JPH01210430A - Novel film having distribution in coefficient of thermal expansion and its production - Google Patents

Novel film having distribution in coefficient of thermal expansion and its production

Info

Publication number
JPH01210430A
JPH01210430A JP63035016A JP3501688A JPH01210430A JP H01210430 A JPH01210430 A JP H01210430A JP 63035016 A JP63035016 A JP 63035016A JP 3501688 A JP3501688 A JP 3501688A JP H01210430 A JPH01210430 A JP H01210430A
Authority
JP
Japan
Prior art keywords
thermal expansion
coefficient
film
polyimide
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63035016A
Other languages
Japanese (ja)
Inventor
Shunichi Numata
俊一 沼田
Koji Fujisaki
藤崎 康二
Takae Ikeda
池田 孝栄
Takao Miwa
崇夫 三輪
Satoru Ogiwara
荻原 覚
Kunio Miyazaki
邦夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP63035016A priority Critical patent/JPH01210430A/en
Publication of JPH01210430A publication Critical patent/JPH01210430A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types

Abstract

PURPOSE:To obtain a polymer film having distribution in the coefficient of thermal expansion, by applying precursor varnishes which can give polyamides of different coefficients of thermal expansion to a substrate in a state in contact with one another and imidating the precursor varnishes. CONSTITUTION:An aromatic diamine (A) (e.g., p-phenylene-diamine) or an aromatic isocyanate is reacted with a tetracarboxylic acid derivative (B) (e.g., 3,3',4,4'-biphenyltetracarboxylic dianhydride) at -20-200 deg.C in a solvent (e.g., N-methylpyrrolidone) to obtain a precursor varnish which can give a polyimide. Precursor varnishes of different coefficients of thermal expansion are applied to a substrate in a state in contact with one another and are imidated thermally or chemically to obtain the title film composed of the polymers of different coefficients of thermal expansion successively arranged in the direction of the face. This film is useful for bonding a material of a larger coefficient of thermal expansion to one of a smaller coefficient of thermal expansion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱膨張係数に分布を持ったポリマーフィルム
特に高耐熱性絶縁膜であるポリイミドフィルム並びにそ
の形成方法に係わり、特に無膨張係数の小さな半導体チ
ップと熱膨張係数の大きな配線基板との接合用のフレキ
シブルなコネクターなど多くの熱膨張係数の大きなもの
と小さな物との接合に適した熱膨張係数分布型フィルム
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a polymer film having a distribution of thermal expansion coefficients, particularly a polyimide film which is a highly heat-resistant insulating film, and a method for forming the same. This invention relates to a thermal expansion coefficient distribution type film suitable for joining many items with large thermal expansion coefficients to small items, such as flexible connectors for joining small semiconductor chips and wiring boards with large thermal expansion coefficients.

〔従来の技術〕[Conventional technology]

従来、フィルムの熱膨張係数はほとんど均一あるいはフ
ィルム製作時の分子配向に依って多少出来てしまう程度
のものしか無く、意図してフィルム内に順次熱膨張係数
を変化させたものは知られていない。
Conventionally, the coefficient of thermal expansion of films has been almost uniform or has only been slightly variable depending on the molecular orientation during film production, and there are no known films in which the coefficient of thermal expansion has been intentionally varied sequentially within the film. .

耐熱性フレキシブルプリント基板の主流はポリイミドで
あシ、これによってリジンドブリント基板を接合するこ
とが試みられているが、熱膨張係数の問題で差が大きい
もの同士の接合は無理である。また、これまで熱膨張係
数の小さなLSI(Sエ チップ)を熱膨張係数の大き
なアルミナ、810 、ムライトなどのセラミック基板
、有機系のガラスエポキシ積層板、銅フレーム等の金属
基板などにマウント使用とする場合も同様の問題があっ
た。Sl  チップが小さい場合はあまり問題にならな
かったが、チップの増大化によりクローズアップされ、
特にOOB方式の場合は半田接合部の断線などが大きな
問題になっている。81  チップの背面で接着する場
合は、従来の金シリコン接合に比較して、銀ペースト、
シリコーンゴムなどの応力緩和性の接着剤を用いること
によっである程度は逃げられるが、耐熱性の低下などの
問題が生じる。上記のOOB方式による接合の場合、低
熱膨張性のものを使用せざるを得ない。
The mainstream of heat-resistant flexible printed circuit boards is polyimide, and attempts have been made to bond resin printed circuit boards using this material, but it is impossible to bond materials with large differences in thermal expansion coefficient. In addition, up until now, LSIs (S chips) with a small coefficient of thermal expansion have been mounted on ceramic substrates such as alumina, 810, and mullite, which have a large coefficient of thermal expansion, organic glass epoxy laminates, metal substrates such as copper frames, etc. There was a similar problem when doing so. This was not much of a problem when the SL chip was small, but as the chip size increased, it became more of a problem.
Particularly in the case of the OOB method, breakage of solder joints is a major problem. 81 When bonding on the back side of the chip, silver paste,
Although this can be avoided to some extent by using stress-relaxing adhesives such as silicone rubber, problems such as a decrease in heat resistance arise. In the case of joining by the above-mentioned OOB method, it is necessary to use a material with low thermal expansion.

また、一つの熱応力の逃げ方として、比較的長いリード
ピンを利用し、それの変形を利用するビングリッドアレ
イ方式が知られている。しかし、この方式は、高密度化
、実装工程の簡素化の点では時代に逆行するものである
Furthermore, as one method of escaping thermal stress, a bin grid array method is known that utilizes relatively long lead pins and utilizes their deformation. However, this method is behind the times in terms of increasing density and simplifying the mounting process.

特開昭60−243120号公報などに記載のように接
合しようとする物の熱膨張係数を合わせるのがペストで
あるが、それが出来ないことの方が圧倒的に多い。コン
ピュータ用の実装技術において、半導体チップは非常に
熱膨張係数が小さく、これを熱膨張係数の大きなプリン
ト基板や、パンケージにマウントすることは非常に困難
である。
As described in Japanese Unexamined Patent Publication No. 60-243120, pest control is used to match the coefficients of thermal expansion of objects to be joined, but it is overwhelmingly impossible to do so. In computer mounting technology, semiconductor chips have a very small coefficient of thermal expansion, and it is extremely difficult to mount them on printed circuit boards or pancakes that have a large coefficient of thermal expansion.

特に最近では半導体チップの大きさが年々増し、熱膨張
係数の差に起因する熱応力の問題もますます重要になっ
てき念。ま九、半導体チップの熱放散のために金属芯を
有するプリント基板を使用することが多くなつ之シ、熱
膨張係数が比較的大きな超電導物質を使う次めにも、こ
れらの接続法の確立は非常に重要である。
Particularly recently, as the size of semiconductor chips has increased year by year, the issue of thermal stress caused by differences in thermal expansion coefficients has become increasingly important. 9. Increasingly, printed circuit boards with metal cores are often used to dissipate heat from semiconductor chips, and superconducting materials with relatively large coefficients of thermal expansion are used, but it is difficult to establish these connection methods. Very important.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記従来技術の問題点を排除し、熱膨張係数
の異なる物同士を接合する之めのものを提供するもので
ある。例えば、熱膨張係数の小さな81  チップを熱
膨張係数の大きな基板にマウントしたシ、熱膨張係数の
ことなる基板同士を接合する友めのものである。
The present invention eliminates the problems of the prior art described above and provides a method for joining materials having different coefficients of thermal expansion. For example, an 81 chip with a small coefficient of thermal expansion is mounted on a substrate with a large coefficient of thermal expansion, and it is used as a companion for bonding substrates with different coefficients of thermal expansion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明の第1の発明は熱膨張係数
分布型フィルムに関する発明であって、面方向に熱膨張
係数の異なるポリマーを順次配列させ次ことを特徴とす
る。
To summarize the present invention, the first aspect of the present invention relates to a distributed coefficient of thermal expansion film, which is characterized in that polymers having different coefficients of thermal expansion are sequentially arranged in the plane direction.

ま九本発明の第2の発明は、熱膨張係数分布型フィルム
の製造方法に関する発明であって、熱膨張係数の異なる
ポリイミドを与える前駆体ワニスを互いに接触するよう
に基板上に塗布し、熱又は化学的にイミド化することに
よって、形成することを特徴とする。
A second aspect of the present invention is an invention relating to a method for manufacturing a distributed thermal expansion coefficient film, in which precursor varnishes providing polyimides having different coefficients of thermal expansion are applied onto a substrate so as to be in contact with each other, and heated. Alternatively, it is characterized by being formed by chemical imidization.

本発明のフィルムを図面によシ説明する。The film of the present invention will be explained with reference to the drawings.

第1図は、本発明の熱膨張係数分布型フィルムの構成の
1例を示す斜視図である。第1図において、符号1はフ
ィルムの低熱膨張領域、2は熱膨張係数変化領域、3は
フィルムの高熱膨張領域を意味する。
FIG. 1 is a perspective view showing an example of the structure of the distributed thermal expansion coefficient film of the present invention. In FIG. 1, numeral 1 means a low thermal expansion region of the film, 2 means a thermal expansion coefficient changing region, and 3 means a high thermal expansion region of the film.

本発明の熱膨張係数分布型フィルムは、硬化後はとんど
類似の色を呈する友め、あらかじめ熱膨張係数が一定の
領域に着色しておくと好都合である。着色法としては、
例えば、アルミナのような耐熱性の顔料をわずかに添加
すれば良い。
Since the thermal expansion coefficient distribution type film of the present invention exhibits almost similar colors after curing, it is convenient to color the regions having a constant thermal expansion coefficient in advance. As a coloring method,
For example, a small amount of heat-resistant pigment such as alumina may be added.

ま友、本発明の熱膨張係数の分布の形としては、用途に
よって自由に変えることができる。例えば、ストライプ
状、同心円状、角形等が可能である。
Friend, the shape of the distribution of the thermal expansion coefficient of the present invention can be freely changed depending on the application. For example, striped shapes, concentric circles, square shapes, etc. are possible.

本発明において、使用する材料は、芳香族ポリアミド、
液晶性ポリマーなどが考えられるが、低熱膨張性ポリイ
ミドが耐熱性、機械的特性、熱膨張係数のコントロール
のし易さなどの点で、好ましい。低熱膨張性ポリイミド
は、本発明者らがかつて報告し次ように(1985年1
0月30日〜11月1日、ニューヨーク市で開催のポリ
イミド類に関する第2回国際会議々事録(proc、2
ndIntarnatxonal Conferenc
e on Po1y1a+les、5PE)に沼田俊−
らが発表の「低熱膨張ポリイミド類の化学的構造と性質
J (Chamlaal 8truotures an
dPropartzes  or  LoW  The
r+mal  1cxpanszon  Polylm
ldes)参照〕低熱膨張性のポリイミドを与えるモノ
マーと、熱膨張係数の大きなポリイミドを与えるポリイ
ミドの七ツマ−とを共重合させるか、それぞれを−旦前
駆体であるポリアミック酸の状態で混合すると、容易に
コントロール可能である。
In the present invention, the materials used are aromatic polyamide,
Although liquid crystalline polymers are conceivable, low thermal expansion polyimides are preferred in terms of heat resistance, mechanical properties, ease of control of thermal expansion coefficient, and the like. Low thermal expansion polyimide was previously reported by the present inventors as follows (January 1985).
Proceedings of the 2nd International Conference on Polyimides (proc, 2) held in New York City from October 30th to November 1st.
ndInternatxonal Conference
e on Po1y1a+les, 5PE) Shun Numata-
"Chemical structures and properties of low thermal expansion polyimides J" published by Chamlaal et al.
dPropartzes or LoW The
r+mal 1cxpanszon Polylm
If a monomer that provides a polyimide with a low thermal expansion coefficient and a polyimide monomer that provides a polyimide with a large coefficient of thermal expansion are copolymerized, or each is mixed in the state of a polyamic acid precursor, Easily controllable.

また、本発明の熱膨張係数分布uフィルムは、種々の方
法で作製できる。例えば、第2内に示したような複数の
ノズルを有する塗布装置を用い、硬化後桟々の熱膨張係
数を与える粘度と濃度を合せたポリアミック酸ワニスを
同時に基板上に塗布し、加熱あるいは化学的にイミド化
することによって得られる。す々わち第2図は、本発明
の方法・で使用するワニス塗布装置の1例を下から見友
斜視図である。第2図において、符号4fiワニスタン
ク、5は低熱膨張ポリイミド前駆体用ノズル、6〜9は
中間熱膨張ポリイミド前駆体用ノズル、10は高熱膨張
ポリイミド前駆体用ノズル、11け膜厚コントロール用
ギャップを意味する。8g2図に示すように、ワニスタ
ンクが仕切られており、熱膨張係数の異なるポリイミド
の前駆体ワニスを同時に配列させて塗布できる。
Moreover, the thermal expansion coefficient distribution U film of the present invention can be produced by various methods. For example, using a coating device with multiple nozzles as shown in Section 2, a polyamic acid varnish with a viscosity and concentration that provides the thermal expansion coefficient of the crosspieces after curing is simultaneously applied onto the substrate, and heated or chemically applied. It can be obtained by imidization. FIG. 2 is a perspective view from below of an example of a varnish applicator used in the method of the present invention. In Fig. 2, reference numeral 4fi varnish tank, 5 are nozzles for low thermal expansion polyimide precursor, 6 to 9 are nozzles for intermediate thermal expansion polyimide precursor, 10 are nozzles for high thermal expansion polyimide precursor, and 11 are gaps for film thickness control. means. As shown in Figure 8g2, the varnish tank is partitioned so that polyimide precursor varnishes with different coefficients of thermal expansion can be arranged and applied at the same time.

7xI熱イミド化の場合、イミド化反応を完結させる友
め、並びにフィルム内の熱応力を緩和させるため、生成
するポリイミドのガラス転移温度以上に加熱することが
好ましい。
In the case of 7xI thermal imidization, it is preferable to heat the film to a temperature equal to or higher than the glass transition temperature of the polyimide to be produced, in order to complete the imidization reaction and to relax thermal stress within the film.

本発明で使用できるポリイミドあるいはその前駆体とし
ては、一般的にはポリアミック酸が一般的だが、その他
エステル化アミック酸、酸二無水物とジイソシアネート
との反応生成物などがある。
Polyimides or precursors thereof that can be used in the present invention are generally polyamic acids, but other examples include esterified amic acids and reaction products of acid dianhydrides and diisocyanates.

また、それらの骨格としては、多くのものが使用できる
。例えば、芳香族アミノカルボン酸の重合体、芳香族ジ
アミンあるいはジインシアネートと芳香族テトラカルボ
ン酸を出発原料とするもの等がある。
Furthermore, many skeletons can be used. For example, there are polymers of aromatic aminocarboxylic acids, aromatic diamines or diincyanates, and aromatic tetracarboxylic acids as starting materials.

本発明において、ポリイミドの前駆体としては、次のよ
うな化学構造を有するものが挙げられる。
In the present invention, polyimide precursors include those having the following chemical structures.

式中、Ar、は2価の有機基、Ar2は4価の有機基、
RはH又はアルキル基、m及びnは任意の正の数を示す
In the formula, Ar is a divalent organic group, Ar2 is a tetravalent organic group,
R represents H or an alkyl group, and m and n represent arbitrary positive numbers.

このようなポリイミドの前駆体は、芳香族アミノジカル
ボン酸誘導体の単独重合、又は芳香族ジアミンあるいは
芳香族インシアネートと、テトラカルボン酸誘導体の反
応によって得ることが゛できる。テトラカルボン酸誘導
体としては、エステル、酸無水物、酸塩化物がある。酸
無水物を用いると、合成上好ましい。
Such polyimide precursors can be obtained by homopolymerization of aromatic aminodicarboxylic acid derivatives or by reaction of aromatic diamines or aromatic incyanates with tetracarboxylic acid derivatives. Tetracarboxylic acid derivatives include esters, acid anhydrides, and acid chlorides. The use of acid anhydrides is preferable in terms of synthesis.

合成反応は、一般的には、N−メチル、ピロリドン(N
MP )、ジメチルホルムアミド(DMF)、ジメチル
アセトアミド(DMAO) 、ジメチルスルホキシド(
DMSO) 、硫酸ジメチル、スルホラン、ブチロラク
トン、クレゾール、フェノール、ノーロゲン化フェノー
ル、シクロヘキサノン、ジオキサン、テトラヒドロフラ
ン、アセトフェノンなどの溶液中で、−20〜200C
の範囲で行われる。
The synthesis reaction generally involves N-methyl, pyrrolidone (N
MP), dimethylformamide (DMF), dimethylacetamide (DMAO), dimethyl sulfoxide (
DMSO), dimethyl sulfate, sulfolane, butyrolactone, cresol, phenol, norogenated phenol, cyclohexanone, dioxane, tetrahydrofuran, acetophenone, etc. at -20 to 200C.
It is carried out within the range of

本発明に用いられるアミノジカルボン酸誘導体として具
体例を挙げると、4−アミノフタル酸、4−アミノ−5
−メチルフタル酸、4−(1)−アニリノ)フタル酸、
4− (3,5−ジメチル−4−アニリノ)7タル酸な
ど、あるいはこれらのエステル、酸無水物、酸塩化物等
が挙げられる。
Specific examples of aminodicarboxylic acid derivatives used in the present invention include 4-aminophthalic acid, 4-amino-5
-methylphthalic acid, 4-(1)-anilino)phthalic acid,
Examples thereof include 4-(3,5-dimethyl-4-anilino)7talic acid, and esters, acid anhydrides, and acid chlorides thereof.

本発明に用いられる芳香族ジアミンとしては、p−フェ
ニレンジアミン、2.5−ジアミノトルエン、2.5−
ジアミノキシレン、ジアミノズレン(2,3,5,6−
チトラメチルフエニレンジアミン)、2.5−ジアミノ
ペンゾトリフルオリド、2.5−ジアミノアニソール、
2.5−ジアミノアセトフェノン、2.5−ジアミノベ
ンゾフェノン、2.5−ジアミノジフェニル、2,5−
ジアミノフルオロベンゼン、ベンジジン、〇−トリジン
、m−)リジン、5.3’、5.”/−テトラメチルベ
ンジジン、3.3′−ジメトキシベンジジン、5.5’
−ジ(トリフルオロメチル)ベンジジン、5.5’−ジ
アセチルベンジジン、5.3′−ジフルオロベンジジン
、オクタフルオロベンジジン、4.4′−ジアミノター
7エール、4.4”−ジアミノクォーターフェニル等の
直線状のコンホメーションを有スるものや、m−フェニ
レンジアミン、4.4’−ジアミノジフェニルメタン、
1.2−ビス(アニリノ)エタン、4,4−ジアミノジ
フエエルエーテル、ジアミノジフェニルスルホン、2,
2−ビス(p−アミノフェニル)プロパン、2.2−ビ
ス(p−アミノフェニル)へキサフルオロプロパン、3
.3’−ジメチル−4,4′−ジアミノジフェニルエー
テル、3,3′−ジメチル−4,4′−ジアミノジフェ
ニルメタン、ジアミノトルエン、ジアミノペンゾトリフ
ルオリド、1,4−ビス(p−アミノフェノキシ)ベン
ゼン、4.4’−ビス(p−アミノフェノキシ)ビフェ
ニル、ヘキサフルオロプロパン、2,2−ビス(4−(
p−アミノフェノキシ)フェニル)プロパン、2,2−
ビス(4−(m−アミノフェノキシ)フェニル)プロパ
ン、2.2−ヒス(4−(p−アミノフェノキシ)フェ
ニル)へキサフルオロプロパン、2.2−ビス(4−(
tn−アミノフェノキシ)フェニル)へキサフルオロプ
ロパン、2.2−ビス(4−(p−アミノフェノキシ)
 −3,5−ジメチルフェニル)へキサフルオロプロパ
ン、2.2−ビス(4−(p−アミノフェノキシ) −
3,5−ジトリフルオロメチルフェニル)ヘキサフルオ
ロプロパン、p−ビス(4−アミン2−トリフルオロメ
チルフェノキシ)ベンゼン、4.4′−ビス(4−アミ
ノ−2−トリフルオロメチルフェノキシ)ビフェニル、
4.4’−ビス(4−アミノ−3−トリフルオロメチル
フェノキシ)ビフェニル、4,4′−ビス(4−アミノ
−2−トリフルオロメチルフェノキシ)ビフェニルスル
ホン、4.4′−ビス(5−アミノ−5−トリフルオロ
メチルフェノキシ)ビフェニルスルホン、2I2−ビス
(4−(p−アミノ−3−トリフルオロメチルフェノキ
シ)フェニル)へキサフルオロプロパン、ジアミノアン
トラキノン、4.4−ビス(3−アミノフェノキシフェ
ニル)ジフェニルスルホン、1.3− ヒス(アニリノ
)へキサフルオロプロパン、1.4−ビス(アニリノ)
オクタフルオロブタン、1.5−ビス(アニリノ)デカ
フルオロベンタン、1.7−ビス(アニリノ)テトラデ
カフルオロへブタン、−数式、 4R4 又は、 (R5、R7は2価の有機基、R4、R6Vi1価の有
機基、p、qは1より大きい整数)で示されるジ・アミ
ノシロキサンが挙げられ、またこれらのジイソシアネー
ト化合物も使用できる。
Aromatic diamines used in the present invention include p-phenylenediamine, 2.5-diaminotoluene, 2.5-
Diaminoxylene, diaminodurene (2,3,5,6-
titramethylphenylenediamine), 2,5-diaminopenzotrifluoride, 2,5-diaminoanisole,
2.5-diaminoacetophenone, 2.5-diaminobenzophenone, 2.5-diaminodiphenyl, 2,5-
Diaminofluorobenzene, benzidine, 〇-tolidine, m-)lysine, 5.3', 5. ”/-tetramethylbenzidine, 3.3'-dimethoxybenzidine, 5.5'
- Linear forms such as di(trifluoromethyl)benzidine, 5.5'-diacetylbenzidine, 5.3'-difluorobenzidine, octafluorobenzidine, 4.4'-diaminoter-7ale, 4.4"-diaminoquaterphenyl, etc. conformation, m-phenylenediamine, 4,4'-diaminodiphenylmethane,
1.2-bis(anilino)ethane, 4,4-diaminodiphelether, diaminodiphenylsulfone, 2,
2-bis(p-aminophenyl)propane, 2.2-bis(p-aminophenyl)hexafluoropropane, 3
.. 3'-dimethyl-4,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, diaminotoluene, diaminopenzotrifluoride, 1,4-bis(p-aminophenoxy)benzene, 4.4'-bis(p-aminophenoxy)biphenyl, hexafluoropropane, 2,2-bis(4-(
p-aminophenoxy)phenyl)propane, 2,2-
Bis(4-(m-aminophenoxy)phenyl)propane, 2.2-his(4-(p-aminophenoxy)phenyl)hexafluoropropane, 2.2-bis(4-(
tn-aminophenoxy)phenyl)hexafluoropropane, 2,2-bis(4-(p-aminophenoxy)
-3,5-dimethylphenyl)hexafluoropropane, 2,2-bis(4-(p-aminophenoxy) -
3,5-ditrifluoromethylphenyl)hexafluoropropane, p-bis(4-amine2-trifluoromethylphenoxy)benzene, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)biphenyl,
4.4'-bis(4-amino-3-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)biphenylsulfone, 4.4'-bis(5- Amino-5-trifluoromethylphenoxy)biphenylsulfone, 2I2-bis(4-(p-amino-3-trifluoromethylphenoxy)phenyl)hexafluoropropane, diaminoanthraquinone, 4.4-bis(3-aminophenoxy) phenyl)diphenylsulfone, 1,3-his(anilino)hexafluoropropane, 1,4-bis(anilino)
Octafluorobutane, 1.5-bis(anilino)decafluorobentane, 1.7-bis(anilino)tetradecafluorohbutane, - Formula, 4R4 or (R5, R7 are divalent organic groups, R4, R6Vi1 Examples include di-aminosiloxanes represented by a valent organic group (p and q are integers greater than 1), and diisocyanate compounds thereof can also be used.

本発明に用いるテトラカルボン酸誘導体としては、ピロ
メリト酸、メチルピロメリト酸、ジメチルピロメリト酸
、ジ(トリフルオロメチル)ピロメリト酸、3.5’、
4.1−とフェニルテトラカルボン酸、5.ダージメチ
ル−5、5’、 4 、4’−ビフェニルテトラカルボ
ン酸、p−(3,4−ジカルボキシフェニル)ベンゼン
、2,3.3’、4’−テトラカルボキシジフェニル、
3.5’4.4’−テトラカルボキシジフェニルエーテ
ル、2,5.5’4’−テトラカルボキシジフェニルエ
ーテル、5.3’4.4’−テトラカルボキシベンゾフ
ェノン、2.5.3′4′−テトラカルボキシベンゾフ
ェノン、2,5,6.7−チトラカルポ午シナフタレン
、1.4,5.7−テトラカルボキシナフタレン、1,
2,5.6−テトラカルボキシナフタレン、5.3’4
.4’−テトラカルボキシジフェニルメタン、2,3.
3’4’−テトラカルボキシジフェニルメタン、2.2
−ビス(3,4−ジカルボキシフェニル)プロパン、2
,2−ヒス(3,4−ジカルボキシフェニル)へキサフ
ルオロプロパン、3.3’4.4′−テトラカルボキシ
ジフェニルスルホン、3,4,9.10−テトラカルボ
キシペリレン、2,2−ビス(4−(3,4−ジカルボ
キシフェノキシ)フェニル)フロパン、2,2−ビス(
4−(3,4−ジカルボキシフェノキシ)フェニル)へ
キサフルオロプロパン、ブタンテトラカルボン酸、シク
ロペンタンテトラカルボン酸などが挙げられ、これらの
酸無水物、酸塩化物、エステルなども使用できる。
Examples of the tetracarboxylic acid derivatives used in the present invention include pyromellitic acid, methylpyromellitic acid, dimethylpyromellitic acid, di(trifluoromethyl)pyromellitic acid, 3.5',
4.1- and phenyltetracarboxylic acid, 5. dimethyl-5,5',4,4'-biphenyltetracarboxylic acid, p-(3,4-dicarboxyphenyl)benzene, 2,3.3',4'-tetracarboxydiphenyl,
3.5'4.4'-tetracarboxydiphenyl ether, 2,5.5'4'-tetracarboxydiphenyl ether, 5.3'4.4'-tetracarboxybenzophenone, 2.5.3'4'-tetracarboxy Benzophenone, 2,5,6,7-tetracarboxynaphthalene, 1,4,5,7-tetracarboxynaphthalene, 1,
2,5.6-tetracarboxynaphthalene, 5.3'4
.. 4'-tetracarboxydiphenylmethane, 2,3.
3'4'-tetracarboxydiphenylmethane, 2.2
-bis(3,4-dicarboxyphenyl)propane, 2
, 2-his(3,4-dicarboxyphenyl)hexafluoropropane, 3.3'4.4'-tetracarboxydiphenylsulfone, 3,4,9.10-tetracarboxyperylene, 2,2-bis( 4-(3,4-dicarboxyphenoxy)phenyl)furopane, 2,2-bis(
Examples include 4-(3,4-dicarboxyphenoxy)phenyl)hexafluoropropane, butanetetracarboxylic acid, and cyclopentanetetracarboxylic acid, and acid anhydrides, acid chlorides, and esters thereof can also be used.

本発明において、ポリイミドとするよシも完全にイミド
化していない物の方が接着性の点で好ましい。ポリイミ
ド前駆体膜は、ポリイミド前駆体溶液ラスピンコートな
どによって均一に塗布し、好ましくは50〜250C程
度の温度範囲で乾燥することによ−シ得られる。ポリイ
ミド前駆体を使用する場合は、マスクを除去したあとは
ポリイミドにするため高温に加熱するか、イミド化剤溶
液中に浸漬してほとんどイミド化させることが望ましい
。加熱イミド化の場合、生成するポリイミドのガラス転
移温度以上に加熱することが望ましい。
In the present invention, even though polyimide is used, it is preferable to use a material that is not completely imidized from the viewpoint of adhesive properties. The polyimide precursor film can be obtained by applying a polyimide precursor solution uniformly by lath spin coating or the like, and drying preferably at a temperature in the range of about 50 to 250C. When using a polyimide precursor, after removing the mask, it is desirable to heat it to a high temperature to convert it into polyimide or to immerse it in an imidizing agent solution to almost imidize it. In the case of thermal imidization, it is desirable to heat the polyimide to a temperature higher than the glass transition temperature of the polyimide to be produced.

本発明において、ジアミン成分に直線上のコンホメーシ
ョンを有する物を用い、ナトラカルボン酸にピロメリト
酸誘導体、ビフェニルテトラカルボン酸誘導体を使用す
ると、ロッドライク状のポリイミドが得られ、それらは
低熱膨張性になる。
In the present invention, when a diamine component having a linear conformation is used and a pyromellitic acid derivative or a biphenyltetracarboxylic acid derivative is used as the natracarboxylic acid, a rod-like polyimide is obtained, and they have a low thermal expansion property. become.

本発明において、あらかじめフィルムを形成した後、そ
の上に導体膜を形成しても良いが、あらかじめ金属箔な
どの導体の上にワニスを塗布し、硬化後導体をパターン
形成する方法も可能である。
In the present invention, it is possible to form a film in advance and then form a conductor film thereon, but it is also possible to apply varnish on a conductor such as metal foil in advance and form a pattern on the conductor after curing. .

粉の場合、ポリイミドと種々の基材との接着性が間租に
なる。無機材質の表面を粗化したシ、シランカップリン
グ剤、チタネートカップリング剤、アルミアルコレート
、アルミニウムキレート、ジルコニウムキレート、アル
ミニウムアセチルアセトンなどにより表面処理すること
が好ましい。また、これらの表面処理剤をポリイミド中
に添加しても良い。
In the case of powder, the adhesion between polyimide and various substrates is reduced. It is preferable that the surface of the inorganic material be treated with a roughened material, a silane coupling agent, a titanate coupling agent, an aluminum alcoholate, an aluminum chelate, a zirconium chelate, an aluminum acetylacetone, or the like. Further, these surface treating agents may be added to the polyimide.

本発明において、より熱膨張係数を下げたり、弾性率を
上げたり、流動性をコントロールいりするために、無機
質、有機質、又は、金属などの粉末、繊維、チョップト
ストランドなどを混合することもできる。
In the present invention, inorganic, organic, or metal powders, fibers, chopped strands, etc. may be mixed in order to further lower the thermal expansion coefficient, increase the elastic modulus, and control fluidity. .

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 p−フ二二レンジアミン(p−PDA)と4.4′−ジ
アミノジフエニルエーテル(DDIC)及び5 、3’
、 4 、4’−ビフェニルテトラカルボン酸二無水物
(s −BPDa )を下記の配合割合で、N−メチル
−2−ピロリドン(NMP)中で室温で反応させ、高粘
度のポリアミック酸を、得友。更に、25Cでの粘度が
50Pになるまで80〜85Cの範囲で加熱かくはんし
、粘度(sap)と濃度(15%)がそろった6種類の
コポリアミック酸を得友。表1に示したように、JP6
2と5のワニスには微粒子状のアルミナ粉を添加し、熱
膨張係数の勾配領域が一目で判るようにした。
Example 1 p-phenyl diamine (p-PDA) and 4,4'-diaminodiphenyl ether (DDIC) and 5,3'
, 4,4'-biphenyltetracarboxylic dianhydride (s-BPDa) was reacted at room temperature in N-methyl-2-pyrrolidone (NMP) at the following blending ratio to obtain a high viscosity polyamic acid. friend. Furthermore, the mixture was heated and stirred at a temperature of 80 to 85C until the viscosity at 25C reached 50P, yielding 6 types of copolyamic acids with uniform viscosity (sap) and concentration (15%). As shown in Table 1, JP6
Fine particle alumina powder was added to varnishes 2 and 5 so that the gradient region of the coefficient of thermal expansion could be seen at a glance.

表   1 各ポリアミック酸を第2図に示すような塗布ノズル付き
ワニス容器に入れガラス板上に塗布し次。
Table 1 Each polyamic acid was placed in a varnish container equipped with a coating nozzle as shown in Figure 2 and coated on a glass plate.

塗布厚みは硬化後約50μm になるように調節し次。The coating thickness was adjusted to approximately 50 μm after curing.

100C/1hで乾燥した後、ガラス板からはがし、鉄
枠で固定した後100Cから400Cまで2時間で昇温
し、更に400Cで30分間保持してから室温に冷却し
て、所望の熱膨張係数分布型フィルムを得た。得られた
フィルムの幅方向の熱膨張係数の分布は、第3図の通り
である。
After drying at 100C/1h, it was removed from the glass plate, fixed with an iron frame, heated from 100C to 400C in 2 hours, held at 400C for 30 minutes, and then cooled to room temperature to obtain the desired coefficient of thermal expansion. A distributed film was obtained. The distribution of the thermal expansion coefficient in the width direction of the obtained film is as shown in FIG.

すなわち第3図は、実施例1で作製し次フィルムの熱膨
張係数の分布の測定結果を、フィルム幅方向の寸法(W
I11横軸)と熱膨張係数(X 10−5に−1、縦軸
)との関係で示したグラフである。
That is, FIG. 3 shows the measurement results of the distribution of the thermal expansion coefficient of the film produced in Example 1 in terms of the film width direction dimension (W
It is a graph showing the relationship between I11 (horizontal axis) and thermal expansion coefficient (X10-5 -1, vertical axis).

実施例2 4.4#−ジアミノターフェニル(DATP)と5−B
PDAとをモル比1:1でNMP中で実施例1と同様に
反応させポリアミック酸ワニス47を得ムま友、0^T
PとDDEとs −BPDAとを0.75 :0.25
 : 1.0のモル比で同様に反応させコポリアミック
酸A8を得た。
Example 2 4.4#-diaminoterphenyl (DATP) and 5-B
Polyamic acid varnish 47 was obtained by reacting with PDA in NMP at a molar ratio of 1:1 in the same manner as in Example 1.
P, DDE and s-BPDA: 0.75:0.25
: Copolyamic acid A8 was obtained by reacting in the same manner at a molar ratio of 1.0.

これらのポリアミック酸ワニスを下記表2の配合割合で
混合し、これらのうちA9と12にはカーボンブラック
を添加して黒く着色した。
These polyamic acid varnishes were mixed in the proportions shown in Table 2 below, and carbon black was added to A9 and A12 to color them black.

表   2 次いで、実施例1と同様にガラス板上に塗布ム乾燥硬化
して厚さ約50μm の熱膨張係数分布型フィルムを得
た。更にゴム分散型エポキシ接着剤を約15μm 厚に
塗布し銅箔を貼シ合せて100C/1hの条件で硬化し
、常法のホトリングラフィで銅箔をパターン形成して熱
膨張係数分布型フレキシブル回路板を得友。ここで得た
フレキシブル回路板を用いて、第4図に示す様に熱膨張
係数が3X10  K  のガラス基板の液晶ディスグ
レイと、熱膨張係数が15 X 10−’ K−’のガ
ラスエポキシプリント板の接続を行った。
Table 2 Next, in the same manner as in Example 1, the mixture was coated on a glass plate and dried and cured to obtain a thermal expansion coefficient distribution type film having a thickness of about 50 μm. Furthermore, a rubber-dispersed epoxy adhesive was applied to a thickness of approximately 15 μm, a copper foil was pasted, and the adhesive was cured at 100C/1h.The copper foil was patterned using conventional photolithography to create a thermal expansion coefficient distributed type flexible adhesive. Get the circuit board. Using the flexible circuit board obtained here, as shown in Fig. 4, a liquid crystal display gray on a glass substrate with a thermal expansion coefficient of 3 x 10 K and a glass epoxy printed board with a thermal expansion coefficient of 15 x 10-'K-' were fabricated. connection was made.

すなわち第4図は、実施例2で作製した液晶デイスプレ
ィの平面図である。第4図において、符号21は熱膨張
係数分布型フレキシブルフィルム、22は液晶デイスプ
レィ、23はガラスエポキシプリント板、24は接合部
を意味する。
That is, FIG. 4 is a plan view of the liquid crystal display manufactured in Example 2. In FIG. 4, reference numeral 21 indicates a thermal expansion coefficient distribution type flexible film, 22 indicates a liquid crystal display, 23 indicates a glass epoxy printed board, and 24 indicates a joint portion.

実施例3 実施例2のワニスを使って、表3に示した配合で中央部
が熱膨張係数が小さく両端が大きな熱膨張係数分布型フ
ィルムを得、更に銅箔を貼シフオドリングラフィで銅箔
をパターン化してフレキシブル回路板を得た。
Example 3 Using the varnish of Example 2 and the formulation shown in Table 3, a distributed thermal expansion film with a small coefficient of thermal expansion in the center and large at both ends was obtained, and a copper foil was further applied using sifodringraphy. The foil was patterned to obtain a flexible circuit board.

表  3 これを用いて第5図に示すように新規な半導体(7) 
ハラケージを得た。熱膨張係数のミスマツチが無く、高
信頼性のものであった。
Table 3 Using this, we can create a new semiconductor (7) as shown in Figure 5.
I got Hara Cage. There was no mismatch in the coefficient of thermal expansion, and it was highly reliable.

第5図は、実施例5で作製した半導体装置の断面図であ
シ、符号25は半導体チップ、26は熱膨張係数分布型
フレキシブル回路板、27けセラミック基板、28f′
i銅/ポリイミド高密度配線板、29けセラミックケー
ス、30はリードピン、31は半田を意味する。
FIG. 5 is a cross-sectional view of the semiconductor device manufactured in Example 5, in which reference numeral 25 is a semiconductor chip, 26 is a thermal expansion coefficient distributed type flexible circuit board, 27 is a ceramic substrate, and 28f'
i Copper/polyimide high-density wiring board, 29-piece ceramic case, 30 means lead pins, 31 means solder.

〔発明の効果〕〔Effect of the invention〕

本発明は、多くのIC,f、SI等の半導体素子、高密
度配線板、ガラスエポキシプリント板、感熱ヘッド用配
線基板、液晶表示素子用基板など多くの熱膨張係数の異
なるエレクトロニクス用量AI基板の接合に極めて好都
合なものである。
The present invention is applicable to many electronics substrates with different coefficients of thermal expansion, such as semiconductor devices such as IC, f, and SI, high-density wiring boards, glass epoxy printed boards, wiring boards for thermal heads, and substrates for liquid crystal display elements. It is extremely convenient for joining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱膨張係数分布型フィルムの構成の1
例を示す斜視図、第2図は本発明方法で使用するワニス
塗布装置の1例を下から見た斜視図、第3図は本発明の
実施例1で作製したフィルムの熱膨張係数の分布の測定
結果を示すグラフ、第4図は本発明の実施例2で作製し
fc液晶デイスプレィの平面図、第5図は本発明の実施
例3で作製した半導体装置の断面図である。 1:フィルムの低熱膨張領域、2:熱膨張係数変化領域
、3:フィルムの高熱膨張領域、4:ワニスタンク、5
:低熱膨張ポリイミド前駆体用ノズル、6〜9:中間熱
膨張ポリイミド前駆体用ノズル、10:高熱膨張ポリイ
ミド前駆体用ノズル、11:膜厚コントロール用ギャッ
プ、21:熱膨張係数分布型フレキシブルフィルム、2
2:i晶デイスプレィ、23ニガラスエポキシプリント
板、25:半導体チップ、26:熱膨張係数分布型フレ
キシブル回路板、27:セラミック基板、28:銅/ポ
リイミド高密度配線板 特許出願人 株式会社 日立製作所 間    日立化成工業株式会社
Figure 1 shows one of the configurations of the distributed thermal expansion coefficient film of the present invention.
A perspective view showing an example, FIG. 2 is a perspective view of an example of a varnish coating device used in the method of the present invention, viewed from below, and FIG. 3 is a distribution of the coefficient of thermal expansion of the film produced in Example 1 of the present invention. FIG. 4 is a plan view of an FC liquid crystal display manufactured in Example 2 of the present invention, and FIG. 5 is a cross-sectional view of a semiconductor device manufactured in Example 3 of the present invention. 1: Low thermal expansion region of the film, 2: Thermal expansion coefficient changing region, 3: High thermal expansion region of the film, 4: Varnish tank, 5
: Nozzle for low thermal expansion polyimide precursor, 6 to 9: Nozzle for intermediate thermal expansion polyimide precursor, 10: Nozzle for high thermal expansion polyimide precursor, 11: Gap for film thickness control, 21: Thermal expansion coefficient distribution type flexible film, 2
2: i-crystal display, 23 glass epoxy printed board, 25: semiconductor chip, 26: thermal expansion coefficient distribution type flexible circuit board, 27: ceramic substrate, 28: copper/polyimide high-density wiring board Patent applicant Hitachi, Ltd. between Hitachi Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 1.面方向に熱膨張係数の異なるポリマーを順次配列さ
せたことを特徴とする熱膨張係数分布型フイルム。
1. A thermal expansion coefficient distribution film characterized by sequentially arranging polymers with different thermal expansion coefficients in the plane direction.
2.該各熱膨張係数の異なる部分に異なつた色を着色し
た請求項1記載の熱膨張係数分布型フイルム。
2. 2. The thermal expansion coefficient distribution type film according to claim 1, wherein the portions having different thermal expansion coefficients are colored with different colors.
3.熱膨張係数の異なるポリイミドを与える前駆体ワニ
スを互いに接触するように基板上に塗布し、熱又は化学
的にイミド化することによつて、形成することを特徴と
する請求項1記載の熱膨張係数分布型フイルムの製造方
法。
3. Thermal expansion according to claim 1, characterized in that it is formed by applying precursor varnishes that provide polyimides with different coefficients of thermal expansion onto the substrate so as to be in contact with each other, and thermally or chemically imidizing the substrates. A method for producing a coefficient distribution film.
JP63035016A 1988-02-19 1988-02-19 Novel film having distribution in coefficient of thermal expansion and its production Pending JPH01210430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035016A JPH01210430A (en) 1988-02-19 1988-02-19 Novel film having distribution in coefficient of thermal expansion and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035016A JPH01210430A (en) 1988-02-19 1988-02-19 Novel film having distribution in coefficient of thermal expansion and its production

Publications (1)

Publication Number Publication Date
JPH01210430A true JPH01210430A (en) 1989-08-24

Family

ID=12430273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035016A Pending JPH01210430A (en) 1988-02-19 1988-02-19 Novel film having distribution in coefficient of thermal expansion and its production

Country Status (1)

Country Link
JP (1) JPH01210430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130124A (en) * 1989-07-17 1991-06-03 Mitsui Toatsu Chem Inc Manufacture of polyimide film
US20120228004A1 (en) * 2011-03-09 2012-09-13 Lextar Electronics Corporation Carrier structure and manufacturing method thereof
JP2016079223A (en) * 2014-10-10 2016-05-16 日産化学工業株式会社 Composition for forming thin resin film and thin resin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130124A (en) * 1989-07-17 1991-06-03 Mitsui Toatsu Chem Inc Manufacture of polyimide film
US20120228004A1 (en) * 2011-03-09 2012-09-13 Lextar Electronics Corporation Carrier structure and manufacturing method thereof
CN102683295A (en) * 2011-03-09 2012-09-19 隆达电子股份有限公司 Carrier plate structure and manufacturing method thereof
US8845835B2 (en) * 2011-03-09 2014-09-30 Lextar Electronics Corporation Carrier structure and manufacturing method thereof
JP2016079223A (en) * 2014-10-10 2016-05-16 日産化学工業株式会社 Composition for forming thin resin film and thin resin film

Similar Documents

Publication Publication Date Title
US4792476A (en) Low thermal expansion resin material and composite shaped article
JPS6160725A (en) Low-thermal expansion resin and composite molding
JPH04262593A (en) Multilayer interconnection structure and multilayers laminating method therefor
US5707749A (en) Method for producing thin film multilayer wiring board
JPS60250031A (en) Low-thermal expansion resin material
KR920008946B1 (en) Flexible printed circuit board and process for its production
US5133989A (en) Process for producing metal-polyimide composite article
WO2000041884A1 (en) Composite film
JPS60157286A (en) Flexible printed board and method of producing same
US5686191A (en) Thin film wiring board
JPH02115265A (en) Heat-resistant film and its laminate
JP2987820B2 (en) Polyimide multilayer film and method of manufacturing the same
JPH01210430A (en) Novel film having distribution in coefficient of thermal expansion and its production
JPS62236732A (en) Manufacture of substrate for flexible printed circuit
JPS62253621A (en) Polyimide resin
JPS63264632A (en) Low-thermal expansion resin
JPH0245998A (en) Thin film multilayer wiring substrate
JPH0436321A (en) Polyimidesiloxane and composition containing the same
JP2730652B2 (en) Protective coating-coated wiring member and its manufacturing method
JPH02251584A (en) Heterocyclic ring-containing polyimide composite
JPS63170420A (en) Molded article of colorless transparent polyimide and production thereof
JPH11220248A (en) Flexible wiring board with bending part and protection paint film material
JPS6044338A (en) Composite molding
JPH01225540A (en) Novel coefficient of thermal expansion distribution type film
JPS61181828A (en) Low-thermal expansion resin material