents

Publication Publication Date Title
US3777255A (en) Position sensor utilizing a primary and secondary shielded from one another by a ferromagnetic shield and a magnet whose position relative to the shield changes the shielding
US5336998A (en) Sensor for detecting faults in a magnetized ferrous object using hall effect elements
US4229696A (en) Sensor for measuring magnetic field changes
US5757183A (en) Device to shield a magnetic field in a given plane
US3783370A (en) Method and circuit for compensating barkhausen signal measurements in magnetic materials having a variable geometry
US4095181A (en) Rotating pot shaped eddy current probe in which only a small fraction of the lip forming the outer core portion is retained
US4031742A (en) Leak detector using mass concentration gauge
US3621382A (en) Anistropic thin ferromagnetic film magnetometer
JPH01210878A (en) Variable type mechanism isolation apparatus
US3460033A (en) Apparatus for measuring shaft rotation
GB2207510A (en) Magnetic sensor
US5423223A (en) Fatigue detection in steel using squid magnetometry
US2468154A (en) Permeability determination
US3323364A (en) Means for rejecting quadrature voltage signals in a flow meter
Grohmann et al. A cryodevice for induction monitoring of dc electron or ion beams with nano-ampere resolution
JP3266587B2 (en) Magnetic detector
JPS6020045Y2 (en) Micro flaw detection device
JP2001281312A (en) Hall sensor probe
SU451970A1 (en) Device for controlling moving ferromagnetic materials in the form of extended rods, wires and tapes
JP2650574B2 (en) Magnetic field mass spectrometer
SU549766A1 (en) Device for detecting metal objects
JPS60205372A (en) Clip-on ammeter
SU534682A1 (en) Fluxgate sensor
SU1018004A1 (en) Magnetic flaw detector
SU760008A1 (en) Primary measuring transducer of magnetic permeability