JPH01209706A - Structure of magnetic pole - Google Patents

Structure of magnetic pole

Info

Publication number
JPH01209706A
JPH01209706A JP63035691A JP3569188A JPH01209706A JP H01209706 A JPH01209706 A JP H01209706A JP 63035691 A JP63035691 A JP 63035691A JP 3569188 A JP3569188 A JP 3569188A JP H01209706 A JPH01209706 A JP H01209706A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
magnetic pole
field generator
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63035691A
Other languages
Japanese (ja)
Inventor
Kenichi Inoue
憲一 井上
Yoshio Nishimoto
西元 喜郎
Hiroaki Yasukuni
安國 弘晃
Hiroyuki Takamatsu
弘行 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63035691A priority Critical patent/JPH01209706A/en
Publication of JPH01209706A publication Critical patent/JPH01209706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To form an extremely uniform magnetic field and to omit adjustment, by providing optical parallel flat plates as spacers between a pair of magnetic poles, specifying the gap between the magnetic poles, and thereby specifying the parallelism of the gap between the magnetic poles highly accurately. CONSTITUTION:Planar magnetic poles 2 and 3 are made to face optical parallel glass plates 4 and 5 as spacers. A unitary body is formed with a bonding agent 6. A space 8 surrounded with the magnetic polses 2 and 3 and the optical parallel plates 4 and 5 becomes a space for a magnetic field. When the optical parallel plates 4 and 5 are held as the spacers, the gap between the magnetic poles 2 and 3 is strictly specified. Therefore, the uniform, highly accurate magnetic field is formed in the space 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁極構造に関し、特にNMR装置やESR装
置の一様磁場発生器に用いるのに有用な磁極構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to magnetic pole structures, and particularly to magnetic pole structures useful for use in uniform magnetic field generators for NMR and ESR devices.

〔従来技術〕[Prior art]

NMR装置や、ESR装置では、−様で強力な磁場を発
生する必要がある。
In an NMR device or an ESR device, it is necessary to generate a -like and strong magnetic field.

このような磁場は、N極の磁極とS極の磁極とを空隙を
あけて対向させることにより、その空隙に形成しうる。
Such a magnetic field can be formed in a gap by making a north magnetic pole and a south magnetic pole face each other with a gap therebetween.

ただし、精密な磁場の一様性を得るためには、従来、調
整手段が必要であり、例えば特開昭60−257109
号公報に開示のように磁極間の間隔をネジによって調整
できるようにしたり、実開昭60−166111号公報
や実開昭61−88210号公報に開示のように空隙の
側方に磁路調整手段を付加した磁極構造が提案されてい
る。
However, in order to obtain precise uniformity of the magnetic field, adjustment means have conventionally been required;
The spacing between the magnetic poles can be adjusted with screws as disclosed in the above publication, or the magnetic path can be adjusted on the side of the air gap as disclosed in Japanese Utility Model Application Publications No. 166111/1982 and No. 88210 of 1982. Additional magnetic pole structures have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の磁極構造によれば、磁極間隔や磁束の通路を
調整して、−様で強力な磁場を得ようとしているが、こ
のような調整では得られる精度に限界があり、10 以
上の磁場−様性を得ることができない問題点がある。ま
た、その調整作業自体が容易でない問題点がある。
According to the conventional magnetic pole structure described above, an attempt is made to obtain a -like and strong magnetic field by adjusting the magnetic pole spacing and the magnetic flux path, but there is a limit to the accuracy that can be obtained with such adjustment, and it is difficult to obtain a magnetic field of 10 or more. -There is a problem in that it is not possible to obtain the characteristics. Further, there is a problem that the adjustment work itself is not easy.

従って、本発明の目的とするところは、簡単な構造で、
調整が不要であり、しかも10  以上の磁場−様性を
得ることも可能な磁極構造を提供することにある。
Therefore, the object of the present invention is to have a simple structure,
It is an object of the present invention to provide a magnetic pole structure that does not require adjustment and can also obtain a magnetic field pattern of 10 or more.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するべく、本発明の磁極構造は磁場空間
を形成するために一対の磁極を空隙をあけて対向させて
なる磁極構造において、一対の゛゛−−極間学平行平板
をスペーサとして介在させて磁極間隙を規定したことを
構成上の特徴とする。
In order to achieve the above object, the magnetic pole structure of the present invention has a magnetic pole structure in which a pair of magnetic poles are opposed to each other with an air gap in order to form a magnetic field space. A structural feature is that the magnetic pole gap is defined by

上記構成において、光学平行平板は、ガラスや硬質プラ
スチック等、屈折率が−様な、透明材質の素材を用いる
ことができる。
In the above configuration, the optical parallel plate may be made of a transparent material having a -like refractive index, such as glass or hard plastic.

〔作用〕[Effect]

屈折率の−様な、透明材質の光学平行平板は、表、裏面
からの反射光の干渉を利用して精度評価と光学研磨をく
り返し行うことにより、光の波長の1716程度まで平
行精度を出すことが出来る。
Optical parallel plates made of transparent materials with a negative refractive index achieve parallel accuracy up to approximately 1716 wavelengths of light by repeatedly performing accuracy evaluation and optical polishing using the interference of reflected light from the front and back surfaces. I can do it.

従って、かかる光学平行平板をスペーサとして用いると
、磁極間の間隙を極めて高精度に規定できるから、所望
の磁場、とりわけ−横磁場を容易に得ることができ、構
造が簡単になり、かつ、調整も不要となる。
Therefore, when such an optical parallel plate is used as a spacer, the gap between the magnetic poles can be defined with extremely high precision, so a desired magnetic field, especially a transverse magnetic field, can be easily obtained, the structure is simple, and adjustment is possible. is also no longer necessary.

〔実施例〕〔Example〕

以下、図に示す実施例に基づいて本発明を更に詳しく説
明する。ここに第1図は本発明の一実施例の磁極構造の
斜視図、第2図は第1図に示す磁極構造を用いた一様磁
場発生器の正面図、第3図は第2図に示す一様磁場発生
器における磁束を示す模式図、第4図は本発明の他の実
施例の正面図、第5図は本発明の更に他の実施例の一部
破断図を含む正面図、第6図は第1図に示す実施例にシ
ムコイルを付加した磁極構造の斜視図、第7図は第6図
に示す磁極構造を用いた一様磁場発生器の正面図、第8
図は第7図に示す一様磁場発生器の磁束を示す概念図、
第9図は第1図に示す実施例に漏洩磁束防止壁を付加し
た磁極構造の一部破断図を含む斜視図、第10図は第9
図に示す磁極構造を用いた一様磁場発生器の正面図、第
11図は第1O図の一様磁場発生器における磁束を示す
概念図、第12図は第2図に示す一様磁場発生器を用い
たNMR分析装置の要部斜視図、第13図は第2図に示
す一様磁場発生器を用いたプロセスセンサを含む化学プ
ラントの要部斜視図である。なお、図に示す実施例によ
り本発明が瞑定されるものではない。
Hereinafter, the present invention will be explained in more detail based on embodiments shown in the drawings. Here, FIG. 1 is a perspective view of a magnetic pole structure according to an embodiment of the present invention, FIG. 2 is a front view of a uniform magnetic field generator using the magnetic pole structure shown in FIG. 1, and FIG. FIG. 4 is a front view of another embodiment of the present invention, FIG. 5 is a front view including a partially cutaway view of still another embodiment of the present invention, FIG. 6 is a perspective view of a magnetic pole structure in which a shim coil is added to the embodiment shown in FIG. 1, FIG. 7 is a front view of a uniform magnetic field generator using the magnetic pole structure shown in FIG. 6, and FIG.
The figure is a conceptual diagram showing the magnetic flux of the uniform magnetic field generator shown in Fig. 7,
9 is a perspective view including a partially cutaway view of the magnetic pole structure in which a leakage magnetic flux prevention wall is added to the embodiment shown in FIG. 1, and FIG.
A front view of a uniform magnetic field generator using the magnetic pole structure shown in the figure, Fig. 11 is a conceptual diagram showing the magnetic flux in the uniform magnetic field generator shown in Fig. 1O, and Fig. 12 is a uniform magnetic field generator shown in Fig. 2. FIG. 13 is a perspective view of a main part of a chemical plant including a process sensor using a uniform magnetic field generator shown in FIG. 2. It should be noted that the present invention is not limited to the embodiments shown in the figures.

第1図に示す磁極構造lにおいて、平板状の磁極2,3
が、光学平行平板ガラス4.5をスペーサとして対向さ
れ、接着剤6により一体化されている。(なお、接着剤
6は誇張して書いである。)磁極2,3の素材としては
、c−o、os%以下の商用純鉄を用いることが出来る
In the magnetic pole structure l shown in FIG.
are opposed to each other using an optical parallel flat glass 4.5 as a spacer, and are integrated with an adhesive 6. (Note that the adhesive 6 is exaggerated.) As the material for the magnetic poles 2 and 3, commercially pure iron of less than CO, OS% can be used.

磁極2.3の上下面のコーナ一部分には、クロスローラ
ーベアリング7が取り付けられ、第2図に示す一様磁場
発生器10へ容易に組み込めるようになっている。
A cross roller bearing 7 is attached to a portion of the upper and lower corners of the magnetic pole 2.3, so that it can be easily incorporated into the uniform magnetic field generator 10 shown in FIG.

即ち、第2図に示すように、−横磁場発生器10は、円
筒状リターンヨーク11の内部に、柱状リターンヨーク
12,13を介在させて、板挟永久磁石14.15を固
着し、それら磁石14,150間の間隙に、上記磁極構
造lを挿入して構成される。
That is, as shown in FIG. 2, the -transverse magnetic field generator 10 has the columnar return yokes 12 and 13 interposed inside the cylindrical return yoke 11, and the permanent magnets 14 and 15 are fixed between the plates. The magnetic pole structure 1 is inserted into the gap between the magnets 14 and 150.

磁極2.3と光学平行平板4.5で囲まれた空間8が磁
場空間となる。
A space 8 surrounded by the magnetic pole 2.3 and the optical parallel plate 4.5 becomes a magnetic field space.

第3図は、磁極2.3の間に形成される磁場を模式的に
示したもので、上述のように光学平行平板4.5をスペ
ーサとして挾むことにより磁極2゜3の空隙が厳格に規
定されているから、空間8には高精度の一様磁場が形成
されることになる。
Figure 3 schematically shows the magnetic field formed between the magnetic poles 2.3, and as mentioned above, by sandwiching the optical parallel plate 4.5 as a spacer, the air gap between the magnetic poles 2.3 is tightly controlled. Therefore, a highly accurate uniform magnetic field is formed in the space 8.

第4図は、他の実施例の磁極構造21を示すもので、板
状磁極22.23の外側方にフランジ22、.23.が
設けられ、光学平行率@24.25をスペーサとして両
磁極22.23を対向させた後、前記フランジ部22.
.23.をボルト26、ナツト27で結合し、一体のユ
ニットとしている。
FIG. 4 shows a magnetic pole structure 21 of another embodiment, in which flanges 22, . 23. are provided, and after making both magnetic poles 22 and 23 face each other using an optical parallelism ratio @24.25 as a spacer, the flange portion 22.
.. 23. are connected with bolts 26 and nuts 27 to form an integrated unit.

第5図は更に他の実施例の磁極構造31を示すもので、
板状磁極32.33及び光学平行平板34.35を貫通
する取付穴を設け、その取付穴にボルト36を通し、ナ
ツト37で一体的に結合している。
FIG. 5 shows a magnetic pole structure 31 of yet another embodiment,
Mounting holes are provided that pass through the plate-shaped magnetic poles 32, 33 and the optical parallel plates 34, 35, and bolts 36 are passed through the mounting holes, and they are integrally connected with nuts 37.

さて、第3図から理解されるように、上記磁極構造1で
は、空間8の中心部では高精度の一様磁場が得られるが
、端部では磁束が外側方に広がるため、やや磁場の一様
性、平行性が劣る点がある。
Now, as can be understood from FIG. 3, in the magnetic pole structure 1, a highly accurate uniform magnetic field is obtained at the center of the space 8, but at the ends, the magnetic flux spreads outward, so the magnetic field becomes slightly uniform. There are some points where the pattern and parallelism are inferior.

そこで、第6図に示す磁極構造41は、上記磁極構造1
の光学平行平板4.5の外周を取り巻くようにシムコイ
ル42を設け、磁場の一様性と平行性を改良したもので
ある。
Therefore, the magnetic pole structure 41 shown in FIG.
A shim coil 42 is provided so as to surround the outer periphery of the optical parallel plate 4.5 to improve the uniformity and parallelism of the magnetic field.

この磁極構造41を用いた一様磁場発生器50は、第7
図に示すように、シムコイル42が追加されている他は
、第2図に示す一様磁場発生器10と同じ構造である。
The uniform magnetic field generator 50 using this magnetic pole structure 41 has a seventh
As shown in the figure, it has the same structure as the uniform magnetic field generator 10 shown in FIG. 2, except that a shim coil 42 is added.

第8図は、−横磁場発生器50の磁極2.3間に形成さ
れる磁場を模式的に示したもので、磁極2.3間の磁束
を増加する方向にシムコイル42に電流を流し、磁極2
,3の端部で磁束が外側方に広がるのを抑制している。
FIG. 8 schematically shows the magnetic field formed between the magnetic poles 2.3 of the transverse magnetic field generator 50, in which a current is passed through the shim coil 42 in the direction of increasing the magnetic flux between the magnetic poles 2.3, magnetic pole 2
, 3 suppresses the magnetic flux from spreading outward.

また、第9図に示す磁極構造61は、上記と同様に磁場
の一様性と平行性を改良するために、上記磁極構造1の
外周を容器63で取り囲み、その容器63の内部に冷却
材(図示省略)と超伝導材板62とを存在せしめたもの
である。
In addition, in the magnetic pole structure 61 shown in FIG. 9, in order to improve the uniformity and parallelism of the magnetic field as described above, the outer periphery of the magnetic pole structure 1 is surrounded by a container 63, and a coolant is placed inside the container 63. (not shown) and a superconducting material plate 62.

超電導材板42の素材としては、合金系超電導材や、複
合酸化物系超伝導材を用いることができる。
As the material for the superconducting material plate 42, an alloy superconducting material or a composite oxide superconducting material can be used.

この磁極構造61を用いた一様磁場発生器70を第10
図に示す、B伝導材板62等が付加されている他は、第
2図に示す一様磁場発生器10と同じ構造である。
The uniform magnetic field generator 70 using this magnetic pole structure 61 is
It has the same structure as the uniform magnetic field generator 10 shown in FIG. 2, except that the B conductive material plate 62 shown in the figure is added.

第11図は、−横磁場発生器70における磁場を模式的
に示したもので、超伝導材板62のマイスナー効果によ
って、磁束が磁極2,3の端部で外側方に広がることが
防止される結果、磁場−様性と平行性が改良されている
FIG. 11 schematically shows the magnetic field in the transverse magnetic field generator 70, in which the Meissner effect of the superconducting material plate 62 prevents the magnetic flux from spreading outward at the ends of the magnetic poles 2 and 3. As a result, the magnetic field properties and parallelism are improved.

第12図は、前記−横磁場発生器lOをNMR分析装置
80に応用したものである。試料Sは空間8に挿入され
る。81は励振コイル、82は検出コイルである。−横
磁場発生器10に代えて、−横磁場発生器30あるいは
一様磁場発生器70を用いることが出来る。
FIG. 12 shows an application of the transverse magnetic field generator IO to an NMR analyzer 80. The sample S is inserted into the space 8. 81 is an excitation coil, and 82 is a detection coil. - Instead of the transverse magnetic field generator 10, - the transverse magnetic field generator 30 or the uniform magnetic field generator 70 can be used.

次に、第13図は、前記−横磁場発生器IOをプロセス
センサとして用いた化学プラント90を示している。9
1はリアクター、92はポンプである。−横磁場発生器
lOに代えて、−横磁場発生器50あるいは一様磁場発
生器70を用いることが出来る。
Next, FIG. 13 shows a chemical plant 90 using the transverse magnetic field generator IO as a process sensor. 9
1 is a reactor, and 92 is a pump. - Instead of the transverse magnetic field generator IO, - the transverse magnetic field generator 50 or the uniform magnetic field generator 70 can be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁場空間を形成するために一対の磁極
を空隙をあけて対向させてなる磁極構造において、一対
の磁極間に光学平行平板をスペーサとして介在させて磁
極間隙を規定したことを特徴とする磁極構造が提供され
、これによって磁極間隙の平行性を高精度(約500人
/cm)に規定できるから、その間隙にlO以上の極め
て−様な磁場を形成でき、また、調整も不要となる。従
って、容易に高分解能のNMR装置やESR装置を得る
ことが出来るようになる。
According to the present invention, in a magnetic pole structure in which a pair of magnetic poles are opposed to each other with an air gap in order to form a magnetic field space, an optical parallel plate is interposed between the pair of magnetic poles as a spacer to define the magnetic pole gap. A unique magnetic pole structure is provided, which allows the parallelism of the magnetic pole gap to be defined with high precision (approximately 500 magnets/cm), making it possible to form an extremely similar magnetic field of more than 1O in the gap, and also to make adjustment possible. No longer needed. Therefore, it becomes possible to easily obtain a high-resolution NMR device or ESR device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の磁極構造の斜視図、第2図
は第1図に示す磁極構造を用いた一様磁場発生器の正面
図、第3図は第2図に示す一様磁場発生器における磁束
を示す模式図、第4図は本発明の他の実施例の正面図、
第5図は本発明の更に他の実施例の一部破断図を含む正
面図、第6図は第1図に示す実施例にシムコイルを付加
した磁極構造の斜視図、第7図は第6図に示す磁極構造
を用いた一様磁場発生器の正面図、第8図は第7図に示
す一様磁場発生器の磁束を示す概念図、第9図は第1B
!Jに示す実施例に漏洩磁束防止壁を付加した磁極構造
の一部破断図を含む斜視図、第10図は第9図に示す磁
極構造を用いた一様磁場発生器の正面図、第11図は第
10図の一様磁場発生器における磁束を示す概念図、第
12図は第2図に示す一様磁場発生器を用いたNMR分
析装置の要部斜視図、第13図は第2図に示す一様磁場
発生器を用いたプロセスセンサを含む化学プラントの要
部斜視図である。 〔符号の説明〕 1.21,31.41.61・・・磁極構造2.3・・
・磁極 4.5・・・光学平行平板 6・・・接着剤 7・・・クロスローラーへアリング 8・・・磁場空間 10.50.70・・・−横磁場発生器14.15・・
・永久磁石 42・・・シムコイル 62・・・超電導材板 63・・・容器 80・・・NMR分析装置 90・・・化学プラント。
FIG. 1 is a perspective view of a magnetic pole structure according to an embodiment of the present invention, FIG. 2 is a front view of a uniform magnetic field generator using the magnetic pole structure shown in FIG. A schematic diagram showing magnetic flux in a magnetic field generator, FIG. 4 is a front view of another embodiment of the present invention,
FIG. 5 is a front view including a partially cutaway view of still another embodiment of the present invention, FIG. 6 is a perspective view of a magnetic pole structure in which a shim coil is added to the embodiment shown in FIG. 8 is a conceptual diagram showing the magnetic flux of the uniform magnetic field generator shown in FIG. 7, and FIG. 9 is a front view of a uniform magnetic field generator using the magnetic pole structure shown in the figure.
! FIG. 10 is a perspective view including a partially cutaway view of the magnetic pole structure in which a leakage flux prevention wall is added to the embodiment shown in FIG. 9; FIG. 10 is a front view of a uniform magnetic field generator using the magnetic pole structure shown in FIG. 9; The figure is a conceptual diagram showing the magnetic flux in the uniform magnetic field generator shown in Fig. 10, Fig. 12 is a perspective view of the main part of the NMR analyzer using the uniform magnetic field generator shown in Fig. 2, and Fig. 13 is a schematic diagram showing the magnetic flux in the uniform magnetic field generator shown in Fig. 2. FIG. 2 is a perspective view of a main part of a chemical plant including a process sensor using the uniform magnetic field generator shown in the figure. [Explanation of symbols] 1.21, 31.41.61...Magnetic pole structure 2.3...
・Magnetic pole 4.5...Optical parallel plate 6...Adhesive 7...Cross roller ring 8...Magnetic field space 10.50.70...-Transverse magnetic field generator 14.15...
- Permanent magnet 42...Shim coil 62...Superconducting material plate 63...Container 80...NMR analyzer 90...Chemical plant.

Claims (1)

【特許請求の範囲】[Claims] 1.磁場空間を形成するために一対の磁極を空隙をあけ
て対向させてなる磁極構造において、一対の磁極間に光
学平行平板をスペーサと して介在させて磁極間隙を規定したことを特徴とする磁
極構造。
1. A magnetic pole structure comprising a pair of magnetic poles facing each other with an air gap in order to form a magnetic field space, characterized in that an optical parallel plate is interposed between the pair of magnetic poles as a spacer to define the magnetic pole gap.
JP63035691A 1988-02-17 1988-02-17 Structure of magnetic pole Pending JPH01209706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035691A JPH01209706A (en) 1988-02-17 1988-02-17 Structure of magnetic pole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035691A JPH01209706A (en) 1988-02-17 1988-02-17 Structure of magnetic pole

Publications (1)

Publication Number Publication Date
JPH01209706A true JPH01209706A (en) 1989-08-23

Family

ID=12448922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035691A Pending JPH01209706A (en) 1988-02-17 1988-02-17 Structure of magnetic pole

Country Status (1)

Country Link
JP (1) JPH01209706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527606A (en) * 2016-07-12 2019-10-03 パトリック・ダブリュー・グッドウィルPatrick W.GOODWILL Magnetic particle imaging using a rotating magnet
US11890488B2 (en) 2019-03-13 2024-02-06 Magnetic Insight, Inc. Magnetic particle actuation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527606A (en) * 2016-07-12 2019-10-03 パトリック・ダブリュー・グッドウィルPatrick W.GOODWILL Magnetic particle imaging using a rotating magnet
US11890488B2 (en) 2019-03-13 2024-02-06 Magnetic Insight, Inc. Magnetic particle actuation

Similar Documents

Publication Publication Date Title
US4679022A (en) Magnetic field generating device for NMR-CT
JPH07171131A (en) Improvement of mri magnet
CN102412051B (en) Permanent magnet assembly with high-intensity magnetic field and high uniformity
JPS5961763A (en) Apparatus for generating uniform magnetic field
JPH01209706A (en) Structure of magnetic pole
CN1172563C (en) Hybrid wiggler
JP2006006936A (en) Magnetic field generating device and shimming method therefor
CN104599806B (en) The High-Field permanent magnet MRI magnet system that a kind of magnetic focusing and curved surface are corrected
Huber et al. On the design of wide range electromagnets of high homogeneity
JPH0345886B2 (en)
JP3106084B2 (en) Magnet facing type permanent magnet magnetic circuit
RU2138871C1 (en) Magnetic system
CN2588368Y (en) Rareearth permanent magnet type nuclear magnetic resonance massspectrometer magnetic filed device
CN104849005B (en) The open magnetic field type electromagnetic vibration generator system magnetic structure of the rectangle of double magnetic circuit two ends symmetry excitation
CN104848930B (en) The open magnetic field type electromagnetic vibration generator system magnetic structure of the centripetal excitation rectangle of double permanent magnet of eddy current compensation
JPH02155450A (en) Magnetizing device for assembling small-sized motor
JP3369653B2 (en) Permanent magnet facing magnetic field generator
JP2002102205A (en) Magnetic resonace imaging apparatus
JPH05142018A (en) Electromagnetic balance type weighing apparatus
JP3376529B2 (en) Optical isolator
JPS6343304A (en) Uniform field magnet of permanent magnet type
JPS62250608A (en) Magnetic field generator
JPS60257109A (en) Magnetic field generating device
JPS6012252Y2 (en) magnetically sensitive coil
JP2508093Y2 (en) Magnetizing device