JPH0121040B2 - - Google Patents

Info

Publication number
JPH0121040B2
JPH0121040B2 JP58095540A JP9554083A JPH0121040B2 JP H0121040 B2 JPH0121040 B2 JP H0121040B2 JP 58095540 A JP58095540 A JP 58095540A JP 9554083 A JP9554083 A JP 9554083A JP H0121040 B2 JPH0121040 B2 JP H0121040B2
Authority
JP
Japan
Prior art keywords
satellite
panel
solar
deployable
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58095540A
Other languages
Japanese (ja)
Other versions
JPS59220499A (en
Inventor
Kyoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58095540A priority Critical patent/JPS59220499A/en
Publication of JPS59220499A publication Critical patent/JPS59220499A/en
Publication of JPH0121040B2 publication Critical patent/JPH0121040B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は展開式太陽電池パネルを有するトリプ
ルスピン衛星、特に通常のスピン型衛星の外被太
陽電池パネルを展開式としかつ太陽指向させ、こ
れによつて大電力の発生が可能で熱的にも安定な
放熱帯を有するようにしたトリプルスピン衛星に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to triple spin satellites having deployable solar panels, and in particular, to making the envelope solar panels of conventional spin satellites deployable and sun-oriented, thereby generating large amounts of electrical power. The present invention relates to a triple-spin satellite that has a thermally stable radiation zone.

従来のスピン衛星は、第1図に示す如く、スピ
ンする太陽電池パネル3と、地球指向するアンテ
ナ1と、アンテナを支持するデスパン部2とから
構成されている。しかしこの型式の衛星では太陽
電池パネル3がスピンすることから、パネルに貼
り付けた太陽電池が効率よく常時動作するという
わけにはいかず、太陽光の投影部のみの割合でし
か電力の発生がなく大電力の対応には不向きであ
つた。又、熱制御を太陽電池パネル面を利用して
行なうため、太陽光入射のない日食時には、太陽
電池パネル面の温度低下が著しく衛星内搭載機器
の熱制御を複雑にしていた。
A conventional spin satellite, as shown in FIG. 1, is composed of a spinning solar panel 3, an antenna 1 pointing toward the earth, and a despan section 2 that supports the antenna. However, in this type of satellite, the solar panel 3 spins, so the solar cells attached to the panel cannot operate efficiently all the time, and electricity is generated only from the portion where sunlight is projected. It was unsuitable for handling large amounts of electricity. In addition, since thermal control is performed using the solar panel surface, during a solar eclipse without sunlight, the temperature of the solar panel surface drops significantly, complicating the thermal control of the on-board equipment in the satellite.

上記欠点を除去するために、第2図に示すよう
に二重の太陽電池パネル3,4を設け、その外パ
ネル4が下方に伸展する構造としたものが知られ
ているが、太陽電池パネルが第1図と同様にスピ
ンするため、太陽電池の電力発生効率は悪く、衛
星の大型化に比して発生電力は少なかつた。又第
1図同様衛星の熱制御を太陽電池パネル面3およ
び放熱帯5により行うため、太陽光入射のない日
食時の太陽電池パネルおよび放熱帯の温度低下が
著しく、衛星内搭載機器の熱制御を複雑にしてい
た。
In order to eliminate the above-mentioned drawbacks, a structure is known in which double solar cell panels 3 and 4 are provided as shown in FIG. 2, and the outer panel 4 extends downward. Because the satellite spins as shown in Figure 1, the power generation efficiency of the solar cells is poor, and the amount of power generated is small compared to the larger size of the satellite. Also, as in Figure 1, the satellite's heat is controlled by the solar panel surface 3 and the radiation zone 5, so the temperature of the solar panel and the radiation zone decreases significantly during a solar eclipse when there is no sunlight, and the heat of the equipment onboard the satellite decreases significantly. This made control complicated.

第3図は、上記の電力的欠点を除去したスピン
衛星の例である。これは衛星外被の太陽電池パネ
ル3の他に太陽指向する展開式太陽電池パドル7
を備えたものである。このタイプの衛星は、太陽
電池パネル3および放熱帯5から成る衛星本体部
がスピンし、アンテナ1およびデスパン部2から
成るアンテナ部がデスパンしかつ地球指向し、ま
た太陽電池パドル部6および7がデスパンしかつ
太陽指向するというトリプルスピンタイプであ
る。衛星が展開式パドルを有することにより、大
電力の得られるスピン衛星が実現される。しか
し、前記同様、衛星の熱制御を太陽電池パネル3
および放熱帯5で行なうため、太陽光入射のない
日食時の熱制御が複雑であつた。又、円筒形の衛
星形状に対し太陽電池パドル7は長方形形状のた
め、衛星打上げ時のロケツトフエアリング内搭載
の実装効率が悪く、衛星本体の大型化には不向き
であつた。
FIG. 3 is an example of a spin satellite that eliminates the above-mentioned power disadvantage. In addition to the solar panel 3 on the satellite envelope, there is also a sun-oriented deployable solar array paddle 7.
It is equipped with the following. In this type of satellite, the satellite main body consisting of a solar panel 3 and a radiation zone 5 spins, the antenna section consisting of an antenna 1 and a despan section 2 despans and points towards the earth, and the solar cell paddle sections 6 and 7 spin. It is a triple spin type that despans and points toward the sun. By having the satellite with a deployable paddle, a spinning satellite that can obtain high power is realized. However, similar to the above, the satellite's thermal control is carried out by the solar panel 3.
Since the solar eclipse is carried out in the radiation zone 5, heat control during a solar eclipse when no sunlight is incident is complicated. Furthermore, since the solar battery paddle 7 has a rectangular shape in contrast to the cylindrical shape of the satellite, mounting efficiency in the rocket fairing at the time of satellite launch is poor, and it is not suitable for increasing the size of the satellite body.

本発明は、上述した第1図、第2図に示すタイ
プのスピン衛星の電力発生効率の悪さすなわち大
電力が得られない点および日食時の熱制御の複雑
性、さらに第3図に示すタイプのスピン衛星の日
食時における熱制御の複雑性およびロケツトフエ
アリング内搭載時の実装効率の悪さを除去し、衛
衛星本体に取り付けられる太陽電池パネルを展開
式としかつ太陽指向制御形としたトリプルスピン
衛星を提供することを目的とするものである。
The present invention addresses the inefficiency of power generation, that is, the inability to obtain large amounts of power, of the spin satellites of the type shown in FIGS. The complexity of heat control during solar eclipses on spin-type satellites and the inefficiency of implementation when mounted inside the rocket fairing have been eliminated, and the solar panel attached to the satellite body has been made deployable and solar pointing control type. The purpose is to provide a triple spin satellite.

本発明によるトリプルスピン衛星は、スピン型
衛星の展開式太陽電池パネルを、複数枚の矩形パ
ネルを一方向に蝶番連結して構成し、パネル展開
しないときは前記太陽電池パネルが衛星本体の側
面全体を覆い、パネル展開したときは全体として
大形の長尺矩形形状となるように蝶番開閉による
展開式構造とし、かつ太陽指向制御形とし、パネ
ル展開時に前記展開式太陽電池パネルが前記衛星
本体への太陽光入射を遮へいするように該太陽電
池パネルの1つの矩形パネル部分を衛星デスパン
部に支持棒を介して取り付けて成るものである。
In the triple spin satellite according to the present invention, the deployable solar panel of the spin satellite is constructed by connecting a plurality of rectangular panels with hinges in one direction, and when the panel is not deployed, the solar panel covers the entire side surface of the satellite body. It has a deployable structure that opens and closes on hinges so that when the panel is deployed, it has a large elongated rectangular shape as a whole, and it is of a sun pointing control type, and when the panel is deployed, the deployable solar panel is attached to the satellite main body. One rectangular panel portion of the solar cell panel is attached to the satellite despan section via a support rod so as to block sunlight from entering the solar cell panel.

以下、本発明を実施例について図面を参照して
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments with reference to the drawings.

第4図は、本発明の実施例であつて太陽電池パ
ネルの展開時の状態を示したものである。1は地
球指向アンテナ、2はアンテナを支持するデスパ
ン部、5は放熱帯、8は展開式太陽電池パネルで
ある。この様に衛星本体に取り付けられた太陽電
池パネルが展開し、太陽指向するため、従来のス
ピン衛星では得られなかつた大電力(同形状の衛
星の約3倍)が得られる。又展開した太陽電池パ
ネル8により衛星本体部への太陽光入射を遮断す
るため日照、日食に関係なく安定した放熱帯が得
られ、衛星の熱制御が容易となる。
FIG. 4 is an embodiment of the present invention, and shows the state of the solar cell panel when it is expanded. 1 is an earth-oriented antenna, 2 is a despan part that supports the antenna, 5 is a radiation zone, and 8 is a deployable solar cell panel. In this way, the solar panel attached to the satellite body expands and points towards the sun, making it possible to obtain a large amount of power (approximately three times that of a satellite of the same shape) that could not be obtained with conventional spin satellites. Furthermore, since the deployed solar panel 8 blocks sunlight from entering the satellite main body, a stable radiation zone can be obtained regardless of sunlight or eclipse, making it easier to control the satellite's heat.

第5図は本発明に係る衛星の縦断面であり、6
は展開式太陽電池パネル8を支持する衛星デスパ
ン部である。
FIG. 5 is a longitudinal section of a satellite according to the present invention, and 6
is a satellite despan section that supports the deployable solar panel 8.

第6図は、展開式太陽電池パネルが展開される
前の状態を示したものである。衛星打ち上げより
静止軌道に至るまでの間にトランスフア軌道およ
びドリフト軌道がある。前記二軌道においては、
衛星は第6図の状態にある。トランスフアおよび
ドリフト軌道においての衛星の内部発熱は少な
く、衛星は低温化の傾向にあるが、本発明の衛星
においては衛星放熱帯の外側を太陽電池パネル8
が覆つているため衛星の低温化が防止できる利点
を有している。第7図は第6図を下方から見た図
であり、12は太陽電池パネルの各矩形パネル間
の蝶番および展開機構、9は下部サーマルバリ
ア、10は太陽電池パネル8とデスパン部6の支
持棒、11はAKM(アポジ・キツク・モータ)
ノズルを示している。太陽電池パネル展開時には
同図中のA方向に太陽電池パネルが展開して第4
図の状態になる。
FIG. 6 shows the state of the expandable solar cell panel before it is expanded. There are transfer orbits and drift orbits between satellite launch and geostationary orbit. In the two orbits,
The satellite is in the state shown in Figure 6. In the transfer and drift orbits, the internal heat generation of the satellite is small, and the satellite tends to become cooler.
This has the advantage of preventing the satellite from becoming too cold. FIG. 7 is a view of FIG. 6 from below, with reference numeral 12 the hinge and expansion mechanism between each rectangular panel of the solar cell panel, 9 the lower thermal barrier, and 10 the support for the solar cell panel 8 and the despan section 6. Rod, 11 is AKM (Apogee Kitsuku Motor)
Showing the nozzle. When the solar battery panel is deployed, the solar battery panel is deployed in the A direction in the same figure, and the fourth
It will be in the state shown in the figure.

以上説明した様に、本発明ではスピン型衛星の
本体に取り付けられる太陽電池パネルを展開式と
し、太陽指向制御としたことにより以下に示す利
点がある。
As explained above, in the present invention, the solar cell panel attached to the main body of the spin-type satellite is of an expandable type, and solar pointing control is performed, thereby providing the following advantages.

(イ) 同形状の従来型のスピン衛星に比べて約3倍
の電力が得られる。
(b) Approximately three times more power can be obtained compared to conventional spin satellites of the same shape.

(ロ) 展開式太陽電池パネルにより衛星本体部への
太陽光入射が遮られるため、日照、日陰に関係
なく衛星熱制御のための安定した放熱帯が得ら
れる。
(b) Since the deployable solar panel blocks sunlight from entering the satellite body, a stable radiation area for satellite heat control can be obtained regardless of sunlight or shade.

(ハ) 展開前の展開式太陽電池パネルは多角柱形状
をしているため、ロケツトフエアリング内への
実装効率が良い。
(c) Since the deployable solar panel before being deployed has a polygonal column shape, it is efficient to mount inside the rocket fairing.

(ニ) 衛星内部発熱の少ない打上げ時には、放熱帯
を展開式太陽電池パネルが覆つているため、衛
星の低温化を防止できる。
(iv) During launch, the heat generation inside the satellite is small.Due to the deployable solar panel covering the radiation zone, the temperature of the satellite can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のデユアルスピン衛星の概略斜視
図、第2図は二重太陽電池パネルを持つデユアル
スピン衛星の斜視図、第3図は展開式太陽電池パ
ドルを持つトリプルスピン衛星の斜視図、第4図
は本発明の実施例に係る展開式太陽電池パネルを
持つトリプルスピン衛星の斜視図、第5図は第4
図に示すトリプルスピン衛星の縦断面図、第6図
は展開式太陽電池パネルの展開前の状態を示した
外観斜視図、第7図は第6図の一部裁断した拡大
底面図である。 1……地球指向アンテナ、2……同アンテナ支
持デスパン部、3……太陽電池パネル、4……下
方へ伸展する太陽電池パネル、5……放熱帯、6
……衛星デスパン部、7……展開式太陽電池パド
ル、8……展開式太陽電池パネル、9……下部サ
ーマルバリア、10……支持棒、11……AKM
(アポジ・キツク・モータ)ノズル、12……蝶
番および展開機構。
Figure 1 is a schematic perspective view of a conventional dual-spin satellite, Figure 2 is a perspective view of a dual-spin satellite with dual solar panels, Figure 3 is a perspective view of a triple-spin satellite with deployable solar array paddles, FIG. 4 is a perspective view of a triple spin satellite with a deployable solar panel according to an embodiment of the present invention, and FIG.
FIG. 6 is a vertical cross-sectional view of the triple spin satellite shown in the figure, FIG. 6 is an external perspective view showing the state of the deployable solar cell panel before deployment, and FIG. 7 is an enlarged bottom view with a portion of FIG. 6 cut away. DESCRIPTION OF SYMBOLS 1...Earth-oriented antenna, 2...Antenna support despan section, 3...Solar battery panel, 4...Solar battery panel extending downward, 5...Radiating zone, 6
... Satellite despan section, 7 ... Deployable solar battery paddle, 8 ... Deployable solar battery panel, 9 ... Lower thermal barrier, 10 ... Support rod, 11 ... AKM
(Apogee kick motor) nozzle, 12...hinge and deployment mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 スピン型衛星の展開式太陽電池パネルを、複
数枚の矩形パネルを一方向に蝶番連結して構成
し、パネル展開しないときは前記太陽電池パネル
が衛星本体の側面全体を覆い、パネル展開したと
きは全体として大形の長尺矩形形状となるように
蝶番開閉による展開式構造とし、かつ太陽指向制
御形とし、パネル展開時に前記展開式太陽電池パ
ネルが前記衛星本体への太陽光入射を遮へいする
ように該太陽電池パネルの1つの矩形パネル部分
を衛星デスパン部に支持棒を介して取り付けたこ
とを特徴とする長尺形展開式太陽電池パネルを有
するトリプルスピン衛星。
1. The deployable solar panel of a spin-type satellite is constructed by connecting multiple rectangular panels with hinges in one direction, and when the panel is not deployed, the solar battery panel covers the entire side of the satellite body, and when the panel is deployed. has a deployable structure that opens and closes on hinges so that it has a large elongated rectangular shape as a whole, and is of a solar orientation control type, and when the panel is deployed, the deployable solar panel blocks sunlight from entering the satellite body. A triple spin satellite having an elongated deployable solar cell panel, characterized in that one rectangular panel portion of the solar cell panel is attached to a satellite despan section via a support rod.
JP58095540A 1983-05-30 1983-05-30 Triple spin satellite with expansion type solar cell panel Granted JPS59220499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58095540A JPS59220499A (en) 1983-05-30 1983-05-30 Triple spin satellite with expansion type solar cell panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58095540A JPS59220499A (en) 1983-05-30 1983-05-30 Triple spin satellite with expansion type solar cell panel

Publications (2)

Publication Number Publication Date
JPS59220499A JPS59220499A (en) 1984-12-11
JPH0121040B2 true JPH0121040B2 (en) 1989-04-19

Family

ID=14140393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58095540A Granted JPS59220499A (en) 1983-05-30 1983-05-30 Triple spin satellite with expansion type solar cell panel

Country Status (1)

Country Link
JP (1) JPS59220499A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820600A (en) * 1981-07-29 1983-02-07 三菱電機株式会社 Artificial satellite
JPS59186799A (en) * 1983-04-07 1984-10-23 森 敬 Solar ray collector in spacecraft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820600A (en) * 1981-07-29 1983-02-07 三菱電機株式会社 Artificial satellite
JPS59186799A (en) * 1983-04-07 1984-10-23 森 敬 Solar ray collector in spacecraft

Also Published As

Publication number Publication date
JPS59220499A (en) 1984-12-11

Similar Documents

Publication Publication Date Title
US6102339A (en) Sun-synchronous sun ray blocking device for use in a spacecraft having a directionally controlled main body
US5927654A (en) Spacecraft with active antenna array protected against temperature extremes
US6194790B1 (en) Solar sail for power generation
US5527001A (en) Modular communication satellite
JP4308478B2 (en) Deployable spacecraft radiator
JP6643224B2 (en) Spacecraft and thermal control system and thermal control panel
US3735942A (en) Space station with solar generators
US5459996A (en) Hybrid solar rocket utilizing thermal storage for propulsion and electrical power
US6284966B1 (en) Power sphere nanosatellite
JPS6022600A (en) Despun platform type spin satellite
US6318674B1 (en) Power sphere deployment method
US6429368B1 (en) Shortened solar cell array
US20020134423A1 (en) Membrane-based solar array structures for spacecraft
Stella et al. Design and performance of the MER (Mars Exploration Rovers) solar arrays
JPH0121040B2 (en)
JP2701778B2 (en) Rocket fairing for solar cell paddle
JP2973996B2 (en) Spacecraft power recovery structure
US6098930A (en) Solid-state spacecraft with minimal moving parts
Keigler RCA Satcom: An example of weight optimized satellite design for maximum communications capacity
JPH05147596A (en) Three axis communication/broadcasting satellite
JP2003276699A (en) Artificial satellite
JPH0351640B2 (en)
Simburger et al. Multifunctional structures for the PowerSphere concept
MARTIN et al. LOCSTAR solar array
JPH02274699A (en) Extended structure