JPH01208503A - Operation method for compound power generation plant - Google Patents

Operation method for compound power generation plant

Info

Publication number
JPH01208503A
JPH01208503A JP3077988A JP3077988A JPH01208503A JP H01208503 A JPH01208503 A JP H01208503A JP 3077988 A JP3077988 A JP 3077988A JP 3077988 A JP3077988 A JP 3077988A JP H01208503 A JPH01208503 A JP H01208503A
Authority
JP
Japan
Prior art keywords
pressure operation
exhaust gas
recovery boiler
heat recovery
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3077988A
Other languages
Japanese (ja)
Inventor
Yukio Shibuya
幸生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3077988A priority Critical patent/JPH01208503A/en
Publication of JPH01208503A publication Critical patent/JPH01208503A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To restrict generation of MOx, when exhaust gas to be delivered from a gas turbine facility to an exhaust heat recovery boiler passes through a denitration device, by changing over the turbine facility from sliding pressure operation to constant pressure operation when the efficiency of the denitration device becomes a lower limit value. CONSTITUTION:A compound power generation plant is composed of a gas turbine facility 12 consisting of a compressor 2, a combustor 3 and a gas turbine 4, a steam turbine facility 5 having each of high/intermediate/low pressure turbines 9, 8, 12,, and an exhaust heat recovery boiler 18. The exhaust heat recovery boiler 18 is constituted by mounting a superheater 6, a reheater 7, an evaporator 17, a denitration device 14, and an coal economizer 15 in order. When a load is reduced by the command from an electric power system, said plant is under sliding pressure operation. At the time of the sliding pressure operation, denitration efficiency relating to an exhaust gas temperature is monitored so as to change over the operation of plant from sliding pressure operation to constant pressure operation, namely, from the constant opening condition of a regulating valve 16 to the variable opening condition, when denitration efficiency becomes a lower limit value.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は複合発電プラントの運転方法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) This invention relates to an improvement in the method of operating a combined cycle power plant.

(従来の技術) 従来、蒸気タービン設備には、ベースロード時の定圧運
転と中間負荷時の変圧運転とがある。変圧運転は、電力
系統負荷が比較的低いときに適用されるもので1発電所
全体の熱損失は比較的少ない、変圧運転は、そもそも中
間負荷(部分負荷)時、熱損失を少なくするために考案
されたもので。
(Prior Art) Conventionally, steam turbine equipment has two types: constant pressure operation during base load and variable pressure operation during intermediate load. Transformer voltage operation is applied when the power system load is relatively low, and the heat loss of the entire power plant is relatively small. Transformer voltage operation is originally used to reduce heat loss during intermediate loads (partial loads). It was invented.

負荷が定格から部分負荷に下がった場合、ボイラからの
蒸気量を蒸気加減弁で調整するとどうしても損失が高く
なることから、蒸気加減弁の開度を負荷に関係なく一定
に゛し、ボイラ側に与えられる燃料をコントロールしよ
うとする運転方法である。
When the load drops from the rated load to a partial load, adjusting the amount of steam from the boiler with the steam control valve will inevitably increase the loss, so the opening degree of the steam control valve should be kept constant regardless of the load, and the boiler side This is a driving method that attempts to control the amount of fuel provided.

この運転方法は、ガスタービン設備、排熱回収ボイラお
よび蒸気タービン設備を一つの集合体とする複合発電設
備にも適用されており、高い発電効率を1指している。
This operating method is also applied to combined power generation equipment that combines gas turbine equipment, waste heat recovery boiler, and steam turbine equipment into one assembly, and provides high power generation efficiency.

(発明が解決しようとする課題) ところで1発電プラントは、公害問題とりわけNOxの
抑制を厳しく管理されているが、複合発電設備もその例
外ではない。このため、排熱回収ボイラには、脱硝装置
を組み込み、ガスタービン設備の排ガスから生成される
NOxを極力取り除くようにしている。
(Problems to be Solved by the Invention) Power plants are subject to strict control over pollution issues, particularly NOx control, and combined cycle power generation facilities are no exception. For this reason, the exhaust heat recovery boiler is equipped with a denitrification device to remove as much NOx as possible from the exhaust gas of the gas turbine equipment.

ところが、複合発電設備が変圧運転に入っている場合、
ガスタービン設備から排熱回収ボイラに送り出される排
ガス温度が低下しており、排ガス温度と比例関係にある
排熱回収ボイラのドラム水温度も低下している。第2図
は排ガス温度特性およびドラム水温度特性を示すグラフ
で、縦軸に排ガス温度・ドラム水温度を、横軸にドラム
水圧力を採っである。この図からも理解されるように、
負荷50%時の排ガス温度は定格時にくらべて大幅に下
がっている。負荷50%時、排ガス温度が下がると排ガ
スが脱硝装置を通るときの脱硝効率は第3図にも示され
ているように、定格時にくらべて一段と下がっている。
However, when the combined power generation equipment is in variable voltage operation,
The temperature of the exhaust gas sent from the gas turbine equipment to the exhaust heat recovery boiler is decreasing, and the temperature of the drum water in the exhaust heat recovery boiler, which is proportional to the exhaust gas temperature, is also decreasing. FIG. 2 is a graph showing exhaust gas temperature characteristics and drum water temperature characteristics, with the vertical axis representing exhaust gas temperature and drum water temperature, and the horizontal axis representing drum water pressure. As can be understood from this figure,
The exhaust gas temperature at 50% load is significantly lower than at rated conditions. When the load is 50%, when the exhaust gas temperature decreases, the denitrification efficiency when the exhaust gas passes through the denitrification device decreases further compared to the rated value, as shown in FIG.

したがって、負荷が40%。Therefore, the load is 40%.

30%のように次第に下がっていくと、脱硝効率はます
ます悪くなる。この結果、NOx発生量はますます高く
なり、環境汚染問題になる。
When it gradually decreases to 30%, the denitrification efficiency becomes worse and worse. As a result, the amount of NOx generated becomes higher and higher, causing an environmental pollution problem.

そこでこの発明は上記の事情を踏えて、NOxの生成を
極力抑制しようとする複合発電プラントの運転方法を提
供することを目的とする。
Therefore, in view of the above-mentioned circumstances, it is an object of the present invention to provide a method for operating a combined power generation plant that attempts to suppress the generation of NOx as much as possible.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)この発明は、
ガスタービン設備と蒸気タービン設備とが一軸直結また
は別体で配置され、ガスタービン設備から送り出される
排ガスを熱源として蒸気を発生させ、その蒸気を蒸気タ
ービン設備に送り出す排熱回収ボイラを備え、排熱回収
ボイラ内には排ガスの上流側から下流側に向かって順次
(Means and effects for solving the problem) This invention has the following features:
The gas turbine equipment and the steam turbine equipment are arranged directly connected to one shaft or separately, and are equipped with an exhaust heat recovery boiler that generates steam using the exhaust gas sent out from the gas turbine equipment as a heat source and sends the steam to the steam turbine equipment. Inside the recovery boiler, exhaust gas is collected sequentially from the upstream side to the downstream side.

過熱器、再熱器、蒸発器、脱硝装置および節炭器を配置
するものにおいて、ガスタービン設備から排熱回収ボイ
ラに送り出される排ガスが脱硝装置を通過する際、脱硝
装置の効率が下限値になったときに、蒸気タービン設備
が変圧運転から定圧運転に切換えられるようにすること
を特徴としている。
In systems equipped with a superheater, reheater, evaporator, denitrification equipment, and energy saver, when the exhaust gas sent from the gas turbine equipment to the exhaust heat recovery boiler passes through the denitrification equipment, the efficiency of the denitrification equipment reaches its lower limit. The steam turbine equipment is characterized in that the steam turbine equipment can be switched from variable pressure operation to constant pressure operation when

この発明では、変圧運転時、排ガス温度が下がり、脱硝
装置の効率が悪くなってNOx発生量が高まることから
、排ガス温度を監視し、その温度が極端に低下したとき
、変圧運転から定圧運転に切換える。
In this invention, during variable pressure operation, the exhaust gas temperature decreases, deteriorating the efficiency of the denitrification equipment, and increasing the amount of NOx generated. Therefore, in this invention, the exhaust gas temperature is monitored, and when the temperature drops extremely, the exhaust gas temperature is changed from variable pressure operation to constant pressure operation. Switch.

こうすれば、NOxの発生量は極めて低い値に保持する
ことができる。
In this way, the amount of NOx generated can be kept at an extremely low value.

(実施例) この発明の一実施例を図面を参照しながら説明する。(Example) An embodiment of the invention will be described with reference to the drawings.

第1図はこの発明の概略系統図である。複合発電プラン
トは、ガスタービン設備12、蒸気タービン設備5、お
よび排熱回収ボイラ18を備えており、ガスタービン設
備12と蒸気タービン設備8とは一軸直結または別体配
置になっている。
FIG. 1 is a schematic system diagram of the present invention. The combined power generation plant includes a gas turbine facility 12, a steam turbine facility 5, and an exhaust heat recovery boiler 18, and the gas turbine facility 12 and the steam turbine facility 8 are directly connected to one shaft or are arranged separately.

ガスタービン設備12は、圧縮機2、燃焼器3およびガ
スタービン4を備えている。ガスタービン設備12と一
軸直結または別体配置の蒸気タービン設備5は高圧ター
ビン9、中圧タービン8、低圧タービン12を有し、こ
れらは共通軸で結ばれている。排熱回収ボイラ18は、
排ガスの上流側から下流側に向かって順次、過熱器6、
再熱器7、蒸発器17.脱硝装置14および節炭器15
を配置して設けられており、蒸発器17にはドラム13
が接続されている。
The gas turbine equipment 12 includes a compressor 2, a combustor 3, and a gas turbine 4. The steam turbine equipment 5, which is directly connected to the gas turbine equipment 12 or arranged separately, has a high-pressure turbine 9, an intermediate-pressure turbine 8, and a low-pressure turbine 12, which are connected by a common shaft. The exhaust heat recovery boiler 18 is
From the upstream side of the exhaust gas to the downstream side, the superheater 6,
Reheater 7, evaporator 17. Denitrification device 14 and economizer 15
The evaporator 17 is equipped with a drum 13.
is connected.

上記構成に基づく複合発電プラントの挙動を説明する。The behavior of the combined power generation plant based on the above configuration will be explained.

圧縮機2に送り込まれた空気1は、ここで高圧化され、
燃焼器3に入り、燃料が加えられ、作動ガスを作り出す
。作動ガスはガスタービン4に送られ、膨張して仕事を
する。ガスタービン4を出た排ガス19は排熱回収ボイ
ラ18で蒸気を作り出す熱源となる。
The air 1 sent to the compressor 2 is increased in pressure here,
Entering the combustor 3, fuel is added to produce working gas. The working gas is sent to the gas turbine 4, expands, and performs work. The exhaust gas 19 exiting the gas turbine 4 becomes a heat source for producing steam in the exhaust heat recovery boiler 18.

一方、蒸気タービン設備5の復水器12aから出た復水
は、排熱回収ボイラ18の節炭器15を経てドラム13
に一旦溜められ、ここから蒸発器17に送られる。蒸発
器17は復水を一部蒸気化してドラム13に再び戻す。
On the other hand, the condensate discharged from the condenser 12a of the steam turbine equipment 5 passes through the energy saver 15 of the exhaust heat recovery boiler 18, and then passes through the drum 13.
The water is temporarily stored in the evaporator 17, and then sent to the evaporator 17. The evaporator 17 partially vaporizes the condensate and returns it to the drum 13.

ドラ1113は蒸気分だけを過熱器6に送り出し、ここ
から主蒸気10として加減弁16を経て高圧タービン9
に流す。高圧タービン9で仕事をした蒸気は熱交換器2
0、再熱器7を経て再熱蒸気11として中圧タービン8
に流れる。中圧タービン11からの蒸気は低圧タービン
12に入り、ここで膨張仕事をして復水器12aで凝結
され、復水となる。
The drum 1113 sends only the steam to the superheater 6, from where it is sent as main steam 10 through the control valve 16 to the high pressure turbine 9.
flow to. The steam that has done work in the high pressure turbine 9 is transferred to the heat exchanger 2
0, intermediate pressure turbine 8 as reheated steam 11 via reheater 7
flows to Steam from the intermediate pressure turbine 11 enters the low pressure turbine 12, where it performs expansion work and is condensed in the condenser 12a, becoming condensed water.

ガスタービン設備12から送り出された排ガス19は、
上述のように過熱器6、再熱器7、熱交換器20、蒸発
器17を通過する間に、水または蒸気と熱交換され、そ
の熱エネルギを失っていく。蒸発器17を出た排ガス1
7は脱硝装置14を通過する際、NOxの発生を抑制す
る。
The exhaust gas 19 sent out from the gas turbine equipment 12 is
As described above, while passing through the superheater 6, reheater 7, heat exchanger 20, and evaporator 17, heat is exchanged with water or steam and the heat energy is lost. Exhaust gas 1 leaving the evaporator 17
7 suppresses the generation of NOx when passing through the denitrification device 14.

ところで、複合発電プラントが定格運転中、脱硝装置1
4を通過する排ガス19の温度は、約400℃以上にな
っており、脱硝装置14の脱硝効率は第3図にも見られ
るように90%に達している。しかし、電力系統からの
要求によって、負荷を低下させた場合、複合発電プラン
トは変圧運転に入る。この場合、第3図にも見られるよ
うに、脱硝効率は著しく下がってくる。例えば、排ガス
温度が300℃になると、脱硝効率は約80%に下がる
。一般に、脱硝装置14はその効率が80%以上が好ま
しい適用例であると言われている。このため、負荷が下
がってくると、脱硝装置14の所望の機能を果たさなく
なる。そこで、負荷低下時、排ガス温度を監視するとと
もに、脱硝装置の効率低下を見はからいながら、その効
率が下限値になったとき、変圧運転から定圧運転、つま
り加減弁16の一定開度状態から開度変化状態に切換え
る。
By the way, when the combined cycle power plant is in rated operation, the denitrification equipment 1
The temperature of the exhaust gas 19 passing through the exhaust gas 19 is approximately 400° C. or higher, and the denitrification efficiency of the denitrification device 14 has reached 90% as seen in FIG. However, when the load is reduced due to a request from the power grid, the combined cycle plant enters variable voltage operation. In this case, as can be seen in FIG. 3, the denitrification efficiency decreases significantly. For example, when the exhaust gas temperature reaches 300° C., the denitrification efficiency drops to about 80%. Generally, it is said that the denitrification device 14 is preferably applied when its efficiency is 80% or more. Therefore, when the load decreases, the denitrification device 14 no longer performs its desired function. Therefore, when the load decreases, we monitor the exhaust gas temperature and watch for a decrease in the efficiency of the denitrification equipment, and when the efficiency reaches the lower limit, we switch from variable pressure operation to constant pressure operation, that is, from the constant opening state of the regulator valve 16 to the Switch to degree change state.

こうすることにより、排ガス温度は高まり、その結果、
脱硝装置14の効率も高くなり、NOx発生量は規制値
以内におさめることができる。
By doing this, the exhaust gas temperature increases, and as a result,
The efficiency of the denitrification device 14 is also increased, and the amount of NOx generated can be kept within the regulation value.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、NOx発生量
を安定にして確実に抑制することができ。
As explained above, according to the present invention, the amount of NOx generated can be stabilized and reliably suppressed.

大気汚染防止に寄与する。Contribute to air pollution prevention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に適用される複合発電プラントの一実
施例を示す概略系統図、第2図は運転の変化に伴う排ガ
ス温度およびドラム水温度の特性線図、第3図は脱硝装
置の効率を示す特性線図である。 5・・・蒸気タービン設備 6・・・過熱器7・・・再
熱器      12・・・ガスタービン設備14・・
・脱硝装置     15・・・節炭器17・・・蒸発
器      18・・・排熱回収ボイラ代理人 弁理
士 則 近 憲 佑 同  第子丸 健 第1図 0    50    100    /!;0   
200F′テ47にノ五カ(久ttL) 第2因
Fig. 1 is a schematic system diagram showing an embodiment of a combined power generation plant to which this invention is applied, Fig. 2 is a characteristic diagram of exhaust gas temperature and drum water temperature accompanying changes in operation, and Fig. 3 is a diagram of the characteristics of the denitrification equipment. It is a characteristic line diagram showing efficiency. 5...Steam turbine equipment 6...Superheater 7...Reheater 12...Gas turbine equipment 14...
・Denitrification equipment 15...Cost saving device 17...Evaporator 18...Exhaust heat recovery boiler agent Patent attorney Noriyuki Noriyuki Ken Daishimaru 1 Figure 0 50 100 /! ;0
200F'te 47 ni no five (kuttL) 2nd cause

Claims (1)

【特許請求の範囲】[Claims] ガスタービン設備と蒸気タービン設備とが一軸直結また
は別体に配置され、ガスタービン設備から送り出される
排ガスを熱源として蒸気を発生させ、その蒸気を蒸気タ
ービン設備に送り出す排熱回収ボイラを備え、排熱回収
ボイラ内には排ガスの上流側から下流側に向かって順次
、過熱器、再熱器、蒸発器、脱硝装置および節炭器を配
置するものにおいて、ガスタービン設備から排熱回収ボ
イラに送り出される排ガスが脱硝装置を通過する際、脱
硝装置の効率が下限値になったときに、蒸気タービン設
備が変圧運転から定圧運転に切換えられるようにするこ
とを特徴とする複合発電プラントの運転方法。
The gas turbine equipment and the steam turbine equipment are connected directly to one shaft or are placed separately, and are equipped with an exhaust heat recovery boiler that generates steam using the exhaust gas sent out from the gas turbine equipment as a heat source and sends the steam to the steam turbine equipment. In the recovery boiler, a superheater, reheater, evaporator, denitrification device, and energy saver are arranged sequentially from the upstream side to the downstream side of the exhaust gas, and the exhaust gas is sent from the gas turbine equipment to the exhaust heat recovery boiler. A method for operating a combined power generation plant, characterized in that when exhaust gas passes through a denitrification device, steam turbine equipment is switched from variable pressure operation to constant pressure operation when the efficiency of the denitrification device reaches a lower limit value.
JP3077988A 1988-02-15 1988-02-15 Operation method for compound power generation plant Pending JPH01208503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3077988A JPH01208503A (en) 1988-02-15 1988-02-15 Operation method for compound power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3077988A JPH01208503A (en) 1988-02-15 1988-02-15 Operation method for compound power generation plant

Publications (1)

Publication Number Publication Date
JPH01208503A true JPH01208503A (en) 1989-08-22

Family

ID=12313168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3077988A Pending JPH01208503A (en) 1988-02-15 1988-02-15 Operation method for compound power generation plant

Country Status (1)

Country Link
JP (1) JPH01208503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278150A (en) * 2011-05-05 2011-12-14 山东电力研究院 Optimal control method for pressure constant value of sliding pressure operation unit under AGC (automatic gain control) mode
CN105569746A (en) * 2016-01-28 2016-05-11 上海电力股份有限公司 Ultralow-concentration gas oxidation power generation and coal slime drying, refrigeration and heating integration system
CN112949981A (en) * 2021-01-29 2021-06-11 国电南京电力试验研究有限公司 Method for evaluating influence of SNCR (selective non-catalytic reduction) system on coal-fired generator set operation economy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278150A (en) * 2011-05-05 2011-12-14 山东电力研究院 Optimal control method for pressure constant value of sliding pressure operation unit under AGC (automatic gain control) mode
CN105569746A (en) * 2016-01-28 2016-05-11 上海电力股份有限公司 Ultralow-concentration gas oxidation power generation and coal slime drying, refrigeration and heating integration system
CN112949981A (en) * 2021-01-29 2021-06-11 国电南京电力试验研究有限公司 Method for evaluating influence of SNCR (selective non-catalytic reduction) system on coal-fired generator set operation economy
CN112949981B (en) * 2021-01-29 2023-12-26 国能南京电力试验研究有限公司 Evaluation method for influence of SNCR system on operation economy of coal-fired power generation unit

Similar Documents

Publication Publication Date Title
Henderson Increasing the flexibility of coal-fired power plants
EP1205641B1 (en) Combined cycle gas turbine system
US5660037A (en) Method for conversion of a reheat steam turbine power plant to a non-reheat combined cycle power plant
EP1867843B1 (en) Method of operating a gas turbine combined plant
EP2535533A2 (en) Asymmetrical combined cycle power plant
EP2698507B1 (en) System and method for temperature control of reheated steam
EP2770172B1 (en) Method for providing a frequency response for a combined cycle power plant
JP6162002B2 (en) Power augmentation system and method for grid frequency control
US20030154721A1 (en) Steam cooling control for a combined cycle power plant
JPH01208503A (en) Operation method for compound power generation plant
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JP2587419B2 (en) Supercritical once-through boiler
JP2915885B1 (en) Gas turbine combined cycle system
CN107075977B (en) Low load turndown for combined cycle power plant
JP2002106305A (en) Starting controller of combined cycle power generation plant
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP3706411B2 (en) Method for adjusting the amount of medium-pressure steam in combined cycle power plants
JP3133183B2 (en) Combined cycle power plant
CN216240841U (en) Steam regulating system
JPH08145301A (en) Waste heat recovering boiler
JPH08232608A (en) Steam accumulated power generating plant
JP3880746B2 (en) Waste heat recovery device and operation method thereof
JP3068972B2 (en) Combined cycle power plant
JPH1037711A (en) Combined cycle power plant