JPH01209740A - Method for positioning semiconductor substrate - Google Patents

Method for positioning semiconductor substrate

Info

Publication number
JPH01209740A
JPH01209740A JP63035866A JP3586688A JPH01209740A JP H01209740 A JPH01209740 A JP H01209740A JP 63035866 A JP63035866 A JP 63035866A JP 3586688 A JP3586688 A JP 3586688A JP H01209740 A JPH01209740 A JP H01209740A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
wafer chuck
orientation flat
eccentricity
chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63035866A
Other languages
Japanese (ja)
Inventor
Masafumi Suzuki
雅史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63035866A priority Critical patent/JPH01209740A/en
Publication of JPH01209740A publication Critical patent/JPH01209740A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to align a substrate on the basis of the detected data, by detecting the amount of the eccentricity between the semiconductor substrate and a wafer chuck and the position deviation of an orientation flat with the wafer chuck provided with a line sensor. CONSTITUTION:A line sensor 3 is provided in the radial direction of a wafer chuck 2. A semiconductor substrate 1 is sucked at a position having an amount of eccentricity C with respect to the chuck 2. The chuck 2 and the semiconductor substrate 1 as a unitary body are rotated in the counterclockwise direction with the center of the chuck 2 as the center of rotation. Then, the amount of the received light in the line sensor 3 is changed with respect to the rotating angle. The amount of eccentricity C can be obtained from the difference between the amounts of received beams of light at the rotating angles of 90 deg. and 270 deg.. The position of the center of an orientation flat 1a can be obtained from a rotating angle theta of the maximum amount of the light in the curve of the orientation flat part. When the chuck 2 is rotated in the counterclockwise direction by the rotating angle theta, amounts of eccentricities D and E become D=C.costheta and E=C.sintheta. The substrate 1 is mounted under the state wherein a conveying mechanism 5 is moved by the amount of the eccentricity. The conveying mechanism is returned to the specified position with respect to a wafer chuck 6, and the semiconductor substrate 1 is mounted on the chuck 6.

Description

【発明の詳細な説明】 〔概 要〕 半導体基板とウェーハチャックの偏心の補正及びオリエ
ンテーションフラットの位置決め方法の改良に関し、 短時間に半導体基板とウェーハチャックの偏心の補正及
びオリフラの位置決めが行える半導体基板の位置決め方
法の提供を目的とし、 回転機構を有するウェーハチャックと、ラインセンサと
、搬送機構とを具備する半導体基板の位置決め装置を用
いて、半導体基板と前記ウェーハチャックとの偏心量及
びオリエンテーションフラットの位置を検出し、該検出
データの該オリエンテーションフラットの位置データに
基づき、前記回転機構により前記ウェーハチャックを回
転して前記半導体基板の前記オリエンテーションフラッ
トを所望の位置に位置決めし、該検出データの偏心量デ
ータに基づき、搬送機構の位置決めを行い、搬送先のウ
ェーハチャックに前記半導体基板を搬送するよう構成す
る。
[Detailed Description of the Invention] [Summary] Regarding the improvement of the method for correcting the eccentricity of the semiconductor substrate and the wafer chuck and positioning the orientation flat, there is provided a semiconductor substrate that can correct the eccentricity of the semiconductor substrate and the wafer chuck and position the orientation flat in a short time. The purpose of the present invention is to provide a positioning method that uses a semiconductor substrate positioning device that includes a wafer chuck having a rotation mechanism, a line sensor, and a transfer mechanism to determine the eccentricity and orientation flat of the semiconductor substrate and the wafer chuck. The position is detected, and based on the position data of the orientation flat of the detection data, the rotation mechanism rotates the wafer chuck to position the orientation flat of the semiconductor substrate at a desired position, and the eccentricity of the detection data is detected. Based on the data, the transport mechanism is positioned and configured to transport the semiconductor substrate to a wafer chuck as a transport destination.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体基板のハンドリングに係り、特に半導
体−板とウヱー・・チャ・りの偏心の補正及びオリエン
テーションフラットの位置決め方法の改良に関するもの
である。
The present invention relates to the handling of semiconductor substrates, and in particular to correction of eccentricity between a semiconductor substrate and a controller and improvement of a method for positioning an orientation flat.

半導体基板の処理工程においては、通常の場合、最初に
半導体基板をウェーハチャックに搭載した時には、半導
体基板とウェーハチャックの偏心及びオリエンテーショ
ンフラット(以下、オリフラと略称する)の位置は不定
であり、その後の半導°体基板のハンドリングを行うた
めには、上記の偏 。
In the processing process of semiconductor substrates, normally, when the semiconductor substrate is first mounted on the wafer chuck, the eccentricity of the semiconductor substrate and the wafer chuck and the position of the orientation flat (hereinafter referred to as orientation flat) are uncertain; In order to handle the semiconductor substrate, the above deviation is necessary.

6量を無くし、オリフラの位置決めを行っておくことが
必要となる。
It is necessary to eliminate the amount of 6 and position the orientation flat.

従来の半導体基板の位置決め方法は大別して2種類の方
法があり、その一つはエツジ接触方式で、他の一つはス
ポットセンサ等を用いた非接触方式これらの方式は、特
に半導体装置の製造工程等においては種々のパーティク
ルに起因する品質の問題や、位置決めの工程が煩雑なた
めに時間がかかり過ぎる問題がある。
Conventional methods for positioning semiconductor substrates can be roughly divided into two types: one is an edge contact method, and the other is a non-contact method using spot sensors, etc. These methods are particularly useful in the manufacture of semiconductor devices. In the process, there are quality problems caused by various particles, and the problem that the positioning process is complicated and takes too much time.

以上のような状況から半導体基板とウェーハチャックの
偏心の補正及びオリフラの位置決めを、清浄な雰囲気で
効率良く行うことが可能な半導体基板の位置決め方法が
要望されている。
Under the above circumstances, there is a need for a semiconductor substrate positioning method that can efficiently correct the eccentricity of the semiconductor substrate and wafer chuck and position the orientation flat in a clean atmosphere.

〔従来の技術〕[Conventional technology]

従来の半導体基板の位置決め方法について、第4図及び
第5図により説明する。
A conventional method for positioning a semiconductor substrate will be explained with reference to FIGS. 4 and 5.

第4図はエツジ接触方式の主要部を示す図である。図に
示すように、ウェーハチャック12に対して偏心量が零
の状態で載置された半導体基板11の外周に、位置決め
機構のローラ13を接触させ、この状態でウェーハチャ
ック12の回転機構14により半導体基板11を回転さ
せ、ローラ13がウェーハチャックの中心に最も接近し
た位置でウェーハチャック12の回転を停止し、オリフ
ラl1aの位置決めを行っている。
FIG. 4 is a diagram showing the main parts of the edge contact method. As shown in the figure, the roller 13 of the positioning mechanism is brought into contact with the outer periphery of the semiconductor substrate 11 placed with zero eccentricity with respect to the wafer chuck 12, and in this state, the rotation mechanism 14 of the wafer chuck 12 is rotated. The semiconductor substrate 11 is rotated, and the rotation of the wafer chuck 12 is stopped at the position where the roller 13 is closest to the center of the wafer chuck, thereby positioning the orientation flat l1a.

第5図はスポットセンサを用いた非接触方式の主要部を
示す図である。図に示すように、ウェーハチャック22
に対して偏心量が零の状態で載置された半導体基板21
の外周の直近の内側のオリフラ21aを配設しようとす
る位置に、オリフラ21aの弦の長さよりも短い距離を
おいて二組のスポットセンサ23を設け、この状態でウ
ェーハチャック22の回転機構24により半導体基板2
1を回転させ、この二個のスポットセンサ23が同時に
作動する位置でウェーハチャック22の回転を停止し、
オリフラ21aの位置決めを行っている。
FIG. 5 is a diagram showing the main parts of a non-contact method using spot sensors. As shown in the figure, the wafer chuck 22
Semiconductor substrate 21 placed with zero eccentricity relative to
Two sets of spot sensors 23 are installed at a position where the orientation flat 21a is to be installed, at a distance shorter than the chord length of the orientation flat 21a, and in this state, the rotation mechanism 24 of the wafer chuck 22 is installed. Semiconductor substrate 2
1, and stop the rotation of the wafer chuck 22 at a position where these two spot sensors 23 operate simultaneously,
The orientation flat 21a is being positioned.

いずれの場合も上記のように、半導体基板とウェーハチ
ャックの偏心量を零の状態にする工程を行った後にオリ
フラの位置決めを行うことが必要である。
In either case, as described above, it is necessary to perform the positioning of the orientation flat after performing the step of bringing the eccentricity between the semiconductor substrate and the wafer chuck to zero.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明の従来の半導体基板の位置決め方法で問題とな
るのは、いずれの場合も先ず半導体基板とウェーハチャ
ックの偏心量を零の状態にする工程を行った後にオリフ
ラの位置決めを行わねばならないので、その後のオリフ
ラの位置決めとの二工程になり、位置決め処理に時間が
かかり過ぎることである。
The problem with the conventional semiconductor substrate positioning methods described above is that in either case, the orientation flat must be positioned after the process of zeroing out the eccentricity of the semiconductor substrate and wafer chuck. This requires two steps, including the subsequent positioning of the orientation flat, and the positioning process takes too much time.

更に、接触方式の場合には半導体基板或いは半導体基板
に被着した被膜類等のパーティクルが一度でも発生し、
そのパーティクルが位置決め装置のローラ等に付着する
と、以後に位置決めを行う全ての半導体基板に蔓延する
虞があることである。
Furthermore, in the case of the contact method, particles such as the semiconductor substrate or coatings attached to the semiconductor substrate may be generated even once.
If the particles adhere to the rollers or the like of the positioning device, there is a risk that they will spread to all semiconductor substrates that will be subsequently positioned.

本発明は以上のような状況から短時間に半導体基板とウ
ェーハチャックの偏心の補正及びオリフラの位置決めが
行える半導体基板の位置決め方法の提供を目的としたも
のである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor substrate positioning method that can correct the eccentricity of the semiconductor substrate and wafer chuck and position the orientation flat in a short period of time.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、回転機構を有するウェーハチャックと、
ラインセンサと、搬送機構とを具備する半導体基板の位
置決め装置を用いて、半導体基板とこのウェーハチャッ
クとの偏心量及びオリエンテーションフラットの位置を
検出し、該検出データのオリエンテーションフラットの
位置データに基づき、この回転機構によりこのウエーハ
チャソりを回転してこの半導体基板のオリエンテーショ
ンフラットを所望の位置に位置決めし、該検出データの
偏心量データに基づき、搬送機構の位置決めを行い、搬
送先のウェーハチャックにこの半導体基板を搬送する本
発明による半導体基板の位置決め方法によって解決され
る。
The above problem is caused by a wafer chuck with a rotation mechanism,
Using a semiconductor substrate positioning device equipped with a line sensor and a transport mechanism, detect the eccentricity between the semiconductor substrate and the wafer chuck and the position of the orientation flat, and based on the detected data, the position data of the orientation flat. The rotation mechanism rotates the wafer chuck to position the orientation flat of the semiconductor substrate at a desired position, and the transfer mechanism is positioned based on the eccentricity data of the detection data, and the wafer chuck is placed on the destination wafer chuck. The problem is solved by a semiconductor substrate positioning method according to the present invention for transporting a semiconductor substrate.

〔作用〕[Effect]

即ち本発明においては、ウェーハチャックの上の任意の
位置に半導体基板を載置した状態のまま、回転機構によ
りウェーハチャックを回転させ、半導体基板の周縁に配
設したラインセンサの半導体基板による遮光状態をデー
タ化し、このオリフラの位置データによりウェーハチャ
ックを回転して半導体基板のオリフラの位置を所定の位
置に移動し、一方、この偏心量のデータにより次のウェ
ーハチャックに半導体基板を搬送する搬送機構のX−Y
方向の位置決めを行い、この状態で半導体基板を搬送機
構に搭載し、搬送先のウェーハチャックに半導体基板を
搬送し、正しい位置に半導体基板を載置することが可能
となる。
That is, in the present invention, the wafer chuck is rotated by the rotation mechanism while the semiconductor substrate is placed at an arbitrary position on the wafer chuck, and the line sensor arranged around the periphery of the semiconductor substrate is shielded from light by the semiconductor substrate. is converted into data, and the wafer chuck is rotated based on this orientation flat position data to move the orientation flat position of the semiconductor substrate to a predetermined position, while the semiconductor substrate is transferred to the next wafer chuck based on this eccentricity data. X-Y
After directional positioning, the semiconductor substrate is mounted on the transfer mechanism in this state, the semiconductor substrate is transferred to the destination wafer chuck, and the semiconductor substrate can be placed in the correct position.

〔実施例〕〔Example〕

以下第1図〜第3図について本発明の一実施例を説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図に示すように、本発明の一実施例ではウェーハチ
ャック2に対して偏心量Cを有する位置に半導体基板l
が吸着されている。
As shown in FIG. 1, in one embodiment of the present invention, a semiconductor substrate l is placed at a position having an eccentricity C with respect to a wafer chuck 2.
is adsorbed.

ラインセンサ3は図示のように、ウェーハチャック2の
半径方向にラインセンサ3の素子が並ぶ位置に設けられ
ている。
As shown in the figure, the line sensor 3 is provided at a position where the elements of the line sensor 3 are lined up in the radial direction of the wafer chuck 2.

この状態で回転機構4を駆動し、ウェーハチャック2と
半導体基板lとを一体として、ウェーハチャック2の中
心を回転中心として反時計方向に回転させると、ライン
センサ3の半導体基板lにより遮蔽される部分の面積が
変化する。
In this state, when the rotation mechanism 4 is driven and the wafer chuck 2 and the semiconductor substrate l are rotated counterclockwise around the center of the wafer chuck 2 as a rotation center, the wafer chuck 2 and the semiconductor substrate l are blocked by the semiconductor substrate l of the line sensor 3. The area of the part changes.

従ってラインセンサ3の受光量が第3図に示すように回
転角度に対して変化する。
Therefore, the amount of light received by the line sensor 3 changes with respect to the rotation angle as shown in FIG.

図に示すように、回転角度に対する受光量は回転角度が
90@の時最小になり、270 ”の時に最大になり、
オリフラ1aの部分では図示のような変化をし、全体的
には滑らかな曲線を示している。
As shown in the figure, the amount of light received relative to the rotation angle is minimum when the rotation angle is 90@, maximum when the rotation angle is 270'',
The orientation flat 1a changes as shown in the figure, and shows a smooth curve as a whole.

偏心量は回転角度が90@の場合と270°の場合の受
光量の差から求めることができる。
The amount of eccentricity can be determined from the difference in the amount of light received when the rotation angle is 90 degrees and 270 degrees.

オリフラの18中央の位置はオリフラ部の曲線の最大光
量の回転角度から求めることができる。
The position of the center 18 of the orientation flat can be determined from the rotation angle of the maximum light amount of the curve of the orientation flat part.

このようにして求めたオリフラ1aの中心の回転角度だ
けウェーハチャック2を反時計方向に回転してウェーハ
チャック2を固定し、オリフラ1aの方向を決定する。
The wafer chuck 2 is rotated counterclockwise by the rotation angle of the center of the orientation flat 1a obtained in this way to fix the wafer chuck 2, and the direction of the orientation flat 1a is determined.

このオリフラ1aの位置決めのために回転した回転角度
をθとすると、第2図に示す偏心量は、それぞれ次の値
になる。
Assuming that the angle of rotation for positioning the orientation flat 1a is θ, the eccentric amounts shown in FIG. 2 have the following values.

D=C−CO5θ、E=C−SIN θこれらの偏心量
の補正は搬送機構5の位置をこれらの偏心量だけ移動し
た状態で半導体基板lを搬送機構5に搭載し、次に半導
体基板1を載置するウェーハチャンク6に対して規定さ
れた位置に搬送機構5を戻し、半導体基板1をウェーハ
チャック6に載置する。
D=C-CO5θ, E=C-SINθ To correct these eccentric amounts, the semiconductor substrate 1 is mounted on the transfer mechanism 5 with the position of the transfer mechanism 5 moved by these eccentric amounts, and then the semiconductor substrate 1 is The transport mechanism 5 is returned to the position defined for the wafer chunk 6 on which the semiconductor substrate 1 is placed, and the semiconductor substrate 1 is placed on the wafer chuck 6.

このようにラインセンサ3の受光量に応じてウェーハチ
ャック2を回転してオリフラ1aの方向を確定し、偏心
量を補正した位置で搬送機構5へ半導体基板lを搭載し
、次工程のウェーハチャック6へは搬送機構5の規定さ
れた位置で半導体基板1を載置するので、ウェーハチャ
ック2の任意の位置に搭載した半導体基板lの偏心量の
補正と、オリフラ1aの位置決めとを短時間で同時に行
うことが可能となる。
In this way, the wafer chuck 2 is rotated according to the amount of light received by the line sensor 3 to determine the direction of the orientation flat 1a, and the semiconductor substrate l is mounted on the transport mechanism 5 at the position where the amount of eccentricity has been corrected, and the wafer chuck is used for the next process. Since the semiconductor substrate 1 is placed on the transfer mechanism 5 at a specified position on the wafer chuck 6, the eccentricity of the semiconductor substrate l mounted at an arbitrary position on the wafer chuck 2 and the positioning of the orientation flat 1a can be corrected in a short time. It becomes possible to do both at the same time.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば極めて簡
単な構造のラインセンサを備えたウェーハチャックによ
り、半導体基板とウェーハチャックの偏心量及びオリフ
ラの位置ずれを検出することが可能となり、この検出デ
ータによって半導体基板の位置合わせを行うことが可能
となる等の利点があり、著しい経済的及び、信軌性向上
の効果が期待でき工業的には極めて有用なものである。
As is clear from the above description, according to the present invention, the eccentricity of the semiconductor substrate and the wafer chuck and the positional deviation of the orientation flat can be detected using a wafer chuck equipped with a line sensor having an extremely simple structure. It has advantages such as being able to align semiconductor substrates using data, and can be expected to have significant economic and reliability effects, making it extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例の主要部を示す図、 第2図は本発明による一実施例の全体を示す平面図、 第3図は本発明による一実施例の回転角度とラインセン
サ光量との関係を示す曲線、 第4図は従来の半導体基板の位置決め方法を示す図、 第5図は従来の他の半導体基板の位置決め方法を示す図
、である。 図において、 1は半導体基板、 1aはオリエンテーションフラット、 2はウェーハチャック、3はラインセンサ、4は回転機
構、    5は搬送機構、6はウェーハチャック、 を示す。 1a+平面図 中I  A−A矢視側面図 本発明による一実施例の主要部を示す図第1図 本発明による一実施例の全体を示す平面図第2図 ば  ボ  I!1 (al平面図 (′b)側面図 従来の半導体基板の位置決め方法を示す図第4図 (a)平面図 (bl側面図 従来の他の半導体基板の位置決め方法を示す図第5図
Fig. 1 is a diagram showing the main parts of an embodiment according to the present invention, Fig. 2 is a plan view showing the whole of an embodiment according to the present invention, and Fig. 3 is a diagram showing the rotation angle and line sensor of an embodiment according to the present invention. FIG. 4 is a diagram showing a conventional method for positioning a semiconductor substrate; FIG. 5 is a diagram showing another conventional method for positioning a semiconductor substrate. In the figure, 1 is a semiconductor substrate, 1a is an orientation flat, 2 is a wafer chuck, 3 is a line sensor, 4 is a rotation mechanism, 5 is a transfer mechanism, and 6 is a wafer chuck. Figure 1 is a plan view showing the main parts of an embodiment of the present invention. Figure 2 is a plan view showing the entire embodiment of the present invention. 1 (Al Plan view ('b) Side view A diagram showing a conventional method for positioning a semiconductor substrate. FIG. 4 (a) Plan view (BL Side view) A diagram showing another conventional method for positioning a semiconductor substrate.

Claims (1)

【特許請求の範囲】  回転機構(4)を有するウェーハチャック(2)と、
ラインセンサ(3)と、搬送機構(5)とを具備する半
導体基板の位置決め装置を用いて、半導体基板(1)と
前記ウェーハチャック(2)との偏心量及びオリエンテ
ーションフラット(1a)の位置を検出し、該検出デー
タの該オリエンテーションフラット(1a)の位置デー
タに基づき、前記回転機構(4)により前記ウェーハチ
ャック(2)を回転して前記半導体基板(1)の前記オ
リエンテーションフラット(1a)を所望の位置に位置
決めし、 該検出データの偏心量データに基づき、搬送機構(5)
の位置決めを行い、搬送先のウェーハチャック(6)に
前記半導体基板(1)を搬送することを特徴とする半導
体基板の位置決め方法。
[Claims] A wafer chuck (2) having a rotation mechanism (4);
Using a semiconductor substrate positioning device equipped with a line sensor (3) and a transport mechanism (5), the eccentricity between the semiconductor substrate (1) and the wafer chuck (2) and the position of the orientation flat (1a) are determined. Based on the position data of the orientation flat (1a) of the detected data, the rotation mechanism (4) rotates the wafer chuck (2) to rotate the orientation flat (1a) of the semiconductor substrate (1). The transport mechanism (5) is positioned at a desired position and based on the eccentricity data of the detected data.
A method for positioning a semiconductor substrate, comprising: positioning the semiconductor substrate (1), and then transporting the semiconductor substrate (1) to a wafer chuck (6) as a transport destination.
JP63035866A 1988-02-17 1988-02-17 Method for positioning semiconductor substrate Pending JPH01209740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035866A JPH01209740A (en) 1988-02-17 1988-02-17 Method for positioning semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035866A JPH01209740A (en) 1988-02-17 1988-02-17 Method for positioning semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH01209740A true JPH01209740A (en) 1989-08-23

Family

ID=12453910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035866A Pending JPH01209740A (en) 1988-02-17 1988-02-17 Method for positioning semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH01209740A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142853A (en) * 1989-10-28 1991-06-18 Hitachi Ltd Apparatus and method for aligning wafer
KR100387524B1 (en) * 2001-01-26 2003-06-18 삼성전자주식회사 system for detecting position of semiconductor wafer, semiconductor device manufacturing facility and method of detecting wafer position
KR100472959B1 (en) * 2002-07-16 2005-03-10 삼성전자주식회사 Semiconductor wafer planarization equipment having improving wafer unloading structure
JP2010199586A (en) * 2009-02-25 2010-09-09 Siltronic Ag Method of identifying improper position of semiconductor wafer during heat treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142853A (en) * 1989-10-28 1991-06-18 Hitachi Ltd Apparatus and method for aligning wafer
KR100387524B1 (en) * 2001-01-26 2003-06-18 삼성전자주식회사 system for detecting position of semiconductor wafer, semiconductor device manufacturing facility and method of detecting wafer position
KR100472959B1 (en) * 2002-07-16 2005-03-10 삼성전자주식회사 Semiconductor wafer planarization equipment having improving wafer unloading structure
JP2010199586A (en) * 2009-02-25 2010-09-09 Siltronic Ag Method of identifying improper position of semiconductor wafer during heat treatment
US8357549B2 (en) 2009-02-25 2013-01-22 Siltronic Ag Method for identifying an incorrect position of a semiconductor wafer during a thermal treatment

Similar Documents

Publication Publication Date Title
US6195619B1 (en) System for aligning rectangular wafers
US5452521A (en) Workpiece alignment structure and method
JP4260423B2 (en) Disc-shaped object reference position teaching method, positioning method, and transport method, and disc-shaped reference position teaching apparatus, positioning apparatus, transport apparatus, and semiconductor manufacturing equipment using these methods
US9026244B1 (en) Presence sensing and position correction for wafer on a carrier ring
TWI375293B (en) Method to position a wafer
JPH04284647A (en) Method and apparatus for detecting central position of wafer
US20100211210A1 (en) Position correcting apparatus, vacuum processing equipment and position correcting method
US20040261550A1 (en) Substrate detecting apparatus and method, substrate transporting apparatus and method, and substrate processing apparatus and method
JPS6320380B2 (en)
JPH01209740A (en) Method for positioning semiconductor substrate
JP2729297B2 (en) Semiconductor wafer centering equipment
JP2003110004A (en) Position correcting method in conveying wafer
US6682295B2 (en) Flatted object passive aligner
JPH07260455A (en) Method and apparatus for positioning of substrate
JPS59147444A (en) Method and apparatus for positioning tabular body
JP2000223551A (en) Wafer carrying robot and semiconductor production system
JPH11243131A (en) Wafer positioning method
JP2002217268A (en) Method and device for carrying substrate
JPS62211934A (en) Apparatus for positioning wafer
JPH04290455A (en) Wafer prealignment system
JPH05308098A (en) Wafer positioning device
EP0508748A2 (en) Wafer centering system
JPH06177230A (en) Noncontact type positioning conveyor
WO2024075818A1 (en) Robot system, aligner, and alignment method for semiconductor substrate
JPS62186545A (en) Positioning method of semiconductor wafer