JPH01210022A - Reciprocating movement method and device for mixing plate in short tube - Google Patents

Reciprocating movement method and device for mixing plate in short tube

Info

Publication number
JPH01210022A
JPH01210022A JP63036630A JP3663088A JPH01210022A JP H01210022 A JPH01210022 A JP H01210022A JP 63036630 A JP63036630 A JP 63036630A JP 3663088 A JP3663088 A JP 3663088A JP H01210022 A JPH01210022 A JP H01210022A
Authority
JP
Japan
Prior art keywords
short tube
mixing plate
permanent magnet
mixing
shaped permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63036630A
Other languages
Japanese (ja)
Inventor
Masabumi Matsunaga
正文 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson KK
Original Assignee
Nordson KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson KK filed Critical Nordson KK
Priority to JP63036630A priority Critical patent/JPH01210022A/en
Publication of JPH01210022A publication Critical patent/JPH01210022A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/44Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement
    • B01F31/441Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement performing a rectilinear reciprocating movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/453Magnetic mixers; Mixers with magnetically driven stirrers using supported or suspended stirring elements
    • B01F33/4531Magnetic mixers; Mixers with magnetically driven stirrers using supported or suspended stirring elements using an axis supported in several points for mounting the stirring element

Abstract

PURPOSE:To efficiently carry out mixing with a simple mounting structure by alternately reciprocally sliding a mixing plate integrated with a bar-shaped permanent magnet sliding forward and backward along a coaxial line in a short tube by means of changing magnetic poles of an electric magnet mounted on a short tube outer section. CONSTITUTION:A bar-shaped permanent magnet 2 reciprocatingly sliding on the axial line of a short tube 1 and of integral structure with a mixing plate 4 is drawn in one direction by magnetic attraction and repulsion generated by solenoid magnets 7A and 7A mounted on the outer side of said short tube 1 and hits stoppers 8A and 8B. The sliding direction of the bar-shaped permanent magnet 2 is reversed by switching over the direct current direction to the solenoid magnets 7A and 7B through pressure sensors 9A and 9B mounted on said stoppers and subsequently the direction is changed by hitting the following stoppers 8A and 8B. Such actions are repeated to reciprocatingly move the mixture plate 4 integrated with the bar-shaped permanent magnet 2 and mix liquid L.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液体移送用配管上の短管内に設けられた混合板
を往復作動させて液体を混合する方法とその装置に係る
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for mixing liquids by reciprocating a mixing plate provided in a short pipe on a liquid transfer pipe.

[従来の技術] 液体移送用配管の短管内に液体の流れに対する抵抗板な
どを設けて液体を混合するいわゆる静的混合方法という
のは巳に公知であり、その−例を第14図に示す、これ
らは非常に簡単で、しかも移送配管途上でも混合が行な
えるという点では大きなメリットがあり、ある種の液体
混合には利用されているが、混合効率の点では動的混合
方法に比べると非常に低く、一般に広く利用されてはい
ないというのが実情である。
[Prior Art] The so-called static mixing method, in which liquids are mixed by providing a resistance plate against the flow of liquid in a short pipe of a liquid transfer pipe, is well known, and an example thereof is shown in Fig. 14. These methods are very simple and have the great advantage of being able to perform mixing even in the middle of the transfer pipe, and are used for mixing some types of liquids, but in terms of mixing efficiency, they are less effective than dynamic mixing methods. The reality is that it is very low and not widely used.

元来、静的混合方法というのは、動的混合方法例えば槽
の中で撹拌糞などを回転して行なうものとは異り、前述
の如く機械的可動部が全くなく、従って構造簡単、設備
費低廉、保守簡易という大きな利点があった。しかし同
法において、混合作動に必要とされるエネルギは第14
図に見られるように混合される液体の流れそのものの運
動エネルギを利用するものであり、その流れに対し抵抗
を与えること、即ち層流を乱して乱流とすることによっ
て混合を行なうものである。その乱流を起こす抵抗力は
ほぼ流速の二乗に比例する故、混合効率も専ら流速に依
存するということになる。従って流速が変動した場合に
は混合効率も変動し、特に流速の低い場合には殆んど効
果がなくなるという致命的な問題があるのである。これ
が従来の静的混合方法の大きな欠点であった。
Originally, static mixing methods differed from dynamic mixing methods, such as rotating stirring excreta in a tank, as mentioned above, there were no mechanically moving parts, and therefore the structure was simple and the equipment was simple. It had the great advantages of low cost and easy maintenance. However, in the same law, the energy required for mixing operation is the 14th
As shown in the figure, it utilizes the kinetic energy of the flow of liquids being mixed, and mixes by providing resistance to the flow, that is, by disturbing the laminar flow and making it turbulent. be. Since the resistance force that causes turbulence is approximately proportional to the square of the flow velocity, it follows that the mixing efficiency also depends exclusively on the flow velocity. Therefore, when the flow rate fluctuates, the mixing efficiency also fluctuates, and there is a fatal problem that the mixing efficiency becomes almost ineffective especially when the flow rate is low. This was a major drawback of conventional static mixing methods.

[解決しようとする間厘点] 上述の如く、静的混合方法における管内の液体の流速に
伴う混合効率の変動は同法における大きな問題点である
。此の問題を解決すると同時に静的混合方法の利点即ち
配管途上に簡単に取付けられること、そして又動的混合
方法の利点即ち動的番こ温合を行なうこと、ただし管外
よりの動力伝達のための管壁に対する貫通孔を設けるこ
となしに行なうこと、いうなれば第三の混合装置を実現
すること、これが本発明の動機であった。
[Disadvantages to be Solved] As mentioned above, variation in mixing efficiency due to the flow rate of liquid in the pipe in the static mixing method is a major problem in the method. At the same time as solving this problem, the advantage of the static mixing method is that it can be easily installed in the middle of the piping, and the advantage of the dynamic mixing method is that it performs dynamic temperature mixing, but it does not require power transmission from outside the pipe. The motive of the invention was to realize a third mixing device without having to make any through holes in the tube wall for this purpose.

[問題点を解決するための手段] 本発明の要旨は、液体移送用配管上の短管内の同軸線に
沿って前後に滑動する棒状永久磁石と一体となっている
混合板を、該短管の外部に設けた電磁石に対する電流方
向の切換即ち磁極の変換によって交互に往復滑動せしめ
、よって管内を流れる液体を混合せしめる方法とその装
置とである。
[Means for Solving the Problems] The gist of the present invention is to provide a mixing plate integrated with a rod-shaped permanent magnet that slides back and forth along a coaxial line inside a short pipe on a liquid transfer pipe. This is a method and apparatus for causing an electromagnet installed outside the tube to alternately slide back and forth by switching the direction of current, that is, changing the magnetic pole, thereby mixing the liquid flowing inside the tube.

先ず、上記方法を図面によって説明する。先ず、第1図
を参照されたい、短管(1)の軸線上を往復滑動し、混
合板(4)と一体構造となでている棒状永久磁石(2)
を、同短管の外側上に設けられたソレノイド磁石(7A
、7B)による磁気引力及び斥力によって一方向に引き
寄せ、ストッパ(8A又は8B)に打ち当て、そのスト
ッパ上に取付けられている感圧センサ(9A又は913
)を介して上記ソレノイド磁石への直流の電流方向を切
換え、それによって上記棒状永久磁石(2)の滑動方向
を反対とし、続いて又次のストッパに打ち当てて方向を
転換し、このような同じ作動を繰り返えして、棒状永久
磁石(2)と一体となっている混合板(4)を往復運動
させ、それによって短管(1)内に流れ入る液体(L)
を混合しつつ反対側より流出する方法である。
First, the above method will be explained with reference to the drawings. First, please refer to Fig. 1, there is a rod-shaped permanent magnet (2) that slides back and forth on the axis of the short tube (1) and is integrated with the mixing plate (4).
, a solenoid magnet (7A
, 7B) is pulled in one direction by magnetic attraction and repulsion, hits a stopper (8A or 8B), and the pressure-sensitive sensor (9A or 913
) to switch the direction of the direct current to the solenoid magnet, thereby reversing the sliding direction of the rod-shaped permanent magnet (2), and then striking the next stopper to change the direction, such that By repeating the same operation, the mixing plate (4) integrated with the rod-shaped permanent magnet (2) is reciprocated, thereby causing the liquid (L) to flow into the short tube (1).
This is a method in which the water flows out from the opposite side while mixing.

次に上記混合板の往復運動による混合作用について説明
する。その混合板としては、もっとも基本的な形状でで
ある円板型をとりあげる。第2図を参照されたい、短管
(1)の軸線上の棒状永久磁石(2)の外周上に取付け
られた混合板即ち円板(4)は、その付は根付近にある
必要とする隙間(C2)をあけ、また短管(1)の内壁
面との間にもある必要とする隙間(C1)のあけられた
ものである。
Next, the mixing effect due to the reciprocating movement of the mixing plate will be explained. As for the mixing board, we will take a disc type, which is the most basic shape. Refer to Figure 2. The mixing plate or disk (4) attached to the outer circumference of the rod-shaped permanent magnet (2) on the axis of the short tube (1) must have its base near the root. A gap (C2) is provided, and a necessary gap (C1) is also provided between the tube and the inner wall surface of the short tube (1).

次に第3図を参照されたい、液体移送配管上の短管(1
)内に配合された液体(L)が流入(F)してくる、混
合板(4)が液体の流れ方向(F)に逆らって(Dよ)
滑動すると、その流れ(F)は混合板(4)に打ち当た
り、内外の二方向(Fl、F2)に分かれる。外方向の
流れ(F□)は混合板(4)の外周縁上の間隙(C1)
に流れ込み(F3)、液体は外周縁に沿ってチューブ状
に広く拡散する。また内方向の流れ(F2)は混合板(
4)の付は根の間隙(C2)に流れ込み(F、)、同隙
間は比較的小さいので液体は集約される。
Next, please refer to Figure 3, the short pipe (1
) The liquid (L) mixed in the liquid flows in (F), and the mixing plate (4) moves against the flow direction (F) of the liquid (D).
When it slides, the flow (F) hits the mixing plate (4) and is divided into two directions (Fl, F2): inside and outside. The outward flow (F□) is caused by the gap (C1) on the outer edge of the mixing plate (4).
(F3), and the liquid widely diffuses into a tube shape along the outer periphery. Also, the inward flow (F2) is caused by the mixing plate (
4) flows into the root gap (C2) (F,), and since the gap is relatively small, the liquid is concentrated.

そして次の室(R2)に流れ込んで渦流(F5)となる
。ここで液体は混合される。そしてまたそれらは次の混
合板に打ち当たり、再び内外の二方向(Fl、 Ft)
に分かれ、前と同じくその外周縁部の間隙(C1)と付
は根の間隙(C2)に流れ込む、以降は上述の流れ(F
l、 F、)と同じく作動して拡散、集約、渦流となっ
て再混合される。これらの作動が混合板の枚数と同口数
行われるのである。
Then, it flows into the next chamber (R2) and becomes a vortex (F5). Here the liquids are mixed. Then, they hit the next mixing plate again, and again in two directions (Fl, Ft)
As before, the gap at the outer edge (C1) and the gap at the outer edge flow into the gap at the root (C2).
1, F,), it diffuses, aggregates, becomes a vortex, and is remixed. These operations are performed the same number as the number of mixing plates.

次に混合板(4)が上述と反対方向(D2)に移動する
場合を述べる。一般にD2の速度はFの速度よりも大で
ある。従って混合板(4)の間隙(C,、C,)に流れ
込む方向は上述とは全く逆となって混合作用が行われる
。若しD2の速度がFの速度よりも小なる場合には、前
述のDlにおけると同様の流れの挙動による混合が行わ
れる。
Next, a case where the mixing plate (4) moves in the opposite direction (D2) to that described above will be described. Generally, the speed of D2 is greater than the speed of F. Therefore, the direction of flowing into the gap (C,, C,) of the mixing plate (4) is completely opposite to that described above, and the mixing action is performed. If the velocity of D2 is less than the velocity of F, mixing occurs with the same flow behavior as at Dl described above.

D2 とFとの両速度が同一の場合には上述とは別な挙
動による混合が行われるが、その確率は実際的には極め
て低いのでその説明は省略する。
When the speeds of D2 and F are the same, mixing occurs in a different behavior than that described above, but since the probability of this is actually extremely low, its explanation will be omitted.

このようにして、混合板の往復作動の繰返しにより、液
体は効果的に混合されつつ管内を移動するのである。
In this manner, the liquid moves through the tube while being effectively mixed by the repeated reciprocating motion of the mixing plate.

次に上述の方法に基づく本発明の装置の構造について説
明する。第4図を参照されたい、短管(11)の軸線上
には、棒状永久磁石(12)が同長のスリーブ(13)
の中に収めら九、該スリーブの外周上には複数の混合@
(14)が溶接され、同スリーブ(13)はその長さよ
りそのストローク(S)を差し引いた長さの間隔をおい
て二個の滑動軸受(15A、15B)により支承される
。モして又、上記二個の滑動軸受(15A、15B)の
外方に向けて凡そ上記ストロークの間隔をおいて双方側
に、上記スリーブ(13)の滑動を制限するストッパ(
18A、18B)が設けられ、それらの内方の面には感
圧センサ(19A。
Next, the structure of the apparatus of the present invention based on the above method will be explained. Refer to FIG. 4. On the axis of the short tube (11), a rod-shaped permanent magnet (12) is attached to a sleeve (13) of the same length.
9, and on the outer periphery of the sleeve there are a plurality of mixed @
(14) is welded, and the sleeve (13) is supported by two sliding bearings (15A, 15B) at an interval equal to the length of the sleeve (13) minus its stroke (S). Moreover, stoppers (13) for restricting the sliding of the sleeve (13) are placed outwardly on both sides of the two sliding bearings (15A, 15B) at intervals of approximately the above-mentioned stroke.
18A, 18B) are provided, and pressure sensitive sensors (19A) are provided on their inner surfaces.

19B)が取付けられる。該ストッパ及び上記滑動軸受
(15A、z5n)には上記軸線方向に貫通孔(20A
19B) is attached. The stopper and the sliding bearing (15A, z5n) have a through hole (20A, z5n) in the axial direction.
.

20B及び16A、16B)があけられる、これらスト
ッパ(18A、18B)と上記滑動軸受(15A、15
B)との区間の部位にほぼ相当する短管(11)の外側
上にはソレノイド(17A、17B)が取付けられる。
20B and 16A, 16B), these stoppers (18A, 18B) and the sliding bearings (15A, 15
Solenoids (17A, 17B) are installed on the outside of the short pipe (11), which approximately corresponds to the section with B).

これらソレノイドは上記感圧センサ(19A、19B)
と共に直流方向切換スイッチ(22)に電気接続される
These solenoids are the pressure sensitive sensors (19A, 19B)
It is also electrically connected to a DC direction changeover switch (22).

[作用] 同じく第4図を参照されたい、先ず、同図に見られるよ
うに、棒状永久磁石(12)の位置は、そのN極が液体
”L”の流入側のストッパ(18A)に接触したとする
。その接触圧により感圧センサ(19A)は発信し、そ
れを直流方向切換スイッチ(22)が受信作動し、電源
直流の方向を切換え、それによって両側に設けられた上
流側(以下A側と称す)及び下流側 (以下B側と称す
)のソレノイド(17A、17B)の磁極は逆となる。
[Function] Also refer to Figure 4. First, as seen in the figure, the position of the rod-shaped permanent magnet (12) is such that its N pole contacts the stopper (18A) on the inflow side of liquid "L". Suppose we did. Due to the contact pressure, the pressure sensor (19A) emits a signal, which is received by the DC direction changeover switch (22), which switches the direction of the power supply DC. ) and the downstream side (hereinafter referred to as B side) the magnetic poles of the solenoids (17A, 17B) are opposite.

即ちA側のソレノイド(17A)は上流側がNa工に、
下流側がSalに、そして又、B側のソレノイド(17
B)の上流側がsb□に、下流側がNb、にとなる、す
ると、棒状永久磁石(12)のN極は上記Naユと反発
、Salに引き寄せられて下流方向へ、また棒状永久磁
石(12)のS極は上記Sb1と反発、Nb、に引き寄
せられてこれもまた下流方向へ、このようにして四つの
力が同時に作用して棒状永久磁石(12)は下流方向へ
と移動し、下流側のストッパ(18B)に打ち当たる、
するとその面上にある感圧センサ(19B)が発信し、
直流方向切換スイッチ(22)が作動して直流方向を逆
にする。すると、上記二個のソレノイド(17A、17
B)はまたそれらの磁極をA側は上記N a □からS
a、に、SalからNa2に、そしてB側はsb□から
Nb、に、Nb、からSb2にとなる。すると、上記棒
状永久磁石(12)のN極はSa2に引かれ、Na。
In other words, the A side solenoid (17A) has the upstream side connected to Na,
The downstream side is Sal, and also the B side solenoid (17
The upstream side of B) becomes sb□, and the downstream side becomes Nb.Then, the N pole of the rod-shaped permanent magnet (12) repels the above Na Yu, is attracted by Sal, and moves downstream, and the rod-shaped permanent magnet (12) ) is repelled by the above Sb1, and is attracted by Nb, which also moves downstream.In this way, the four forces act simultaneously, and the bar-shaped permanent magnet (12) moves downstream. Hits the side stopper (18B),
Then, the pressure sensor (19B) on that surface sends a message,
The DC direction changeover switch (22) is actuated to reverse the DC direction. Then, the above two solenoids (17A, 17
B) also has those magnetic poles on the A side from the above N a □ to S
a, from Sal to Na2, and on the B side from sb□ to Nb, from Nb to Sb2. Then, the N pole of the rod-shaped permanent magnet (12) is attracted to Sa2 and becomes Na.

と反発して上流方向へ、そしてまたそのS極は上記Nb
2に引かれ、Sb2に反発してこれも上流方向へ、四つ
の力が同時に作用して棒状永久磁石(12)は上流方向
に移動する。そしてまた、上流側のストッパ(18A)
に打ち当り、前述と同じ作動を再び繰返してまた下流方
向へ移動する。このようにして棒状永久磁石(12)は
、上流方向へと、そして下流方向へと交互に移動作動を
繰返すのである。
and moves upstream, and its S pole is the above Nb
The rod-shaped permanent magnet (12) is attracted by Sb2 and repulsed by Sb2, which also moves upstream. Four forces act simultaneously, and the rod-shaped permanent magnet (12) moves upstream. And also the upstream stopper (18A)
, and repeats the same operation as above and moves downstream again. In this way, the rod-shaped permanent magnet (12) repeats the movement operation alternately in the upstream direction and in the downstream direction.

なお、上述の説明ではストッパ上に取付けた感圧センサ
を介して棒状永久磁石を往復運動させたが、感圧センサ
を用いず、第4図上に仮想線で示したように、パルスコ
ントローラ(25)を用い、それよりある所要のサイク
ル信号を発信させ、それによって上記棒状永久磁石を往
復運動させることもできる。
In the above explanation, the bar-shaped permanent magnet was moved back and forth via a pressure-sensitive sensor mounted on the stopper, but instead of using a pressure-sensitive sensor, a pulse controller ( 25) can be used to generate a certain required cycle signal, thereby causing the bar-shaped permanent magnet to reciprocate.

前述の如く混合板(14)はスリーブ(13)を介して
棒状永久磁石(12)と一体化しているので、混合板(
14)も往復運動を繰返すことになる。それによって円
板状の混合板(14)は、前述の本発明の方法の項で説
明したように、Vi管(11)内を流れる液体を混合す
るのである。
As mentioned above, since the mixing plate (14) is integrated with the bar-shaped permanent magnet (12) via the sleeve (13), the mixing plate (
14) will also repeat the reciprocating motion. Thereby, the disc-shaped mixing plate (14) mixes the liquid flowing in the Vi pipe (11), as explained in the above section of the method of the present invention.

〔実施例〕〔Example〕

その1. 上述の説明にては、棒状永久磁石を往復作動
させるために、短管の外側両側にソレノイドを取付けた
が、本例にては、第7図に示すように、前記のソレノイ
ドの代わりに、それらの両磁極に相当する位置に、U字
型ソレノイド磁石(37A、37B)+7)N、S”t
[Mしたも(7)である。
Part 1. In the above explanation, solenoids were installed on both sides of the outside of the short tube in order to reciprocate the rod-shaped permanent magnet, but in this example, as shown in FIG. 7, instead of the solenoids, U-shaped solenoid magnets (37A, 37B) + 7)N, S”t are placed at positions corresponding to both magnetic poles.
[M is also (7).

−個のU字型ソレノイド磁石の両端における磁極は棒状
永久磁石の磁極と対向するように設けることが必要であ
る。またU字型ソレノイド磁石の数は複数とすれば、そ
の分、より大きな磁力の↑:)られることはいうまでも
ない、また、第8図に示すように、前述の一個のソレノ
イドの両磁極に相当する位置に即ち前述の両端における
ストロークする部位に一個ずつU字型ソレノイド磁石(
47A、47B)を置くこともできる。
- The magnetic poles at both ends of the U-shaped solenoid magnets must be provided so as to face the magnetic poles of the bar-shaped permanent magnet. It goes without saying that if there is a plurality of U-shaped solenoid magnets, the magnetic force will be greater. One U-shaped solenoid magnet (
47A, 47B) can also be placed.

それらの数は多い程よいことは前述と同様である。これ
らの作動も前述と同様であるにつき説明は省略する。
As mentioned above, the larger the number, the better. Since these operations are the same as those described above, explanations will be omitted.

その2. 第9図ご参照0円板状とした前述の混合板を
陣笠状とし、そのトップを上流方向に向けて取付けたも
のである0本例における混合板(44)は流れ方向に対
しては抵抗は円板状のものよりも小さく、逆流に対して
はそれよりも大となる。
Part 2. Refer to Fig. 9. The mixing plate (44) in this example has resistance to the flow direction.The mixing plate (44) in this example is made by making the aforementioned mixing plate shaped like a circular plate and attaching it with the top facing upstream. is smaller than the disc-shaped one, and larger for backflow.

従って混合板(44)の往復運動に際しては、流速と陣
笠の傾斜角度の設定により、往復とも同じ抵抗即ち同じ
混合効率を得ることができる。
Therefore, when the mixing plate (44) is reciprocated, the same resistance, that is, the same mixing efficiency can be obtained in both reciprocations by setting the flow velocity and the inclination angle of the campshade.

なお、粘度の比較的高い場合には第10図に示す如く混
合板(44)の外周部に切欠け(45)を設けてもよい
In addition, when the viscosity is relatively high, a notch (45) may be provided on the outer periphery of the mixing plate (44) as shown in FIG.

その3. 第11図及び第12図ご参照、比較的液体の
粘度の高い場合、そして往復とも抵抗をより小としたい
場合には、楕円形の混合板(54)を交互に傾斜させて
設ける。
Part 3. Refer to FIGS. 11 and 12, when the viscosity of the liquid is relatively high, and when it is desired to reduce the resistance in both directions, oval mixing plates (54) are provided so as to be tilted alternately.

その4. 第13図ご参照、矩形状の板の前後を180
度捩ったものを、90度角度を変えて直線上直列に繋い
だ型式の静的混合器は巳に公知である。
Part 4. Refer to Figure 13, the front and back of the rectangular plate is 180
Static mixers of the type that are twisted by 90 degrees and connected in series in a straight line are well known.

同法は管内を流れる液体を二分割しつつ、それを捩れ板
の数と同回数だけ細分割して混合して行く方法である。
This method divides the liquid flowing inside the pipe into two, subdivides it the same number of times as the number of twisting plates, and mixes it.

同方法は同断面内にては細分割による混合が行われるが
、流れの前後即ち縦方向における混合は不十分である。
In this method, mixing is performed by fine division within the same cross section, but mixing in the front and back of the flow, that is, in the longitudinal direction, is insufficient.

これを本発明の方法により前後に往復運動を与えること
により、流れの前後における混合も行うことができるの
である0本例における混合板の構造は上記捩れ板(64
,65,・・・)の前端及び後端の同軸上に、それぞれ
−本ずつの棒状永久磁石(67A、67B)が取付けら
れる。
By giving this back and forth reciprocating motion using the method of the present invention, it is possible to perform mixing before and after the flow.
, 65, . . ), one bar-shaped permanent magnet (67A, 67B) is attached coaxially to the front end and the rear end of the magnets.

[効果] 本発明の方法と装置によれば、同装置は従来の静的混合
装置と同様に液体移送配管状に取付けられ、かつ従来の
動的混合装置と同様な十分な混合効果が得られるもので
、更にシール部がなく、保守管理の手間を省き、経費の
軽減化に大きく寄与するものである。
[Effects] According to the method and device of the present invention, the device can be installed in a liquid transfer pipe like a conventional static mixing device, and can obtain sufficient mixing effects similar to a conventional dynamic mixing device. Moreover, there is no seal part, which saves the effort of maintenance and management, and greatly contributes to reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法説明図  第2図は同上図”A”
−”A”断面図  第3図は本発明による混合板の作用
の説明図  第4図は本発明の装置の構造の側断面図 
 第5図は同上図”B”−”B”断面図  第6図は同
上”C”−”Cn断面図  第7図は本発明の実施例そ
の1.側断面図  第8図は同上における類似例の側断
面図  第9図は実施例その2.における側断面同第1
0図は同上図の”E”−”E”断面図  第11図は実
施例その3.における側断面図  第12図は同上混合
板の平面図  第13図は実施例その4.における側面
図  第14図は従来の静的混合装置における一例の側
断面図 主要な符号の説明 1.11・・・・・・短管  2,12・・・・・・棒
状永久磁石4.14,44,54,64.65・・・・
・・混合板  5A、5B。 15A、15B・・・・・・滑動軸受   7A、7B
、17A。 17B・・・・・・ソレノイド  8A、8B、18A
、18B・・・・・・ストッパ  9A、9B、19A
、19B・・・・・・感圧センサ  10,22・・・
・・・直流方向切換スイッチCI、C,・・・・・・間
隙 ” F、F工、F2.F、、F、、F、、FGF。 ・・・・・・混合液体の流れ 特許庁長官    小 川  邦 夫 殿1.事件の表
示  昭和63年 特 許 願 第36630号2、発
明の名称  餐餐阿のMWMをWTi7i’bさせるH
とそのMFtt3、補正をする者 事件との関係  特許出願人
Fig. 1 is an explanatory diagram of the method of the present invention Fig. 2 is the same as above “A”
- "A" sectional view Figure 3 is an explanatory diagram of the function of the mixing plate according to the present invention. Figure 4 is a side sectional view of the structure of the device according to the present invention.
Figure 5 is a cross-sectional view taken along lines "B" and "B" as above. Figure 6 is a cross section taken along lines "C" and "Cn" as shown above. Figure 7 is a side sectional view of embodiment 1 of the present invention. Figure 9 is a side cross-sectional view of Example 2.
Figure 0 is an "E"-"E" sectional view of the same figure as above. Figure 11 is Example 3. FIG. 12 is a plan view of the same mixing plate as above. FIG. 13 is a side sectional view of the fourth embodiment. Fig. 14 is a side sectional view of an example of a conventional static mixing device. Explanation of main symbols 1.11... Short tube 2, 12... Bar-shaped permanent magnet 4.14 ,44,54,64.65...
...Mixing board 5A, 5B. 15A, 15B...Sliding bearing 7A, 7B
, 17A. 17B...Solenoid 8A, 8B, 18A
, 18B...stopper 9A, 9B, 19A
, 19B... Pressure sensitive sensor 10, 22...
...DC direction changeover switch CI, C, ...Gap "F, F, F2.F,,F,,F,,FGF. ...Flow of mixed liquid Commissioner of the Patent Office Kunio Ogawa 1. Indication of the incident 1988 Patent Application No. 36630 2. Title of the invention
and its relationship with MFtt3 and the case of the person making the amendment Patent applicant

Claims (1)

【特許請求の範囲】 1、液体移送用配管上の非磁性体より成る短管の軸線に
沿って前後に滑動する棒状永久磁石と一体構成されてい
る混合板を、上記棒状永久磁石の両磁極のストロークの
部位に相当する上記短管の外側にソレノイドを設け、該
ソレノイドへの直流方向の交互切換によって該ソレノイ
ドの両磁極を交互に変換し、それによって上記棒状永久
磁石と一体構成されている混合板を上記短管内にて往復
運動させ、管内を流れる液体を混合することを特徴とす
る短管内の混合板を往復作動させる方法。 2、a、非磁性体より成るフランジ付き短管と、 b、上記短管の軸線上に沿って必要ある長さの棒状永久
磁石が必要とするストロークをもって滑動することと、 c、上記棒状永久磁石には同長のスリーブが被せられ、
該スリーブ上には複数の混合板の固定されることと、 d、上記棒状永久磁石の長さより上記ストロークの長さ
を差し引いた長さの間隔をあけて上記棒状永久磁石用の
二個の滑動軸受を設けることと、 e、上記二個の滑動軸受のそれぞれの外方向に向けて凡
そ上記ストロークの間隔をあけてそれぞれにストッパを
設けることと、 f、上記二個のストッパと、それらに近い滑動軸受との
間の部位に相当する上記短管の外側上にそれぞれソレノ
イドを設けることと、 g、上記二個のストッパのそれぞれの内方の面には感圧
センサの設けられることと、 h、上記二個のストッパ及び滑動軸受上には両側を貫く
液体通過用の貫通孔の設けられることと、 i、上記感圧センサとソレノイドはそれぞれ直流方向切
換スイッチに電気接続されること、 とより成ることを特徴とする短管内の混合板を往復作動
させる装置。 3、感圧センサが、取除かれ、それに代わってパルスコ
ントローラがソレノイドと電気接続されることを特徴と
する特許請求の範囲第2項記載の短管内の混合板を往復
作動させる装置。 4、ソレノイドが、U字型ソレノイド磁石であることを
特徴とする特許請求の範囲第2項記載の短管内の混合板
を往復作動させる装置。 5、混合板が、円板状であり、その内側であるスリーブ
との接続部には間隙孔が、またその外径は上記短管の内
径よりも小にして必要とする間隙の設けられた特許請求
の範囲第2項記載の短管内の混合板を往復作動させる装
置。 6、混合板が、陣笠状であり、その内側であるスリーブ
との接続部には間隙孔が、またその外径は上記短管の内
径よりも、小にして必要とする間隙の設けられた特許請
求の範囲第2項記載の短管内の混合板を往復作動させる
装置。 7、混合板が、楕円状であり、それらが軸線に対し交互
に傾斜して設けられ、かつその内側であるスリーブとそ
の接続部には間隙孔が、またその外径は上記短管の内径
よりも小にして必要なる間隙の設けられた特許請求の範
囲第2項記載の短管内の混合板を往復作動させる装置。 8、混合板が、矩形状板の交互に180度捩れたものが
複数個直列に同一軸線上に繋がれ、かつこれらの前後の
両端にはそれぞれ一本の棒状永久磁石が同一軸線上に設
けられたものである特許請求の範囲第2項記載の短管内
の混合板を往復作動させる装置。
[Claims] 1. A mixing plate that is integrated with a rod-shaped permanent magnet that slides back and forth along the axis of a short tube made of a non-magnetic material on a liquid transfer pipe is connected to both magnetic poles of the rod-shaped permanent magnet. A solenoid is provided on the outside of the short tube corresponding to the stroke portion of the magnet, and the magnetic poles of the solenoid are alternately changed by alternately switching the direct current direction to the solenoid, thereby forming an integral structure with the bar-shaped permanent magnet. A method for reciprocating a mixing plate in a short tube, characterized in that the mixing plate is reciprocated within the short tube to mix liquid flowing in the tube. 2. a. A flanged short tube made of a non-magnetic material; b. A rod-shaped permanent magnet of a required length sliding along the axis of the short tube with a required stroke; c. The rod-shaped permanent magnet The magnet is covered with a sleeve of the same length,
a plurality of mixing plates are fixed on the sleeve; d. two sliding slides for the rod-shaped permanent magnets are spaced apart by a length equal to the length of the rod-shaped permanent magnet minus the stroke length; providing a bearing; e. providing a stopper for each of the two sliding bearings at an interval of approximately the above stroke; and f) the two stoppers and a stopper close to them. A solenoid is provided on the outside of each of the short tubes corresponding to the area between the two stoppers, g. A pressure sensor is provided on the inner surface of each of the two stoppers, and h. , on the two stoppers and the sliding bearings, through-holes are provided for liquid passage passing through both sides; i. the pressure-sensitive sensor and the solenoid are each electrically connected to a DC direction changeover switch; A device for reciprocating a mixing plate in a short tube, characterized by: 3. The device for reciprocating the mixing plate in the short tube according to claim 2, characterized in that the pressure sensor is removed and a pulse controller is electrically connected to the solenoid in its place. 4. The device for reciprocating a mixing plate in a short tube according to claim 2, wherein the solenoid is a U-shaped solenoid magnet. 5. The mixing plate is disc-shaped, and a gap hole is provided at the connection part with the sleeve on the inside thereof, and the outer diameter thereof is smaller than the inner diameter of the short tube to provide the necessary gap. An apparatus for reciprocating a mixing plate in a short tube according to claim 2. 6. The mixing plate is in the shape of a canopy, and there is a gap hole at the connection part with the sleeve on the inside, and its outer diameter is smaller than the inner diameter of the short pipe to provide the necessary gap. An apparatus for reciprocating a mixing plate in a short tube according to claim 2. 7. The mixing plates have an elliptical shape, and are arranged so as to be tilted alternately with respect to the axis, and have a gap hole in the inner side of the sleeve and its connection part, and the outer diameter of the mixing plate is the same as the inner diameter of the short tube. A device for reciprocating a mixing plate in a short pipe according to claim 2, wherein the necessary gap is provided smaller than the above. 8. The mixing plate consists of a plurality of rectangular plates twisted alternately 180 degrees connected in series on the same axis, and one bar-shaped permanent magnet is installed on the same axis at each of the front and rear ends of the mixing plate. A device for reciprocating a mixing plate in a short tube according to claim 2.
JP63036630A 1988-02-19 1988-02-19 Reciprocating movement method and device for mixing plate in short tube Pending JPH01210022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036630A JPH01210022A (en) 1988-02-19 1988-02-19 Reciprocating movement method and device for mixing plate in short tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036630A JPH01210022A (en) 1988-02-19 1988-02-19 Reciprocating movement method and device for mixing plate in short tube

Publications (1)

Publication Number Publication Date
JPH01210022A true JPH01210022A (en) 1989-08-23

Family

ID=12475153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036630A Pending JPH01210022A (en) 1988-02-19 1988-02-19 Reciprocating movement method and device for mixing plate in short tube

Country Status (1)

Country Link
JP (1) JPH01210022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824036A1 (en) * 1996-08-06 1998-02-18 Fuji Photo Film Co., Ltd. Stirring apparatus
KR100509937B1 (en) * 2002-11-02 2005-08-24 학교법인 포항공과대학교 Method of mixing fluids using electro-osmosis
JP2008229454A (en) * 2007-03-19 2008-10-02 Reika Kogyo Kk Stirring mixer
WO2016073858A1 (en) 2014-11-07 2016-05-12 Genesis Technologies, Llc Linear reciprocating actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287432A (en) * 1985-06-15 1986-12-17 Sumitomo Heavy Ind Ltd Pipe line stirring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287432A (en) * 1985-06-15 1986-12-17 Sumitomo Heavy Ind Ltd Pipe line stirring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824036A1 (en) * 1996-08-06 1998-02-18 Fuji Photo Film Co., Ltd. Stirring apparatus
KR100509937B1 (en) * 2002-11-02 2005-08-24 학교법인 포항공과대학교 Method of mixing fluids using electro-osmosis
JP2008229454A (en) * 2007-03-19 2008-10-02 Reika Kogyo Kk Stirring mixer
WO2016073858A1 (en) 2014-11-07 2016-05-12 Genesis Technologies, Llc Linear reciprocating actuator
EP3215261A4 (en) * 2014-11-07 2018-07-18 Genesis Technologies, LLC Linear reciprocating actuator
US10092888B2 (en) 2014-11-07 2018-10-09 Genesis Technologies, Llc Linear reciprocating actuator

Similar Documents

Publication Publication Date Title
US3384353A (en) Magnetic stirrer
CN102513014B (en) Magnetic stirring chaotic mixing method for laminar flow in microfluidic system and device thereof
CN106197117A (en) A kind of micro-channel heat exchanger system
JPH01210022A (en) Reciprocating movement method and device for mixing plate in short tube
Atencia et al. Magnetically-driven biomimetic micro pumping using vortices
EP0363441B1 (en) Mixing apparatus and method
CN104162379B (en) A kind of micro-fluidic chip magnetic bead chaotic mixing method and device
CN103157401A (en) Vibration agitating type mixing device
JPH01199637A (en) Method and device for rotating agitation blade in short pipe
CN110624454A (en) Electromagnetic type stirring form-changing mixing device
RU2478421C1 (en) Vibration mixer
JPH03258337A (en) Mixer
CN114014424A (en) Sewage coagulating sedimentation separation device for sewage treatment
RU2478422C1 (en) Electromagnetic mixer
JPS6399758A (en) Motion transmission mechanism
RU224108U1 (en) Vibrating mixing device
SU1556728A1 (en) Mixer
JPS601795Y2 (en) pipe mixer
CN113101849B (en) Pipeline type piezoelectric micro mixer
CN215463917U (en) Active and passive pipeline type piezoelectric micro mixer
CN113101847B (en) Double-vibrator driven active-passive piezoelectric micro mixer
SU1537647A1 (en) Method of magnetic treatment of liquid
RU2237511C2 (en) Static mixer
JPH01207122A (en) Method and device for rotating impeller in short tube
KR100818787B1 (en) Micro pump, lab-on-a-chip system having the same, and method of using the micro pump