JPH01209355A - Manufacture of oxygen sensor element - Google Patents

Manufacture of oxygen sensor element

Info

Publication number
JPH01209355A
JPH01209355A JP63032815A JP3281588A JPH01209355A JP H01209355 A JPH01209355 A JP H01209355A JP 63032815 A JP63032815 A JP 63032815A JP 3281588 A JP3281588 A JP 3281588A JP H01209355 A JPH01209355 A JP H01209355A
Authority
JP
Japan
Prior art keywords
layer
coating
oxygen sensor
coating layer
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63032815A
Other languages
Japanese (ja)
Inventor
Fujio Ishiguro
石黒 不二男
Shuichiro Oki
沖 修一郎
Akiyoshi Kurishita
栗下 明義
Takumi Narahara
楢原 卓美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63032815A priority Critical patent/JPH01209355A/en
Publication of JPH01209355A publication Critical patent/JPH01209355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To increase durability with an eased internal stress of a coating layer, by performing a cooling at least once while a plasma coating is carried out on an electrode layer to form a microscopic interval between coating layers. CONSTITUTION:A partially stabilized zirconia solid electrolytic element with Y2O3 added thereto undergoes an etching treatment by acid such as hydrofluoric acid after a defatting treatment to form a plated layer 1.0mum thick by an electroless platinum plating. After a heat treatment of the layer, a spray coating of spinel is performed for the solid electrolytic element by an argon nitrogen plasma method. In the course of the spray coating of the spinel, a cooling is performed at least once. As a result, a microscopic gap is caused in a coating layer to ease an internal stress therein. This improves a gas permeability thereby enhancing durability for a thermal cycle and improving responsiveness.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸素センサ素子の製造法に関・し、特に耐
久性の向上を図ったコーティング層を有する酸素センサ
素子の製造法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an oxygen sensor element, and particularly to a method for manufacturing an oxygen sensor element having a coating layer with improved durability. be.

(従来の技術) 従来、酸素イオン導電性の固体電解質を用い、酸素濃淡
電池の原理により、内燃機関等から排出される排気ガス
中の酸素濃度を測定するものとしていわゆる酸素センサ
素子が知られている。
(Prior Art) Conventionally, so-called oxygen sensor elements have been known as devices that use an oxygen ion conductive solid electrolyte and measure the oxygen concentration in exhaust gas discharged from internal combustion engines, etc., based on the principle of an oxygen concentration battery. There is.

かかる酸素センサ素子としては、例えば有底円筒状のイ
ツトリア添加ジルコニア磁器等を酸素イオン透過性の固
体電解質として、この固体電解質の内外面に、例えば白
金等の電極を付与したものが一般的であり、内面の電極
を大気と連通させて基準酸素濃度の電極とする一方、外
面の電極を被測定ガスである排気ガス中に曝して測定電
極とすることによって排気ガス中の酸素濃度を測定する
しくみになっている。
Such an oxygen sensor element is generally one in which an oxygen ion-permeable solid electrolyte is made of, for example, a bottomed cylindrical yttria-doped zirconia porcelain, and electrodes of, for example, platinum are provided on the inner and outer surfaces of the solid electrolyte. , A mechanism for measuring the oxygen concentration in exhaust gas by connecting the inner electrode with the atmosphere and using it as the reference oxygen concentration electrode, while exposing the outer electrode to the exhaust gas, which is the gas to be measured, and using it as the measurement electrode. It has become.

このような酸素センサ素子には、一般に外側電極を保護
するために、スピネル等のコーティングが施されている
Such oxygen sensor elements are generally coated with spinel or the like to protect the outer electrodes.

(発明が解決しようとする問題点) しかしながら、かかるコーティング層は、酸素センサが
内燃機関の回転数の変動に伴って、サーマルサイクルを
受けるので、クランクが発生し、コーティング層が白金
等の電極から剥がれることがある。コーティング層が剥
がれると外側電極層が露出し、酸素センサの使用中に還
元性排気ガスにさらされるため、この露出部分から外側
電極層が減耗して、酸素センサ素子の出力電圧が低下す
るという問題点が発生する。また、−iにコーティング
層が厚くなると、ガス透過性が小さくなるため、白金等
よりなる電極の減耗に対しては良い効果を与えるが、応
答性が悪くなる問題点がある。
(Problem to be Solved by the Invention) However, since the oxygen sensor is subjected to a thermal cycle due to fluctuations in the rotational speed of the internal combustion engine, cranking occurs, and the coating layer is removed from the platinum or other electrode. It may peel off. When the coating layer peels off, the outer electrode layer is exposed and exposed to reducing exhaust gas during use of the oxygen sensor, which causes the outer electrode layer to wear away from this exposed portion, resulting in a decrease in the output voltage of the oxygen sensor element. A point occurs. In addition, when the coating layer becomes thicker than -i, the gas permeability decreases, which has a good effect on the wear and tear of the electrode made of platinum or the like, but there is a problem in that the responsiveness deteriorates.

この発明は、上記した問題点等を解消し、コーティング
層の内部応力を緩和し、サーマルサイクル中における耐
久性を向上させると共にコーティング層が厚くても応答
性の良い酸素センサ素子の製造法を提供することを目的
とする。
This invention solves the above-mentioned problems, relieves the internal stress of the coating layer, improves durability during thermal cycling, and provides a method for manufacturing an oxygen sensor element that has good responsiveness even when the coating layer is thick. The purpose is to

(問題点を解決するための手段) すなわちこの発明は、酸素イオン導電性固体電解質の外
面に設けられた電極層上に耐熱性無機質コーティングの
保護層を形成するプラズマコーティングしを複数回行う
間に少なくとも一回の該酸素イオン導電性固体電解質を
冷却することを特徴とする。
(Means for Solving the Problems) That is, the present invention provides a method for forming a protective layer of a heat-resistant inorganic coating on an electrode layer provided on the outer surface of an oxygen ion conductive solid electrolyte while performing plasma coating multiple times. The method is characterized in that the oxygen ion conductive solid electrolyte is cooled at least once.

(作 用) 本発明では、素子1ヶ当り複数回のスピネルのプラズマ
コーティングを繰返えし行う間に、酸素センサ素子を少
なくとも1回冷却することにより、冷却を施す前のコー
ティング層と冷却を施した後のコーティング層との間に
ミクロ的な間隙が生じ、この間隙がコーティング層に発
生する内部応力を緩和したり、ガスの透過性が良(なる
ため、酸素センサ素子のサーマルサイクルに対する耐久
性が向上し、応答性が改善される。
(Function) In the present invention, by cooling the oxygen sensor element at least once while repeating spinel plasma coating multiple times per element, the coating layer and the cooling layer before cooling are cooled. Microscopic gaps are created between the coating layer and the coating layer, and these gaps alleviate the internal stress generated in the coating layer and improve gas permeability (which improves the oxygen sensor element's durability against thermal cycles). performance and responsiveness.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

本発明の酸素センサ素子に用いられる固体電解質は、酸
素イオン導電性を有するもので構成され、例えば組成と
してYbzO:+、 5CZO3,Cab、 MgO,
Th0z。
The solid electrolyte used in the oxygen sensor element of the present invention is composed of one having oxygen ion conductivity, and has a composition such as YbzO:+, 5CZO3, Cab, MgO,
Th0z.

Ce0z等を添加したZr0z; Cab、 Lag’
3等を添加したCeO,; Er2O3,SrO等を添
加したBi2O3;あるいはY2O3等を添加したTh
O□である。特に、機械的強度、温度特性上Y2O3等
を含むZrO□(完全安定および部分安定を含む)が好
ましい。
Zr0z added with Ce0z etc.; Cab, Lag'
CeO added with 3 etc.; Bi2O3 added with Er2O3, SrO etc.; or Th added with Y2O3 etc.
It is O□. Particularly preferred is ZrO□ (including completely stable and partially stable) containing Y2O3 etc. in terms of mechanical strength and temperature characteristics.

このような組成原料を有底円筒状あるいは平板状に成形
し、焼成して固体電解質素子を製造する。   次に固
体電解質素子の内外表面に金属層を形成して電極とする
。電極の形成は例えば無電解めっきによって行われる。
A solid electrolyte element is manufactured by forming such raw materials into a bottomed cylindrical shape or flat plate shape and firing. Next, metal layers are formed on the inner and outer surfaces of the solid electrolyte element to form electrodes. The electrodes are formed, for example, by electroless plating.

めっき処理後、熱処理を施し、電極表面の保護のために
、例えばスピネル粒子のプラズマ溶射を施す。このプラ
ズマ溶射の回数は、例えば2〜7回程度が良く、−回の
溶射によって形成されるスピネルコート層の厚さは例え
ば20〜30μmである。
After the plating process, heat treatment is performed, and plasma spraying of spinel particles, for example, is performed to protect the electrode surface. The number of times of this plasma spraying is preferably about 2 to 7 times, and the thickness of the spinel coat layer formed by the -times of spraying is, for example, 20 to 30 μm.

したがって、層厚が40〜210μmのコーティング層
が得られる。本発明は、このプラズマ溶射の間に少なく
とも一回、好ましくは各回毎に冷却を行う。冷却の方法
は、プラズマ溶射後プラズマ溶射チを固体電解質素子か
ら離して溶射層が凝固する温度、例えばスピネル粒子を
コーティング層とする場合は、700″C以下にする。
A coating layer with a layer thickness of 40 to 210 μm is thus obtained. The present invention provides cooling at least once during this plasma spraying, preferably each time. The cooling method is such that after plasma spraying, the plasma sprayed chip is separated from the solid electrolyte element to a temperature at which the sprayed layer solidifies, for example, when spinel particles are used as the coating layer, the temperature is 700''C or less.

コーティング層に良好な気孔を有させるためには、室温
から300°Cの範囲に冷却することが好ましい。コー
ティング層は冷却毎にミクロ的な間隙が生じるためコー
ティング層の内部応力が緩和されると共にガスの透過性
が良くなる。かくして電極層の上層部には内部応力が小
さく、ガス透過性の良好なコーティング層が形成される
ので、使用中にサーマルサイクルを受けてもクラックが
発生せず、耐久性が良く応答性に優れた酸素センサ素子
が得られる。
In order to have good pores in the coating layer, it is preferable to cool the coating layer to a temperature ranging from room temperature to 300°C. Since microscopic gaps are generated in the coating layer each time it is cooled, internal stress in the coating layer is relaxed and gas permeability is improved. In this way, a coating layer with low internal stress and good gas permeability is formed on the upper layer of the electrode layer, so it does not crack even when subjected to thermal cycles during use, and has good durability and excellent responsiveness. An oxygen sensor element is obtained.

実施例1 まず、有底円筒状Y2O3を添加した部分安定化ジルコ
ニア固体電解質素子を、その表面の汚れを取り除くため
に脱脂処理をした後、フッ酸等の酸でエツチング処理を
行い、次いで無電解白金めっきを施し、厚さ1.0μm
のめっき層を得た。このめっき層が施された固体電解質
素子を水洗した後、120 ”Cで1時間乾燥し、めっ
き層を固体電解質の下地に密着させるため700°Cの
大気中で30分熱処理をした。この後、固体電解質素子
に数種の平均粒径を有するスピネル(八1□01.・M
g0)をアルゴン/窒素プラズマ法にて溶射した。この
ようにして得られた酸素センサ素子を金属ケーシングで
組立てプロパンバーナー法にてガス温度400°Cでの
起電力が600 mVから300 mVに変化する応答
時間を測定した。またエンジンにて排気ガス温度が30
0°Cから1050°Cへ、1050”Cから300°
Cへ交互に変化するサーマルサイクルテストを1500
サイクル行って、テスト終了後にセンサを解体し、コー
ティング層のクラック発生の有無を40倍の実体顕微鏡
にて検査した。これらの結果を第1表に示す。
Example 1 First, a partially stabilized zirconia solid electrolyte element containing bottomed cylindrical Y2O3 was degreased to remove dirt from its surface, then etched with an acid such as hydrofluoric acid, and then subjected to electroless etching. Platinum plated, thickness 1.0μm
A plating layer was obtained. After washing the solid electrolyte element with this plating layer applied with water, it was dried at 120"C for 1 hour, and heat treated in the atmosphere at 700°C for 30 minutes to make the plating layer adhere to the solid electrolyte base. After this, , spinel (81□01.・M
g0) was thermally sprayed using an argon/nitrogen plasma method. The oxygen sensor element thus obtained was assembled with a metal casing, and the response time for the electromotive force to change from 600 mV to 300 mV at a gas temperature of 400°C was measured using a propane burner method. Also, the exhaust gas temperature in the engine is 30
0°C to 1050°C, 1050”C to 300°
1500 thermal cycle tests alternating to C
After the cycle was completed, the sensor was disassembled and the coating layer was inspected for cracks using a stereomicroscope with a magnification of 40 times. These results are shown in Table 1.

第1表から明らかなようにスピネルコーティングの溶射
の途中に、少なくとも1回の冷却を施したセンサはいず
れのサンプルもコーティングにクラックが発生せず、応
答性も冷却しなかったサンプルに比較して良好であった
As is clear from Table 1, none of the samples in which the spinel coating was cooled at least once during thermal spraying exhibited any cracks in the coating, and the response was significantly lower than in the samples that were not cooled. It was good.

(発明の効果) 以上の説明から明らかなように本発明は複数回のプラズ
マコーティング処理中に冷却を少なくとも1回施すこと
により、コーティング層には冷却毎にミクロ的な間隙が
生じるため、コーティング層の内部応力を緩和し、かつ
ガス透過性が良くなるので、サーマルサイクルに対する
耐久性が良好で、応答性に優れた酸素センサ素子を得る
ことができ、産業上利用の可能性が極めて大である。
(Effects of the Invention) As is clear from the above description, the present invention provides cooling at least once during multiple plasma coating processes, so that micro gaps are created in the coating layer each time the coating layer is cooled. Since the internal stress of the oxygen sensor is alleviated and the gas permeability is improved, it is possible to obtain an oxygen sensor element that has good durability against thermal cycles and excellent responsiveness, and has extremely high potential for industrial use. .

Claims (1)

【特許請求の範囲】[Claims] 1、酸素イオン導電性固体電解質の外面に設けられた電
極層上に耐熱性無機質コーティングの保護層を形成する
プラズマコーティングを複数回行う間に少なくとも一回
の該酸素イオン導電性固体電解質を冷却することを特徴
とする酸素センサ素子の製造法。
1. Cooling the oxygen ion conductive solid electrolyte at least once during multiple plasma coatings to form a protective layer of heat-resistant inorganic coating on the electrode layer provided on the outer surface of the oxygen ion conductive solid electrolyte. A method for manufacturing an oxygen sensor element characterized by:
JP63032815A 1988-02-17 1988-02-17 Manufacture of oxygen sensor element Pending JPH01209355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032815A JPH01209355A (en) 1988-02-17 1988-02-17 Manufacture of oxygen sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032815A JPH01209355A (en) 1988-02-17 1988-02-17 Manufacture of oxygen sensor element

Publications (1)

Publication Number Publication Date
JPH01209355A true JPH01209355A (en) 1989-08-23

Family

ID=12369331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032815A Pending JPH01209355A (en) 1988-02-17 1988-02-17 Manufacture of oxygen sensor element

Country Status (1)

Country Link
JP (1) JPH01209355A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621348A1 (en) * 1993-04-19 1994-10-26 Sulzer Metco (US) Inc. Fixture and method for cooling tubular substrate during thermal spraying
US6544586B1 (en) 1998-02-16 2003-04-08 Ngk Spark Plug Co. Ltd. Method for manufacturing gas sensor element
JP2007248123A (en) * 2006-03-14 2007-09-27 Ngk Spark Plug Co Ltd Gas sensor element and manufacturing method of gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489686A (en) * 1977-12-27 1979-07-16 Hitachi Ltd Oxygen density detector
JPS5557145A (en) * 1978-10-23 1980-04-26 Toyota Motor Corp Manufacture of oxygen sensor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489686A (en) * 1977-12-27 1979-07-16 Hitachi Ltd Oxygen density detector
JPS5557145A (en) * 1978-10-23 1980-04-26 Toyota Motor Corp Manufacture of oxygen sensor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621348A1 (en) * 1993-04-19 1994-10-26 Sulzer Metco (US) Inc. Fixture and method for cooling tubular substrate during thermal spraying
US6544586B1 (en) 1998-02-16 2003-04-08 Ngk Spark Plug Co. Ltd. Method for manufacturing gas sensor element
JP2007248123A (en) * 2006-03-14 2007-09-27 Ngk Spark Plug Co Ltd Gas sensor element and manufacturing method of gas sensor

Similar Documents

Publication Publication Date Title
JP6678134B2 (en) Gas sensor element and gas sensor
US6361821B1 (en) Method of treating an exhaust sensor and a product thereof
US7893510B2 (en) High temperature-stable sensor
Chen et al. Potassium sodium niobate (KNN)‐based lead‐free piezoelectric ceramic coatings on steel structure by thermal spray method
US20020036138A1 (en) Multi-layer gas sensor element and gas sensor comprising the same
Huang et al. Evaluation of TGO growth in thermal barrier coatings using impedance spectroscopy
JPS6110756A (en) Gas sensor and manufacture thereof
JPH01209355A (en) Manufacture of oxygen sensor element
JP3766572B2 (en) Method for manufacturing oxygen sensor element
JPS6126022B2 (en)
JP2001174434A (en) Gas sensor
JP2563953B2 (en) Oxygen sensor
Chao et al. Evaluation of thermal barrier coatings exposed to hot corrosion environment by impedance spectroscopy
JP3616510B2 (en) Oxygen sensor and manufacturing method thereof
JP2957542B1 (en) Gas sensor element and manufacturing method thereof
JPS6036950A (en) Electrochemical cell and its production
JPS6145962A (en) Threshold current type oxygen sensor
JPH0244244A (en) Manufacture of electrochemical cell
WO2020158338A1 (en) Exhaust air sensor
JP4062768B2 (en) Method for manufacturing oxygen sensor element
JPS58204365A (en) O2 sensor
JPS62198749A (en) Oxygen concentration detector
JPH08254530A (en) Method and system for estimation of life by nondestruction of ceramic member
JPH0820404B2 (en) Oxygen sensor element
WO2020195346A1 (en) Solid electrolyte and gas sensor