JPH01210653A - Continuously variable transmission - Google Patents
Continuously variable transmissionInfo
- Publication number
- JPH01210653A JPH01210653A JP3285988A JP3285988A JPH01210653A JP H01210653 A JPH01210653 A JP H01210653A JP 3285988 A JP3285988 A JP 3285988A JP 3285988 A JP3285988 A JP 3285988A JP H01210653 A JPH01210653 A JP H01210653A
- Authority
- JP
- Japan
- Prior art keywords
- axis
- shaft
- engagement
- disk
- engagement surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 20
- 239000012530 fluid Substances 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 description 7
- 239000003507 refrigerant Substances 0.000 description 5
- 238000005192 partition Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Landscapes
- Friction Gearing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えば車両用空調装置の冷媒圧縮機等の補機
に対し、エンジンの回転駆動力を伝達するのに用いられ
る無段変速機に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a continuously variable transmission used to transmit rotational driving force of an engine to an auxiliary machine such as a refrigerant compressor of a vehicle air conditioner, for example. Regarding.
従来この種の無段変速機として、例えばトロイダル型無
段変速機が知られており、その構成は例えば特開昭58
−174750号公報に記載されている。Conventionally, as this type of continuously variable transmission, for example, a toroidal type continuously variable transmission is known, and its structure is disclosed in, for example, Japanese Patent Laid-Open No. 58
It is described in the publication No.-174750.
すなわち、同軸上に配設された入力軸および出力軸にそ
れぞれトロイダル状の入力ディスクおよび出力ディスク
が設けられ、これらのディスクの間には、これらに摩擦
係合する複数のパワーローラが設けられる。各パワーロ
ーラはそれぞれトラニオンに回転自在に支持され、各ト
ラニオンはリンり機構に連結されて変位可能になってい
る。しかしてパワーローラの中心軸はリンク機構を介し
て変位し、これにより各パワーローラの入力ディスクお
よび出力ディスクに対する接触部位が変化して入力軸お
よび出力軸の間の変速比が変わる。That is, a toroidal input disk and an output disk are provided on the coaxially arranged input shaft and output shaft, respectively, and a plurality of power rollers that frictionally engage with these disks are provided between these disks. Each power roller is rotatably supported by a trunnion, and each trunnion is connected to a linkage mechanism so that it can be displaced. Thus, the center axis of the power roller is displaced via the link mechanism, thereby changing the contact area of each power roller with the input disk and the output disk, thereby changing the speed ratio between the input shaft and the output shaft.
しかし、このような変速機の変速比は一般的に0.5〜
2であり、冬期の冷房不要時等において変速比0を得る
には、駆動側に電磁クラッチ等を併用しなければならな
かった。However, the gear ratio of such a transmission is generally 0.5~
2, and in order to obtain a gear ratio of 0 when air conditioning is not required in the winter, etc., it was necessary to use an electromagnetic clutch or the like on the drive side.
また、他の種類の摩擦無段変速機においても完全な変速
比0の状態を安定的に得ることは困難であるため、変速
比0近傍の状態が長時間続くと、摩擦伝達部の摩耗や発
熱を生じるという問題があった。In addition, in other types of friction continuously variable transmissions, it is difficult to stably obtain a complete gear ratio of 0, so if the gear ratio remains close to 0 for a long time, the friction transmission part may wear out. There was a problem in that it generated heat.
本発明は上記問題点に鑑み、容易かつ安定的に完全な変
速比0の状態を実現することのできる無段変速機を提供
することを目的とする。SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a continuously variable transmission that can easily and stably achieve a complete gear ratio of 0.
上記課題を解決するため本発明によれば、軸線方向に変
位可能でこの軸線を中心とする第1の係合面を有し、こ
の軸線の周りに回転自在に設けられた第1の回転部材と
、前記軸線の周りに回転自在に設けられ、この軸線を中
心とするとともに前記第1の係合面に対向する第2の係
合面を有する第2の回転部材と、前記軸線の周りに設け
られ、前記第1および第2の係合面に摩擦係合して前記
第1および第2の回転部材間の回転伝達を行なうととも
に、前記第1および第2の係合面との接触部位を変化さ
せ、前記第1および第2の回転部材間の変速比を変える
複数の回転子と、前記第1の係合面を前記第2の係合面
の方向に流体圧により付勢する押圧力発生手段と、前記
回転子が最小変速比近傍位置のとき前記押圧力発生手段
の押圧力を解放する解放手段と、前記押圧力を解放した
とき前記第1の係合面を前記第2の係合面と反対方向に
変位させて、前記回転子と前記第1又は第2の係合面の
うち少なくとも一方の係合面との摩擦係合を解除する解
除手段とを備えたことを特徴とする無段変速機が提供さ
れる。In order to solve the above problems, the present invention provides a first rotating member that is displaceable in the axial direction and has a first engagement surface centered on the axis, and is rotatably provided around the axis. a second rotating member that is rotatably provided around the axis and has a second engagement surface centered on the axis and opposite to the first engagement surface; a contact portion with the first and second engaging surfaces; a plurality of rotors that change the speed ratio between the first and second rotating members; and a pusher that urges the first engagement surface in the direction of the second engagement surface by fluid pressure. pressure generating means; a releasing means for releasing the pressing force of the pressing force generating means when the rotor is at a position near the minimum gear ratio; It is characterized by comprising a release means for displacing the rotor in a direction opposite to the engagement surface to release the frictional engagement between the rotor and at least one of the first and second engagement surfaces. A continuously variable transmission is provided.
以下図示実施例に基いて本発明を説明する。 The present invention will be explained below based on illustrated embodiments.
第1図および第2図は本発明の一実施例に係る無段変速
機とコンプレッサを組合せた構成を示す。1 and 2 show a configuration in which a continuously variable transmission and a compressor are combined according to an embodiment of the present invention.
フロントハウジング2およびリヤハウジング4内には、
入力軸6と出力軸8とが相互に同軸的に配設され、それ
ぞれ中心軸線Aの周りに回転自在に設けられる。入力軸
6は、プーリ10を介して図示しないエンジンに連結さ
れ、エンジンに同期して回転する。出力軸8はコンプレ
ッサ12の回転軸も兼ねている。入力ディスク16と入
力軸6はスプライン係合して第1の回転部材を構成し、
入力ディスク16に対向配置された出力ディスク18と
出力軸8もスプライン係合して第2の回転部材を構成し
ている。入力ディスク16と出力ディスク18の間には
回転子であるパワーローラ20が設けられ、パワーロー
ラ20はこれらのディスク16 、18に摩擦係合して
入力ディスク16の回転を出力ディスク18に伝達する
。したがってエンジンの回転は入力軸6、パワーローラ
20を介して出力軸8に伝わり、これによりコンプレッ
サ12が駆動される。コンプレッサ12の回転数、すな
わち入出力軸6,8間の変速比は、後述するようにパワ
ーローラ20の姿勢により制御される。Inside the front housing 2 and rear housing 4,
An input shaft 6 and an output shaft 8 are disposed coaxially with each other and are each rotatably provided around a central axis A. The input shaft 6 is connected to an engine (not shown) via a pulley 10 and rotates in synchronization with the engine. The output shaft 8 also serves as the rotation shaft of the compressor 12. The input disk 16 and the input shaft 6 are spline-engaged to constitute a first rotating member,
An output disk 18 disposed opposite to the input disk 16 and the output shaft 8 are also spline-engaged to constitute a second rotating member. A power roller 20, which is a rotor, is provided between the input disk 16 and the output disk 18, and the power roller 20 frictionally engages with these disks 16 and 18 to transmit the rotation of the input disk 16 to the output disk 18. . Therefore, the rotation of the engine is transmitted to the output shaft 8 via the input shaft 6 and the power roller 20, thereby driving the compressor 12. The rotational speed of the compressor 12, that is, the gear ratio between the input and output shafts 6 and 8, is controlled by the attitude of the power roller 20, as will be described later.
入力軸16の中心軸線A方向途中に一体形成された鍔状
部22は、軸線Aを中心とする回転体形状を呈し、入力
ディスク16と対向する側面に環状の凹部24が形成さ
れている。フロントハウジング2とこれに対向する鍔状
部22の側面との間にはスラスト軸受26が配設され、
これによって軸線A方向のスラスト力を受ける。フロン
トハウジング2と接する入力軸6の外周面上に環状溝2
8が形成され、入力軸6の直径方向に貫通された貫通孔
30によって環状溝28の直径方向対向位置が相互に連
通されている。中心軸線Aに沿って穿設された軸方向孔
32は、貫通孔30から入力軸6の入力ディスク16対
向端まで延在している。シャフトシール34は、フロン
ト7、ウジ、グ2と入力軸6の外周面との間に配設され
、無段変速機内の冷媒が外部に漏れないようにしている
。A flange-shaped portion 22 integrally formed in the middle of the input shaft 16 in the direction of the central axis A has the shape of a rotating body centered on the axis A, and has an annular recess 24 formed on the side surface facing the input disk 16. A thrust bearing 26 is disposed between the front housing 2 and the side surface of the flanged portion 22 that faces the front housing 2.
As a result, a thrust force in the direction of the axis A is applied. An annular groove 2 is formed on the outer peripheral surface of the input shaft 6 in contact with the front housing 2.
8 is formed, and diametrically opposing positions of the annular grooves 28 are communicated with each other by a through hole 30 that passes through the input shaft 6 in the diametrical direction. The axial hole 32 bored along the central axis A extends from the through hole 30 to the end of the input shaft 6 facing the input disk 16 . The shaft seal 34 is disposed between the front 7, the shaft 2, and the outer peripheral surface of the input shaft 6, and prevents the refrigerant inside the continuously variable transmission from leaking to the outside.
人力ディスク16は、入力軸6の中心軸線Aを中心とす
る回転体形状を呈し、第1の係合面36を有する。第1
の係合面36は略円錐状の曲面であり、軸線Aを通る断
面形状は後述するパワーローラ20の揺動中心軸線Bを
中心とする円弧である。入力ディスク16から延びる先
端部38は、出力ディスク18に形成された貫通孔40
内に嵌入し、この孔40において軸受42により回転自
在に支持される。鍔状部22は入力ディスク16の背面
に形成された凹部44に嵌合され、これらの間に圧力室
45が区画形成される。凹部44の内周面に対向する鍔
状部22の外周面上にはOリング46が配設され、圧力
室45の気密を確保している。入力軸6の先端部48は
、入力ディスク16の凹部44の中心部に形成された孔
50に嵌入され、先端部48と孔50とはスプライン係
合している。したがって入力軸6の回転は人力ディスク
16に伝達され、入力ディスク16は入力軸6に対し軸
線A方向に変位可能である。鍔状部22の口部24と対
向して凹部44に段部52が形成され、これらの間に圧
縮コイルばね54が配設され、入力ディスク16を出力
ディスク18の方向に付勢している。このように、押圧
力発生手段は圧力室45、ばね54および圧力室45に
供給される高圧圧力により構成される。The human-powered disk 16 has the shape of a rotating body centered on the central axis A of the input shaft 6 and has a first engagement surface 36 . 1st
The engagement surface 36 is a substantially conical curved surface, and the cross-sectional shape passing through the axis A is an arc centered on the swing center axis B of the power roller 20, which will be described later. The tip end 38 extending from the input disk 16 is connected to a through hole 40 formed in the output disk 18.
It fits into the hole 40 and is rotatably supported by a bearing 42 . The brim portion 22 is fitted into a recess 44 formed on the back surface of the input disk 16, and a pressure chamber 45 is defined therebetween. An O-ring 46 is disposed on the outer peripheral surface of the brim portion 22 facing the inner peripheral surface of the recess 44 to ensure airtightness of the pressure chamber 45. The tip 48 of the input shaft 6 is fitted into a hole 50 formed in the center of the recess 44 of the input disk 16, and the tip 48 and the hole 50 are engaged by spline. Therefore, the rotation of the input shaft 6 is transmitted to the manual disk 16, and the input disk 16 can be displaced in the direction of the axis A with respect to the input shaft 6. A stepped portion 52 is formed in the recessed portion 44 facing the mouth portion 24 of the brim portion 22, and a compression coil spring 54 is disposed between the stepped portion 52 and biases the input disk 16 in the direction of the output disk 18. . In this way, the pressing force generating means is constituted by the pressure chamber 45, the spring 54, and the high pressure supplied to the pressure chamber 45.
出力ディスク18は入力ディスク16と同様な形状を存
する。すなわち出力ディスク18は、出力軸8の軸線A
を中心とする回転体形状を呈し、略円2(を状の第2の
係合面56を有する。出力ディスク18は第2の係合面
56が第1の係合面36に対向するようにして設けられ
る。出力ディスク1日の貫通孔40には、入力軸6と反
対方向から出力軸8の先端部57が嵌入し、先端部57
と貫通孔40とはスプライン係合している。左隔壁72
とこれに対向する出力ディスク8の背面との間にはスラ
スト軸受59が配設され、これによって軸線A方向のス
ラスト力を受けている。Output disk 18 has a similar shape to input disk 16. That is, the output disk 18 is aligned with the axis A of the output shaft 8.
It has the shape of a rotating body centered on , and has a second engagement surface 56 in the shape of a substantially circle 2. The output disk 18 is arranged such that the second engagement surface 56 faces the first engagement surface 36 The tip 57 of the output shaft 8 is fitted into the through hole 40 of the output disk 1 from the opposite direction to the input shaft 6, and the tip 57
and the through hole 40 are in spline engagement. Left bulkhead 72
A thrust bearing 59 is disposed between the rear surface of the output disk 8 and the rear surface of the output disk 8 facing thereto, and receives a thrust force in the direction of the axis A.
トラニオン58は、略直方体状の本体60、本体6oの
長手方向に両側に延びる回動支軸62および回動支軸6
2の軸線Bと垂直に交差しかつ後述のトラニオンハウジ
ング64の中心軸線A′に指向する軸線Cを有し本体6
0の中央部に圧入された揺動ロッド66が一体に形成さ
れている。パワーローラ20は、揺動ロッド66との間
に軸受68を介し、本体60との間に軸受70を介して
、トラニオン58に回転自在に支持されている。入力デ
ィスク16および出力ディスク18に係合するパワーロ
ーラ20の面は、球面の一部である。The trunnion 58 includes a main body 60 having a substantially rectangular parallelepiped shape, a rotation support shaft 62 extending on both sides in the longitudinal direction of the main body 6o, and a rotation support shaft 6.
The main body 6 has an axis C that perpendicularly intersects the axis B of the main body 6 and is oriented toward a central axis A' of the trunnion housing 64, which will be described later.
A swing rod 66 press-fitted into the center of the 0 is integrally formed. The power roller 20 is rotatably supported by the trunnion 58, with a bearing 68 interposed between it and the swing rod 66, and a bearing 70 interposed between it and the main body 60. The surface of power roller 20 that engages input disk 16 and output disk 18 is part of a spherical surface.
揺動ロッド66の先端は球状部66aを形成している。The tip of the swing rod 66 forms a spherical portion 66a.
第3図および第4図にはトラニオンハウジング64の正
面図と側面図を示す。トラニオンハウジング64は略環
状であり、その周側面には、トラニオン5日を収容する
ための3個の長方形窓部150が周方向に略等間隔毎に
設けられている。窓部150の周方向に対向する支持壁
152には、その幅方向中央に、トラニオン5日の回動
支軸62を軸支するための貫通孔154が対向して穿設
されている。側端部160は、フロントハウジング2に
対向しており、後述する弁軸126の一端126aがこ
の側端部160に当接する。3 and 4 show a front view and a side view of the trunnion housing 64. The trunnion housing 64 has a substantially annular shape, and three rectangular windows 150 for accommodating the trunnions are provided on the circumferential surface of the trunnion housing 64 at substantially equal intervals in the circumferential direction. A through hole 154 for pivotally supporting the rotation support shaft 62 of the trunnion 5 is formed in the support wall 152 facing in the circumferential direction of the window portion 150 at the center in the width direction thereof. The side end 160 faces the front housing 2, and one end 126a of a valve shaft 126, which will be described later, comes into contact with the side end 160.
再び第1図および第2図を参照して、トラニオンハウジ
ング64は第1および第2の係合面36゜56を囲繞す
るようにして設けられ、3個のパワーローラ20がトラ
ニオンハウジング64の円周方向に略等間隔毎に設けら
れている。各揺動ロッド66の軸線Cがトラニオンハウ
ジング64の中心軸線A′に指向して一点に集中するよ
うに、トラニオン58はその回動支軸62を介してトラ
ニオンハウジング64の貫通孔154に回動自在に支持
されている。トラニオンハウジング64は、3つのトラ
ニオン5日およびパワーローラ20のみにより入出力デ
ィスク16 、18上に支持されており、トラニオンハ
ウジング64の中心軸線A′と入出力軸16 、18の
軸線Aとを容易に一致させることができる。Referring again to FIGS. 1 and 2, the trunnion housing 64 is provided to surround the first and second engagement surfaces 36.degree. They are provided at approximately equal intervals in the circumferential direction. The trunnion 58 rotates into the through hole 154 of the trunnion housing 64 via its rotation shaft 62 so that the axis C of each swing rod 66 is directed toward the central axis A' of the trunnion housing 64 and concentrated at one point. freely supported. The trunnion housing 64 is supported on the input/output disks 16 and 18 only by three trunnions and the power roller 20, and the central axis A' of the trunnion housing 64 and the axis A of the input/output shafts 16 and 18 are easily aligned. can be matched.
左隔壁72のトラニオンハウジング64に対向する面に
、円周方向に等間隔に正大固定された3つの回転防止ピ
ン74は、トラニオンハウジング64の対向面に穿設さ
れた孔76に遊嵌される。Three anti-rotation pins 74 fixed to the surface of the left partition wall 72 facing the trunnion housing 64 at regular intervals in the circumferential direction are loosely fitted into holes 76 formed in the surface facing the trunnion housing 64. .
変速リング78は、環状部材であり、その外周面はフロ
ントハウジング2の内周面に摺接し、第1および第2の
係合面36 、56を囲繞するようにして設けられてい
る。変速リング78の外周面の一部に切欠き溝156が
形成され、フロントハウジング2を貫通するボルト15
8が係合している。したがって変速リング7日は、軸線
への方向に変位可能かつ軸線Aの周りに回転不可能であ
る。変速リング78の周面で揺動ロッド66の球状部6
6aと対抗する位置に、変速リング78の中心に向かう
貫通孔78aが3個穿設され、この貫通孔78aに球状
部66aが遊嵌されている。したがって、変速リング7
8が軸線への方向に変位することによってトラニオン5
8は回動支軸62を支店として揺動することとなる。こ
の揺動によりパワーローラ20と第1および第2の係合
面36 、56との接触部位が変化し、入出力軸6.8
間の変速比すなわち出力軸8の回転数が制御される。The speed change ring 78 is an annular member, and its outer peripheral surface is in sliding contact with the inner peripheral surface of the front housing 2, and is provided so as to surround the first and second engaging surfaces 36 and 56. A notch groove 156 is formed in a part of the outer peripheral surface of the speed change ring 78, and the bolt 15 passes through the front housing 2.
8 is engaged. The transmission ring 7 is therefore displaceable in the direction towards the axis and non-rotatable around the axis A. The spherical portion 6 of the swinging rod 66 is attached to the circumferential surface of the speed change ring 78.
Three through holes 78a toward the center of the speed change ring 78 are formed at positions opposite to the transmission ring 6a, and the spherical portion 66a is loosely fitted into the through holes 78a. Therefore, the speed change ring 7
By displacing 8 in the direction of the axis, the trunnion 5
8 swings around the pivot shaft 62 as a branch. This swinging changes the contact area between the power roller 20 and the first and second engaging surfaces 36, 56, and the input/output shaft 6.8
The gear ratio between the two, that is, the rotational speed of the output shaft 8 is controlled.
ホルダ80は略直方体形状で、その下方部に凹部82が
形成され、この凹部82に変速リング7日の貫通孔78
a近傍部が嵌入されている。ホルダ80のほぼ中央部に
はその内周面に台形雌ねじが形成された貫通孔84が穿
設されている。モータ86はリヤハウジング上部に固定
され、台形雄ねじが形成されたモータ軸88は、貫通孔
84を貫通し、フロントハウジング2に穿設された軸受
孔90に軸支されている。ホルダ80は軸線Aの方向に
変位可能かつモータ軸88の周りに回転不可能に配設さ
れているため、モータ軸8日の回転によりホルダ80は
軸線への方向に変位し、これにより変速リング78も軸
線Aの方向に変位する。The holder 80 has a substantially rectangular parallelepiped shape, and a recess 82 is formed in the lower part thereof, and a through hole 78 for the speed change ring is formed in the recess 82.
The part near a is inserted. A through hole 84 having a trapezoidal internal thread formed on the inner circumferential surface is bored approximately in the center of the holder 80. The motor 86 is fixed to the upper part of the rear housing, and a motor shaft 88 having a trapezoidal male thread passes through the through hole 84 and is supported in a bearing hole 90 bored in the front housing 2 . Since the holder 80 is arranged so as to be displaceable in the direction of the axis A and not rotatable around the motor shaft 88, the rotation of the motor shaft 88 causes the holder 80 to be displaced in the direction toward the axis, thereby causing the speed change ring to shift. 78 is also displaced in the direction of axis A.
コンプレッサ12の回転軸を兼ねる出力軸8は、左隔壁
72および右隔壁92に回転自在に支持される。出力軸
8に嵌着されたロータ94には複数のベーン96が取付
けられ、これらのベーン96はその外周側に設けられた
筒状のポンプハウジング98の内壁面100に摺接する
。これらベーン96および内壁面100により可変容積
室が形成され、可変容積室は出力軸80回転により、そ
の容積を変化させ、左隔壁72の左側に形成された吸入
室102から図示しない吸入ボートを介して冷媒を吸入
し、これを圧縮して吐出室104に吐出し、高圧室10
5を介して吐出口106から外部に吐出する。The output shaft 8, which also serves as a rotation shaft of the compressor 12, is rotatably supported by the left partition wall 72 and the right partition wall 92. A plurality of vanes 96 are attached to a rotor 94 fitted to the output shaft 8, and these vanes 96 are in sliding contact with an inner wall surface 100 of a cylindrical pump housing 98 provided on the outer circumferential side thereof. A variable volume chamber is formed by these vanes 96 and the inner wall surface 100, and the volume of the variable volume chamber is changed by the rotation of the output shaft 80. The refrigerant is sucked in, compressed and discharged into the discharge chamber 104, and the high pressure chamber 10
5 to the outside from the discharge port 106.
フロントハウジング2と摺接するモータ軸88の外周面
上に環状溝108が形成され、モータ軸88の直径方向
に貫通された貫通孔110によって環状溝108の直径
方向対向位置が相互に連通されている。モータ軸88の
中心軸線に沿って穿設された軸方向孔112は、貫通孔
110からモータ軸88の端部まで延び、軸受孔90に
連通されている。吐出室104は左隔壁72およびフロ
ントハウジング2に穿設された連通孔114を介して環
状溝108に連通されている。An annular groove 108 is formed on the outer circumferential surface of the motor shaft 88 that makes sliding contact with the front housing 2, and diametrically opposed positions of the annular groove 108 are communicated with each other by a through hole 110 that passes through the motor shaft 88 in the diametrical direction. . An axial hole 112 bored along the central axis of the motor shaft 88 extends from the through hole 110 to the end of the motor shaft 88 and communicates with the bearing hole 90 . The discharge chamber 104 communicates with the annular groove 108 through a communication hole 114 formed in the left partition wall 72 and the front housing 2 .
フロントハウジング2のトラニオンハウジング64対向
位置に押圧力を解放するための解放手段が配設される。A release means for releasing the pressing force is provided at a position of the front housing 2 facing the trunnion housing 64.
すなわち、小室116は大径円柱部116aと小径円柱
部116bとからなり、小径円柱部116bは連通孔1
18によって軸受孔90に連通され、大径円柱部116
aは連通孔120によって環状溝28に連通される。大
径円柱部116aの入口部には弁座122が取付は固定
される。弁体124と一体形成された弁軸126は小室
116内に配設される。弁軸126は、その軸線が入出
力軸6.8の軸線Aと平行になるように配設され、弁軸
126の一端126aは弁座122から突出したトラニ
オンハウジング64の側端部160に当接している。大
径円柱部116a内には圧縮コイルばね128が配設さ
れ、弁体124を弁座122に押圧して気密を保ってい
る。That is, the small chamber 116 consists of a large diameter cylindrical part 116a and a small diameter cylindrical part 116b, and the small diameter cylindrical part 116b is connected to the communication hole 1.
18 communicates with the bearing hole 90, and the large diameter cylindrical portion 116
a communicates with the annular groove 28 through a communication hole 120. A valve seat 122 is fixedly attached to the inlet portion of the large diameter cylindrical portion 116a. A valve shaft 126 integrally formed with the valve body 124 is disposed within the small chamber 116. The valve shaft 126 is arranged so that its axis is parallel to the axis A of the input/output shaft 6.8, and one end 126a of the valve shaft 126 hits the side end 160 of the trunnion housing 64 that protrudes from the valve seat 122. are in contact with each other. A compression coil spring 128 is disposed within the large diameter cylindrical portion 116a, and presses the valve body 124 against the valve seat 122 to maintain airtightness.
パワーローラ20と第2係合面56とのFf!!擦係合
を解除するための解除手段は、モータ86、モータ軸8
8、ホルダ80、変速リング7日、トラニオン58、ト
ラニオンハウジング64およびパワーローラ20により
構成される。Ff between the power roller 20 and the second engagement surface 56! ! A release means for releasing the frictional engagement includes a motor 86 and a motor shaft 8.
8, a holder 80, a speed change ring 7, a trunnion 58, a trunnion housing 64, and a power roller 20.
以上のように構成された本実施例の作用を以下に説明す
る。The operation of this embodiment configured as above will be explained below.
入力軸6の回転前においては、圧力室45の圧力は吸入
室102の圧力とほぼ等しいため、人力ディスク16は
冷媒の圧力によって出力ディスク1日側に付勢されない
。したがって、コンブレッサエ2始動時においては予圧
用のばね54によって入力ディスク16はパワーローラ
20に係合するよう付勢され、パワーローラ20は出力
ディスク18とも摩擦係合する。これによって入力軸6
の回転は出力軸8に伝達されコンプレッサ12が作動す
ることとなる。Before the input shaft 6 rotates, the pressure in the pressure chamber 45 is approximately equal to the pressure in the suction chamber 102, so the manual disk 16 is not urged toward the output disk 1 side by the pressure of the refrigerant. Therefore, when the compressor engine 2 is started, the input disk 16 is urged to engage with the power roller 20 by the preloading spring 54, and the power roller 20 also frictionally engages with the output disk 18. As a result, the input shaft 6
The rotation is transmitted to the output shaft 8 and the compressor 12 is operated.
コンプレッサ12が作動すると、吐出室104内の圧力
が上昇し、この高圧圧力は、連通孔114、軸方向孔1
12、連通孔118を介して小室116に達する。弁体
124は弁座122に押圧されて小室116の気密を保
持しているため、この部分から吸入室102内に高圧の
冷媒が漏れない。したがって小室116内の高圧圧力は
、連通孔120、軸方向孔32、および入力軸6の先端
部48と孔50のスプライン部を介して圧力室45に達
する。これにより、圧力室45内の高圧圧力と吸入室1
02内の低圧圧力との圧力差に応じた押圧力とばね54
による押圧力が入力ディスク16に作用することとなる
。When the compressor 12 operates, the pressure inside the discharge chamber 104 increases, and this high pressure is applied to the communication hole 114 and the axial hole 1.
12, reaches the small chamber 116 via the communication hole 118. Since the valve body 124 is pressed by the valve seat 122 and keeps the small chamber 116 airtight, high-pressure refrigerant does not leak into the suction chamber 102 from this portion. Therefore, the high pressure within the small chamber 116 reaches the pressure chamber 45 via the communication hole 120, the axial hole 32, and the spline portion of the tip 48 of the input shaft 6 and the hole 50. As a result, the high pressure inside the pressure chamber 45 and the suction chamber 1
Pressure force and spring 54 according to the pressure difference with the low pressure inside 02
A pressing force due to this will act on the input disk 16.
そして、この圧力差が大きい程負荷トルクは増し、押圧
力も大きくなるため、負荷トルクに応じて必要な押圧力
を得ることができる。Then, as the pressure difference increases, the load torque increases and the pressing force also increases, so that the necessary pressing force can be obtained in accordance with the load torque.
変速比を変えるには、モータ86を駆動して、モータ軸
88を回転させ、ホルダ80および変速リング78を軸
線Aの方向に変位させ、これによって、トラニオン58
を回転支軸62の周りに揺動させ、パワーローラ20と
第1および第2の係合面36 、56との接触部位を変
化させることにより行なう。この際ホルダ80の下方端
部80aは、トラニオンハウジング64の窓部150内
を軸線A方向に変位する。第1図は最小変速比状態を示
している。この状態で、ホルダ80の下方端部80aは
、トラニオンハウジング64の側端部160の内側面に
当接している。そしてモータ86を駆動してホルダ80
をさらに第1図で左方に押圧することにより、側端部1
60は弁軸126を左方に変位させ、小室116は吸入
室102に連通ずる。同時に弁軸】26の他端126b
は小径円柱部116bを閉塞する。これによって吐出室
104から小室116への高圧圧力の供給は停止され、
一方、圧力室45内の高圧圧力は吸入室102内に放出
され、圧力室45内は吸入室102内の圧力と等しくな
り、入力ディスクの16には圧力差による押圧力は作用
しなくなり、ばね54による押圧力だけが作用すること
になる。To change the gear ratio, the motor 86 is driven to rotate the motor shaft 88 and displace the holder 80 and the gear ring 78 in the direction of the axis A, thereby causing the trunnion 58 to rotate.
This is done by swinging the power roller 20 around the rotation support shaft 62 and changing the contact area between the power roller 20 and the first and second engaging surfaces 36 and 56. At this time, the lower end 80a of the holder 80 is displaced in the direction of the axis A within the window 150 of the trunnion housing 64. FIG. 1 shows the minimum gear ratio state. In this state, the lower end 80a of the holder 80 is in contact with the inner surface of the side end 160 of the trunnion housing 64. Then, the motor 86 is driven to hold the holder 80.
By further pressing leftward in FIG. 1, the side end 1
60 displaces the valve stem 126 to the left, and the small chamber 116 communicates with the suction chamber 102. At the same time, the other end 126b of the valve shaft] 26
closes the small diameter cylindrical portion 116b. As a result, the supply of high pressure from the discharge chamber 104 to the small chamber 116 is stopped.
On the other hand, the high pressure in the pressure chamber 45 is released into the suction chamber 102, and the pressure in the pressure chamber 45 becomes equal to the pressure in the suction chamber 102, and the pressing force due to the pressure difference no longer acts on the input disk 16, and the spring Only the pressing force from 54 will act.
トラニオンハウジング64の左方向への変位にともなっ
てトラニオン58も一体に変位し、パワーローラ20は
入力ディスク16との係合点を介して、入力ディスク1
6を左方に変位させる。この場合入力ディスク16にば
ばね54による押圧力だけが作用しており、モータ86
の駆動力は、これに打ち勝つだけの力を発生できればよ
い。例えば、ばね54の取付時の荷重は30〜70kg
であり、一方モータ86は20〜40Wで、モータ内の
ウオームギヤ装置と、モータ軸88および貫通孔84に
形成された台形ねじとによって、ホルダ80を変位させ
る力は100kg以上となる。As the trunnion housing 64 is displaced to the left, the trunnion 58 is also displaced together, and the power roller 20 is moved to the input disk 1 via the engagement point with the input disk 16.
6 to the left. In this case, only the pressing force from the spring 54 is acting on the input disk 16, and the motor 86
The driving force for this need only be to generate enough force to overcome this. For example, the load when installing the spring 54 is 30 to 70 kg.
On the other hand, the motor 86 has a power of 20 to 40 W, and the force for displacing the holder 80 is 100 kg or more due to the worm gear device in the motor and the trapezoidal screw formed in the motor shaft 88 and the through hole 84.
入力ディスク16およびトラニオン58の左方への変位
により、パワーローラ20と出力ディスク18との摩擦
係合が解除され、入力軸6の回転は出力軸8に完全に伝
達されなくなる。Due to the leftward displacement of the input disk 16 and the trunnion 58, the frictional engagement between the power roller 20 and the output disk 18 is released, and the rotation of the input shaft 6 is no longer completely transmitted to the output shaft 8.
以上のように本実施例によれば、容易かつ安定的に完全
な変速比Oの状態を実現できるトロイダル型無段変速機
を提供することができる。As described above, according to this embodiment, it is possible to provide a toroidal continuously variable transmission that can easily and stably realize a perfect gear ratio O state.
また、各パワーローラ20の揺動変位は、変速リング7
8を軸線への方向に変位させるだけでよく、各パワーロ
ーラ20と第1および第2係合面36 、56との接触
状態を容易に均一化し、一部のパワーローラ20に滑り
を生じ伝達効率を低下させるということはない。Further, the swinging displacement of each power roller 20 is determined by the speed change ring 7
8 in the direction of the axis, the contact state between each power roller 20 and the first and second engaging surfaces 36, 56 can be easily equalized, causing some of the power rollers 20 to slip and transmitting There is no reduction in efficiency.
さらに、本実施例では摩擦係合に必要な押圧力をコンプ
レッサ12の高低圧力差で得るため、従来の乗り上げカ
ム形式のように、摩耗を生じることなく、又負荷に応じ
て適正な押圧力を発生することができる。Furthermore, in this embodiment, the pressing force necessary for frictional engagement is obtained by the difference between high and low pressures of the compressor 12, so unlike the conventional riding cam type, there is no wear and the appropriate pressing force can be obtained according to the load. can occur.
なお、本実施例では、圧力室45を入力ディスク16側
に設は入力ディスク16を付勢する構成としたが、出力
ディスク18側に圧力室45を設け、出力ディスク18
を付勢するよう構成してもよい。In this embodiment, the pressure chamber 45 is provided on the input disk 16 side to urge the input disk 16, but the pressure chamber 45 is provided on the output disk 18 side and the pressure chamber 45 is provided on the output disk 18 side.
It may be configured to energize.
また、本実施例ではトロイダル型無段変速機に用いた場
合を示したが、他の無段変速機、例えば遊星回転子型無
段変速機等に用いても同様の効果を得ることができる。In addition, although this example shows the case where it is used in a toroidal type continuously variable transmission, the same effect can be obtained when it is used in other continuously variable transmissions, such as a planetary rotor type continuously variable transmission. .
以上のように本発明によれは、回転子が最小変速比近傍
位置のとき押圧力発生手段の押圧力を解放し、第1の係
合面を第2の係合面と反対方向に変位させて、回転子と
第1又は第2の係合面のうち少なくとも一方の係合面と
の摩擦係合を解除することにより、容易かつ安定的に完
全な変速比Oの状態を実現することが可能となる。As described above, according to the present invention, when the rotor is at a position near the minimum gear ratio, the pressing force of the pressing force generating means is released, and the first engaging surface is displaced in the opposite direction to the second engaging surface. By releasing the frictional engagement between the rotor and at least one of the first and second engaging surfaces, it is possible to easily and stably realize a state of perfect gear ratio O. It becomes possible.
第1図は本発明の一実施例を示す縦断面図、第2図は本
発明の一実施例を示す横断面図、第3図はトラニオンハ
ウジングの一部切欠き断面図、第4図はトラニオンハウ
ジングの側面図である。
6・・・入力軸、 8・・・出力軸、16・・・
入力ディスク、1日・・・出力ディスク、20・・・パ
ワーローラ、36・・・第1係合面、54・・・ばね、
56・・・第2係合面、58・・・トラニオ
ン、
64・・・トラニオンハウジング、
78・・・変速リング、 80・・・ホルダ、86・・
・モータ、 88・・・モータ軸、122・・・
弁座、 124・・・弁体、126・・・弁軸、
A・・・入出力軸の軸線。Fig. 1 is a longitudinal sectional view showing an embodiment of the present invention, Fig. 2 is a transverse sectional view showing an embodiment of the invention, Fig. 3 is a partially cutaway sectional view of the trunnion housing, and Fig. 4 is a longitudinal sectional view showing an embodiment of the present invention. FIG. 3 is a side view of the trunnion housing. 6...Input shaft, 8...Output shaft, 16...
Input disk, 1st... Output disk, 20... Power roller, 36... First engagement surface, 54... Spring,
56... Second engagement surface, 58... Trunnion, 64... Trunnion housing, 78... Speed change ring, 80... Holder, 86...
・Motor, 88...Motor shaft, 122...
Valve seat, 124... valve body, 126... valve stem,
A: Axis line of input/output axis.
Claims (1)
面を有し、該軸線の周りに回転自在に設けられた第1の
回転部材と、前記軸線の周りに回転自在に設けられ、該
軸線を中心とするとともに前記第1の係合面に対向する
第2の係合面を有する第2の回転部材と、前記軸線の周
りに設けられ、前記第1および第2の係合面に摩擦係合
して前記第1および第2の回転部材間の回転伝達を行な
うとともに、前記第1および第2の係合面との接触部位
を変化させ、前記第1および第2の回転部材間の変速比
を変える複数の回転子と、前記第1の係合面を前記第2
の係合面の方向に流体圧により付勢する押圧力発生手段
と、前記回転子が最小変速比近傍位置のとき前記押圧力
発生手段の押圧力を解放する解放手段と、前記押圧力を
解放したとき前記第1の係合面を前記第2の係合面と反
対方向に変位させて、前記回転子と前記第1又は第2の
係合面のうち少なくとも一方の係合面との摩擦係合を解
除する解除手段とを備えたことを特徴とする無段変速機
。a first rotating member that is displaceable in the axial direction and has a first engagement surface that is centered on the axis, and that is rotatably provided around the axis; , a second rotating member having a second engagement surface centered on the axis and opposite to the first engagement surface; and a second rotating member provided around the axis and having the first and second engagement surfaces. The first and second rotating members are frictionally engaged with the surfaces to transmit rotation between the first and second rotating members, and the contact portions with the first and second engaging surfaces are changed to cause the first and second rotational members to rotate. a plurality of rotors that change gear ratios between members; and a plurality of rotors that change the gear ratio between members, and
a pressing force generating means for urging the engaging surface of the rotor by fluid pressure in the direction of the engagement surface; a releasing means for releasing the pressing force of the pressing force generating means when the rotor is at a position near a minimum gear ratio; and a releasing means for releasing the pressing force. When this occurs, the first engagement surface is displaced in the opposite direction to the second engagement surface to reduce friction between the rotor and at least one of the first or second engagement surfaces. A continuously variable transmission characterized by comprising a release means for releasing engagement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3285988A JPH01210653A (en) | 1988-02-17 | 1988-02-17 | Continuously variable transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3285988A JPH01210653A (en) | 1988-02-17 | 1988-02-17 | Continuously variable transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01210653A true JPH01210653A (en) | 1989-08-24 |
Family
ID=12370571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3285988A Pending JPH01210653A (en) | 1988-02-17 | 1988-02-17 | Continuously variable transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01210653A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5261863A (en) * | 1992-01-08 | 1993-11-16 | Toyota Jidosha Kabushiki Kaisha | Toroidal type continuously variable speed transmission mechanism |
US20080236319A1 (en) * | 2005-12-09 | 2008-10-02 | Fallbrook Technologies Inc. | Continuously variable transmission |
US11125329B2 (en) | 2007-11-16 | 2021-09-21 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
US11174922B2 (en) | 2019-02-26 | 2021-11-16 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
US11215268B2 (en) | 2018-11-06 | 2022-01-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
US11306818B2 (en) | 2016-01-15 | 2022-04-19 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
US11598397B2 (en) | 2005-12-30 | 2023-03-07 | Fallbrook Intellectual Property Company Llc | Continuously variable gear transmission |
US11667351B2 (en) | 2016-05-11 | 2023-06-06 | Fallbrook Intellectual Property Company Llc | Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission |
-
1988
- 1988-02-17 JP JP3285988A patent/JPH01210653A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5261863A (en) * | 1992-01-08 | 1993-11-16 | Toyota Jidosha Kabushiki Kaisha | Toroidal type continuously variable speed transmission mechanism |
US11454303B2 (en) | 2005-12-09 | 2022-09-27 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US20080236319A1 (en) * | 2005-12-09 | 2008-10-02 | Fallbrook Technologies Inc. | Continuously variable transmission |
US8317650B2 (en) * | 2005-12-09 | 2012-11-27 | Fallbrook Intellectual Property Company Llc | Continuously variable transmission |
US11598397B2 (en) | 2005-12-30 | 2023-03-07 | Fallbrook Intellectual Property Company Llc | Continuously variable gear transmission |
US11125329B2 (en) | 2007-11-16 | 2021-09-21 | Fallbrook Intellectual Property Company Llc | Controller for variable transmission |
US11306818B2 (en) | 2016-01-15 | 2022-04-19 | Fallbrook Intellectual Property Company Llc | Systems and methods for controlling rollback in continuously variable transmissions |
US11667351B2 (en) | 2016-05-11 | 2023-06-06 | Fallbrook Intellectual Property Company Llc | Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission |
US11215268B2 (en) | 2018-11-06 | 2022-01-04 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
US11624432B2 (en) | 2018-11-06 | 2023-04-11 | Fallbrook Intellectual Property Company Llc | Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same |
US11530739B2 (en) | 2019-02-26 | 2022-12-20 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
US11174922B2 (en) | 2019-02-26 | 2021-11-16 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
US12000458B2 (en) | 2019-02-26 | 2024-06-04 | Fallbrook Intellectual Property Company Llc | Reversible variable drives and systems and methods for control in forward and reverse directions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6159126A (en) | Toroidal continuously variable transmission | |
JP3714226B2 (en) | Toroidal continuously variable transmission | |
US5282728A (en) | Inertial balance system for a de-orbiting scroll in a scroll type fluid handling machine | |
JPS6148997B2 (en) | ||
US4252031A (en) | Automatic transmission | |
US5342186A (en) | Axial actuator for unloading an orbital scroll type fluid material handling machine | |
JPH01210653A (en) | Continuously variable transmission | |
US8517880B2 (en) | Compressor with transmission | |
US20050233854A1 (en) | Variable speed compressor | |
JP3687261B2 (en) | Toroidal continuously variable transmission | |
JP4079691B2 (en) | Toroidal continuously variable transmission | |
JP4190117B2 (en) | Toroidal continuously variable transmission | |
JP4196486B2 (en) | Toroidal type continuously variable transmission | |
US5290161A (en) | Control system for a clutchless scroll type fluid material handling machine | |
JP2004092414A (en) | High-speed fluid device | |
JP3555577B2 (en) | Toroidal type continuously variable transmission | |
JP2004278780A (en) | Toroidal continuously variable transmission | |
JP2000018374A (en) | Toroidal continuously variable transmission | |
JP3760697B2 (en) | Toroidal type continuously variable transmission and infinitely variable transmission continuously variable transmission | |
JPH05321997A (en) | Friction type continuously variable transmission | |
JPS622062A (en) | Friction type continuously variable transmission | |
JP2001295904A (en) | Disk pushing device for toroidal type continuously variable transmission | |
JP6998495B2 (en) | Power transmission device | |
JP2003021210A (en) | Toroidal type continuously variable transmission and continuously variable transmission device | |
JP3381633B2 (en) | Friction wheel type continuously variable transmission |