JPH01208692A - Material grain size detecting device for vertical furnace - Google Patents

Material grain size detecting device for vertical furnace

Info

Publication number
JPH01208692A
JPH01208692A JP3280288A JP3280288A JPH01208692A JP H01208692 A JPH01208692 A JP H01208692A JP 3280288 A JP3280288 A JP 3280288A JP 3280288 A JP3280288 A JP 3280288A JP H01208692 A JPH01208692 A JP H01208692A
Authority
JP
Japan
Prior art keywords
vibrating body
particles
vibration
particle size
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3280288A
Other languages
Japanese (ja)
Inventor
Takafumi Sugawara
尚文 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP3280288A priority Critical patent/JPH01208692A/en
Publication of JPH01208692A publication Critical patent/JPH01208692A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit the proper and correct regulation of the supply of material, by a method wherein a vibrating body is provided in the flow passage of granular particles to indicate the number of vibration of the vibrating body by detecting the vibration thereof and grasp the change with time of the grain size of the material from the change of the number of vibrations. CONSTITUTION:A vibrating body 11 is received in a protecting member 19 when material A is loaded into a lower hopper 5. When the flow-down of granular particles (a) is started and the vibrating body 11 is descended, the vibrating body 11 is vibrated by the particles (a), colliding against a protuberance 21, and a pick-up 12 indicates the condition of the vibration of the vibrating body 11 on a display means 13. When the flow speed of the particles in a discharging end 16 is constant, there is a positive correlative relation among the vibrating number (nu) of the vibrating body 11, the number N of particles colliding against the vibrating body 11 and the number No of particles per unit volume, therefore, the grain size distribution of the supplying material A may be decided when the number (nu) of vibration is determined timewise by a vibration waveform (Lissajoius's figure) or the like indicated on the display means.

Description

【発明の詳細な説明】 こ産業上の利用分野] 本発明は、竪型炉の原料粒度検出装置に係り、特に竪型
炉に装入される原料の粒度を適確に把握するための原料
粒度検出装置に関する。
[Detailed Description of the Invention] This Industrial Application Field] The present invention relates to a raw material particle size detection device for a vertical furnace, and in particular to a raw material particle size detection device for accurately grasping the particle size of a raw material charged into a vertical furnace. This invention relates to a particle size detection device.

こ従来の技術1 一般に、細粒な粒子と■粒な粒子とが混在する原料を、
高炉等の竪型炉本体内に装入する場合、その粒度を経時
的に一定化するなどの調整を行う装置が必要となる。
This conventional technology 1 Generally, raw materials containing a mixture of fine particles and small particles are
When charging particles into the main body of a vertical furnace such as a blast furnace, a device is required to make adjustments such as making the particle size constant over time.

第5図に示すように、従来この種の竪型炉には、ベルト
コンベア1により搬送されてきた原料Aを受けて、炉本
体2内までその量を調節しながら供給するための上部ホ
ッパ3およびゲート4を備えた下部ホッパ5か設?−)
らていると共に、ベルトコンベア1と上部ホンパ3との
間に、炉心6廻りに旋回する旋回シュート7が介設され
ている。この旋回シュート7は、ベル1−コンベア1に
よって搬送される途中で分級された粒子aを、上部ホッ
パ3内に落下させる前に適宜混合させることで、粒度の
経時的な変1ヒを防止し、炉操業の安定1ヒを計ろうと
するものて゛ある。
As shown in FIG. 5, conventionally, this type of vertical furnace has an upper hopper 3 for receiving the raw material A conveyed by the belt conveyor 1 and feeding it into the furnace body 2 while adjusting the amount. and lower hopper 5 with gate 4? −)
In addition, a rotating chute 7 that rotates around the reactor core 6 is interposed between the belt conveyor 1 and the upper pumper 3. This rotating chute 7 prevents the particle size from changing over time by properly mixing the particles a that have been classified while being conveyed by the bell 1-conveyor 1 before dropping them into the upper hopper 3. There are also efforts to stabilize furnace operation.

こ発明が解決しようとする課題] ところで、従来の竪型炉には、原召人の粒度を検出する
ための装置はなかった。
Problems to be Solved by the Invention] By the way, conventional vertical furnaces did not have a device for detecting the grain size of raw materials.

従って、旋回シュート7の旋回速度等の制御は、炉内温
度計8による炉内温度分布等によって、粒度分布変化を
推定し、適切な運転になっているかどうかを判断してい
た。
Therefore, in controlling the rotating speed of the rotating chute 7, the change in particle size distribution is estimated based on the temperature distribution in the furnace using the furnace thermometer 8, and it is determined whether or not the operation is appropriate.

しかしながら、この間接的なデータは、池の要素、例え
ば、炉内の原料堆積状況等に影響されて変動するおそれ
があり、必ずしも原料の粒度を把握するのに役立っては
いなかった。
However, this indirect data is susceptible to fluctuations due to factors in the pond, such as the state of raw material accumulation in the furnace, and is not necessarily useful for understanding the particle size of the raw material.

そこで本発明は、装入される原料の粒度分布を把握でき
る装置を新規に提供して、粒度調節を適切に行わせるべ
く創案されたものである。
Therefore, the present invention was devised to provide a new device that can grasp the particle size distribution of the raw material to be charged, and to appropriately adjust the particle size.

[課題を解決するための手段] 本発明は、炉体本体内へ装入される粒子の流路に沿って
設けられると共にその流路に突出された突起部を有した
振動体と、装入途中の粒子が上記突起部に衝突して生ず
る上記振動体の振動を感知してその振動数を計測するた
めの振動感知手段と、該振動感知手段により計測された
振動数を順次表示するための表示手段とを備えたもので
ある。
[Means for Solving the Problems] The present invention provides a vibrating body that is provided along a flow path for particles to be charged into a furnace main body and has a protrusion protruding into the flow path; Vibration sensing means for sensing vibrations of the vibrating body generated when particles on the way collide with the protrusion and measuring the vibration frequency; and Vibration sensing means for sequentially displaying the frequencies measured by the vibration sensing means. It is equipped with a display means.

[作用] 上記構成によって、振動体は、粒子で成る原料の流れに
より振動される。振動感知手段は、この振動を感知して
振動数を表示手段に表示させる。
[Operation] With the above configuration, the vibrating body is vibrated by the flow of the raw material made of particles. The vibration sensing means senses this vibration and displays the vibration frequency on the display means.

この振動数は、振動体に衝突した粒子の数、即ち、その
粒径の大小に左右されるものであるため、装入された原
料の粒度が把握できる。
Since this frequency depends on the number of particles colliding with the vibrating body, that is, the size of the particles, the particle size of the charged raw material can be determined.

:実施例] 以下本発明の実施例を、添付図面に従って説明する。:Example] Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明に係る竪型炉の原料粒度検出装置の一
実施例を示したものである。この装置は、下部ホッパ5
に設けられると共に、炉心6となる下部ホッパ5の排出
方向に沿って設けられた振動体11と、振動体11に着
設された振動感知手段たるピックアップ12と、ピック
アップ12からの信号を適宜変換すると共に、所望する
情報を順次表示するための表示手段13とから主として
構成されている。即ち、ピンクアップ12と表示手段1
3とで公知の振動計が形成されている。
FIG. 1 shows an embodiment of a raw material particle size detection device for a vertical furnace according to the present invention. This device has a lower hopper 5
A vibrating body 11 is provided along the discharge direction of the lower hopper 5 which becomes the reactor core 6, a pickup 12 which is a vibration sensing means attached to the vibrating body 11, and a signal from the pickup 12 is converted as appropriate. It also mainly comprises a display means 13 for sequentially displaying desired information. That is, the pink-up 12 and the display means 1
3 form a known vibration meter.

振動内11は、下部ホラパラ上方に設けられた昇降装置
14から支持棒15により吊り下げられており、下部ホ
ッパ5の原料排出端部16とその上部17とを往復移動
するようになっている。支持棒15の周囲は、保護管1
8と上部17に位置する保護部材1つとによって覆われ
、下部ホラパラ内に投入された原料Aから遮断されるよ
うになっている。また、支持棒15は、振動体11が振
動したときに二次振動しないように保護管18へ上下二
ケ所で固定されている。
The vibrating chamber 11 is suspended by a support rod 15 from a lifting device 14 provided above the lower hopper, and is configured to reciprocate between the raw material discharge end 16 of the lower hopper 5 and its upper portion 17. The support rod 15 is surrounded by a protective tube 1.
8 and one protection member located at the upper part 17, and is shielded from the raw material A put into the lower horapara. Further, the support rod 15 is fixed to the protective tube 18 at two locations, upper and lower, to prevent secondary vibration when the vibrating body 11 vibrates.

ピンクアップ12は、振動体11の粒子aに衝突されな
い上端にネジ止めされていると共に、支持棒15に沿っ
て設けられたコード20によって表示手段13に結線さ
れている。
The pink-up 12 is screwed to the upper end of the vibrating body 11 that is not collided with the particles a, and is connected to the display means 13 by a cord 20 provided along the support rod 15.

第2図に示すように、振動体11には、突起部21が形
成されている。本実施例にあっては、径方向外方に突出
したノコギリ歯状を呈しており、流下する粒子aが炉内
へ落下する途中で衝突すると共に、接触した粒子が固着
して固有振動数が変化しないように形成されている。
As shown in FIG. 2, a protrusion 21 is formed on the vibrating body 11. As shown in FIG. In this example, it has a sawtooth shape that protrudes outward in the radial direction, and the flowing particles a collide with each other while falling into the furnace, and the particles that come into contact are fixed and the natural frequency is reduced. It is formed so that it does not change.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

下部ホッパ5内に原料Aを装入する際は、昇降装置14
によって、振動体11を上昇位置させ、保護部材1つの
内側に収容しておく。
When charging raw material A into the lower hopper 5, the lifting device 14
The vibrating body 11 is raised to the raised position and housed inside one of the protection members.

原料Aがホラパラ内に貯蔵されて、ゲート4が作動し、
粒子aが流下し始めると、昇降装置14により振動体1
1を下降させ、粒子aの流れの中に位置させる。振動体
11は、突起部21に衝突する粒子aによって振動し、
ピックアップ12がこの振動状態を表示手段13に表示
させる。表示された振動状態から振動数を把握すること
で、次のように原料粒子の粒度が検出できる。
Raw material A is stored in the horapara, gate 4 is activated,
When the particles a start flowing down, the vibrating body 1 is lifted up by the lifting device 14.
1 is lowered and placed in the flow of particles a. The vibrating body 11 vibrates due to particles a colliding with the protrusion 21,
The pickup 12 causes the display means 13 to display this vibration state. By understanding the vibration frequency from the displayed vibration state, the particle size of the raw material particles can be detected as follows.

下部ホラパラの排出端部16での流速が一定であれば、
振動体11の振動数νと、これに衝突する粒子の数Nお
よび巣位体積当りの粒子の数N0とは正の相関がある。
If the flow velocity at the discharge end 16 of the lower horapara is constant,
There is a positive correlation between the frequency ν of the vibrating body 11, the number N of particles colliding with it, and the number N0 of particles per focal volume.

この巣位体積当りの粒子の数N。は、粒子aの密集度が
同じときは、粒径により左右される。即ち、粒径の小さ
い粒子が多ければ、その数N。が増すことになる。これ
らの関係から、例えば振動数νが大であるほど、粒子径
の大なる粒子が少ない、という関係が成立する(第3図
参照)。
The number N of particles per nest volume. is influenced by the particle size when the density of particles a is the same. That is, if there are many particles with a small particle size, the number N. will increase. From these relationships, for example, the larger the frequency ν, the fewer particles with larger particle diameters are established (see FIG. 3).

bでって、表示手段13において、画面表示される振動
波形(リサージュ図形)!4により振動数νを経時的に
把握しておけば、供給される原料Aの粒度分布がわかる
ことになる。例えば、第4図に示すような変化がみられ
ると、次の投入時にはそのパターン(B)、(C)を修
正する方向で、−定の状fi(D)にすべく旋回シュー
ト7等を駆動させるなどの処置がとれる。
b, the vibration waveform (Lissajou figure) displayed on the screen in the display means 13! 4, if the frequency ν is determined over time, the particle size distribution of the raw material A to be supplied can be determined. For example, if a change as shown in Fig. 4 is observed, the rotating chute 7, etc. should be adjusted in the direction of correcting the patterns (B) and (C) at the next injection to maintain the - constant state fi (D). You can take measures such as driving it.

このように、炉内に供給される直前の原料の粒度変化を
、振動計によって把握するようにしたので、その変化に
対応する適切な装入制御を行うことが可能になる。
In this way, since the particle size change of the raw material immediately before being supplied into the furnace is ascertained by the vibration meter, it becomes possible to carry out appropriate charging control in response to the change.

また、粒度を経時的変化のみでなく、粒子径分布として
より正確に把握したいときは、粒度変化パターンと粒子
径実測値とを比較して、実際の炉操業に応用するように
すればよい。
Furthermore, if you want to more accurately understand the particle size not only as a change over time but also as a particle size distribution, you can compare the particle size change pattern with the measured particle size and apply it to actual furnace operation.

なお、突起部の形状は、本実施例にかぎるものではなく
、その寸法、山形ピッチ等は、原料の性質や操業条件等
を加味して選択すればよい。さらに、振動体、保護管、
保護部材等は直接粒子に晒されるので、耐摩耗材製にす
るか、あるいは耐摩耗材で成形した外皮で覆うようにす
るのが望ましい。
Note that the shape of the protrusion is not limited to this example, and its dimensions, chevron pitch, etc. may be selected in consideration of the properties of the raw material, operating conditions, etc. Furthermore, the vibrating body, protection tube,
Since the protective member and the like are directly exposed to particles, it is desirable that the protection member be made of a wear-resistant material or covered with an outer skin formed of a wear-resistant material.

「発明の効果] 以上要するに本発明によれば、次のような優れた効果を
発揮する。
"Effects of the Invention" In summary, according to the present invention, the following excellent effects are achieved.

粒子の流路に設けられた振動体と、振動体の振動を感知
する振動感知手段と、その振動数を表示する表示手段と
を新規に備えなので、振動数変化から粒度の経時的な変
化が把握でき、その適確な調節が可能になることで、よ
り適正な炉の安定操業に貢猷できる。
Since it is newly equipped with a vibrating body installed in the particle flow path, a vibration sensing means for sensing the vibration of the vibrating body, and a display means for displaying the frequency, it is possible to detect changes in particle size over time from changes in the frequency. By being able to understand and make appropriate adjustments, it is possible to contribute to more appropriate and stable operation of the furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る竪型炉の原料粒度検出装置の一実
施例、を示ずM;゛(断面図、第2図はその要部拡大図
、第3図は振動数と粒度との開1系図、第4図は粒度変
化パターンを示した図、第5図は従来の竪型炉゛の構成
図である。 図中、11は振動体、12は振動感知手段たるピツクア
ツプ、13は表示手段、21は突起部である。 第2図
Fig. 1 shows an embodiment of the raw material particle size detection device for a vertical furnace according to the present invention. Fig. 4 is a diagram showing the particle size change pattern, and Fig. 5 is a configuration diagram of a conventional vertical furnace. is a display means, and 21 is a protrusion.

Claims (1)

【特許請求の範囲】[Claims] 1、炉体本体内へ装入される粒子の流路に沿って設けら
れると共にその流路に突出された突起部を有した振動体
と、装入途中の粒子が上記突起部に衝突して生ずる上記
振動体の振動を感知してその振動数を計測するための振
動感知手段と、該振動感知手段により計測された振動数
を順次表示するための表示手段とを備えたことを特徴と
する竪型炉の原料粒度検出装置。
1. A vibrating body is provided along a flow path for particles to be charged into the furnace main body and has a protrusion protruding into the flow path, and the vibrating body has a protrusion that is protruded into the flow path, and the particles collide with the protrusion during charging. It is characterized by comprising a vibration sensing means for sensing the generated vibration of the vibrating body and measuring its frequency, and a display means for sequentially displaying the vibration frequency measured by the vibration sensing means. Raw material particle size detection device for vertical furnaces.
JP3280288A 1988-02-17 1988-02-17 Material grain size detecting device for vertical furnace Pending JPH01208692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280288A JPH01208692A (en) 1988-02-17 1988-02-17 Material grain size detecting device for vertical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280288A JPH01208692A (en) 1988-02-17 1988-02-17 Material grain size detecting device for vertical furnace

Publications (1)

Publication Number Publication Date
JPH01208692A true JPH01208692A (en) 1989-08-22

Family

ID=12368975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280288A Pending JPH01208692A (en) 1988-02-17 1988-02-17 Material grain size detecting device for vertical furnace

Country Status (1)

Country Link
JP (1) JPH01208692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121289A (en) * 2003-10-16 2005-05-12 Nippon Crucible Co Ltd Melting holding furnace and melting method of material to be melted

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121289A (en) * 2003-10-16 2005-05-12 Nippon Crucible Co Ltd Melting holding furnace and melting method of material to be melted

Similar Documents

Publication Publication Date Title
CA1184025A (en) Arrangement for distribution of materials in powder form for a hot projection installation
EP0097530B1 (en) Combinatorial weighing apparatus
JPH01208692A (en) Material grain size detecting device for vertical furnace
JP3603776B2 (en) Blast furnace operation method
JP3102279B2 (en) Particle size control device for charged material in bellless blast furnace
JPH0518884A (en) Measuring device for grain size distribution
JPS619507A (en) Method for measuring position of charging of starting material into bell-less blast furnace
JPH05195028A (en) Device for controlling charging material distribution
JPS63238205A (en) Method for deciding changing timing of bell liner in blast furnace
JP2904599B2 (en) Blast furnace charging method
JPH0586446B2 (en)
JPS58123808A (en) Charging method of raw material into blast furnace
JP2996803B2 (en) Blast furnace operation method by bellless blast furnace
JPS6017004A (en) Operating method of blast furnace
JPS6321547Y2 (en)
JP3643403B2 (en) Fine powder supply method and apparatus
JP2968410B2 (en) Scrap charging method in blast furnace
JPS57149403A (en) Detection of gas flow distribution in blast furnace
JPH11180528A (en) Powder feeder
SU727222A1 (en) Cone crusher loading apparatus
JP2007292709A (en) Granule feeder and granule weighing device
JPS5832207B2 (en) Charge deposition layer thickness detection sonde
JPH075941B2 (en) Blast furnace charging method
KR20040083637A (en) Method for filling a blast furnace with charging materials
JPS63199812A (en) Apparatus for adjusting raw material flowing rate on furnace top of blast furnace