JPH01207653A - Co sensor - Google Patents

Co sensor

Info

Publication number
JPH01207653A
JPH01207653A JP3232488A JP3232488A JPH01207653A JP H01207653 A JPH01207653 A JP H01207653A JP 3232488 A JP3232488 A JP 3232488A JP 3232488 A JP3232488 A JP 3232488A JP H01207653 A JPH01207653 A JP H01207653A
Authority
JP
Japan
Prior art keywords
sensor
added
addition
temperature
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3232488A
Other languages
Japanese (ja)
Inventor
Taro Amamoto
天本 太郎
Nobuaki Murakami
伸明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP3232488A priority Critical patent/JPH01207653A/en
Publication of JPH01207653A publication Critical patent/JPH01207653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To suppress the change of a sensor with age and the dependency thereof on temp. and humidity by adding a specific ratio of a sulfur compd. to SnO2. CONSTITUTION:A pair of coiled electrodes 4, 6 in common use as heaters are provided in a sintered body 8 of the SnO2 of the CO sensor 2 consisting of the SnO2 system. The change of the sensor 2 with age decreases if the sulfur compd. is added to the sintered body 8 at this time. This effect is obtd. from about 1mgr addition amt. per 1gr SnO2 in terms of SO4 and the upper limit of said amt. is confined to 60mgr. The dependency of the sensor 2 on temp. and humidity is suppressed by the addition of the sulfur. This effect is determined by the addition amt. of the same range. The sulfur compd. is, therefore, added to the sintered body 8 at 1-60mgr per 1gr SnO2 in terms of SO4.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は5nOt系COセンサの改良に関し、特にそ
の経時変化や温湿度依存性の抑制に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to improvement of a 5nOt-based CO sensor, and particularly to suppression of its change over time and temperature/humidity dependence.

[従来技術] 特公昭61−60.386号公報は、5nOtに、Z 
r OtまたはT i Oyと、硫酸イオンとを加える
ことを開示している。この公報は、Z r OvやTi
e、がSnO,の経時変化を抑制し、硫酸イオンがプロ
パンやメタンへの感度を増すことを指摘している。
[Prior art] Japanese Patent Publication No. 61-60.386 discloses that Z
It discloses adding r Ot or T i Oy and sulfate ions. This publication is based on Z r Ov and Ti
It is pointed out that e, suppresses the aging change of SnO, and sulfate ion increases the sensitivity to propane and methane.

しかしこの公報は、COへの検出特性に付いては、触れ
ていない。
However, this publication does not mention the detection characteristics for CO.

金属酸化物半導体COセンサの場合、次のことが重要で
ある。
For metal oxide semiconductor CO sensors, the following is important:

(1)センサの経時変化を抑制し、検出値の信頼性を高
める。
(1) Suppressing changes in the sensor over time and increasing the reliability of detected values.

(2)センサの温湿度依存性を抑制する。(2) Suppressing the temperature and humidity dependence of the sensor.

[発明の課題] この発明の課題は、COセンサの経時変化の抑制と、温
湿度依存性の抑制とに有る。
[Problem of the Invention] An object of the present invention is to suppress the change over time of a CO sensor and to suppress the dependence on temperature and humidity.

[発明の構成と作用] この発明では、Snowに硫黄化合物を添加する。[Structure and operation of the invention] In this invention, a sulfur compound is added to Snow.

添加量は、SO4換算でSnO,Igr当たり1〜60
mgr、より好ましくは2〜20mgrとする。
The amount added is 1 to 60 per SnO and Igr in SO4 terms.
mgr, more preferably 2 to 20 mgr.

、   Snowに硫黄化合物を添加すると、センサの
経時変化が減少する。この効果はSO4換算でl Br
/grsno1程度の添加量から発現し、l 2 mg
r/grSnOt程度で最大の効果が得られる。SO4
の添加量を更に増すと経時変化は再び増加し、60mg
r/grsno、を上限とする。
, Adding sulfur compounds to Snow reduces the aging of the sensor. This effect is equivalent to l Br in SO4
It is expressed from the addition amount of about 1/grsno, l 2 mg
The maximum effect can be obtained at approximately r/grSnOt. SO4
When the amount added was further increased, the change over time increased again, and 60 mg
The upper limit is r/grsno.

次に硫黄添加の他の効果は、センサの温湿度依存性が抑
制される点に有る。この効果も、同様にImgr/gr
snot(SO4換算)程度の硫黄添加量程度から発現
し、I 2mgr/grsnOtの添加量で最大となる
。添加mを更に増すと温湿度依存性は再び悪化し、硫黄
添加量の上限をSO4換算で、60mgr/grS n
Otとする。
Another effect of adding sulfur is that the temperature and humidity dependence of the sensor is suppressed. This effect also applies to Imgr/gr
It appears when the amount of sulfur added is approximately snot (in terms of SO4), and reaches its maximum when the amount of sulfur added is about 2 mgr/grsnOt. When the addition m is further increased, the temperature and humidity dependence worsens again, and the upper limit of the sulfur addition amount is 60 mgr/grS n in terms of SO4.
Ot.

これらの効果は、ZrO,やTi0zの添加を必要とせ
ず、硫黄化合物自体の効果として現れる。
These effects do not require the addition of ZrO or TiOz, and appear as the effects of the sulfur compound itself.

[実施例] センサの調製 S nC+4の水溶液をアンモニアで中和し、スズ酸の
ゾルとした。ゾルの水洗後に、800℃で1時間空気中
で焼成し、粉砕してS n Oを材料を得た。得られた
SnO,に、金属Pd換算で5mgr/grSnugの
Pdを、Pdの王水溶液として添加した。
[Example] Preparation of sensor An aqueous solution of S nC+4 was neutralized with ammonia to form a stannic acid sol. After washing the sol with water, it was calcined in air at 800° C. for 1 hour and pulverized to obtain S n O material. 5 mgr/grSnug of Pd in terms of metal Pd was added to the obtained SnO as a Pd aqua regia solution.

添加後のSnowを乾燥し、700℃で1時間空気中で
焼成し、Pdを担持させた。PdはPL、lr。
After the addition, Snow was dried and fired in air at 700° C. for 1 hour to support Pd. Pd is PL, lr.

Rh、 n u O2)ne、 Au、等の任意の貴金
属触媒に変えることができ、あるいは添加しなくても良
い。
Any noble metal catalyst such as Rh, nuO2)ne, Au, etc. can be used, or it may not be added.

好ましい添加範囲は、SnSn0t1当たり貴金属触媒
を金属換算で1〜50mgrである。またこれ以外に、
経時変化抑制用のV(存在形態は主としてv t o 
s)、あるいは温湿度依存性抑制用のF等を添加しても
良い。発明者らは、V v OsとしてSO4イオン当
たり0.5〜20mgrのバナジウムがCOセセンの経
時変化を抑制し、S nO、1gr当たり0.5〜10
0mgrのフッ素がセンサの温湿度依存性を抑制するこ
とを見出だしている。
A preferable addition range is 1 to 50 mgr of noble metal catalyst per 1 SnSn0t. In addition to this,
V for suppressing changes over time (mainly exists in the form of v to
s), or F for suppressing temperature/humidity dependence may be added. The inventors found that 0.5-20 mgr vanadium per SO4 ion as V v Os suppressed the aging of CO secene, and 0.5-10 mgr per gr SnO.
It has been found that 0 mgr of fluorine suppresses the temperature and humidity dependence of the sensor.

Pd添加後の5n02を再度粉砕し、第1図の形状のC
Oセンサ2とした。図において、4,6は一対のヒータ
兼用のコイル状電極、8は5nO7の焼結体である。な
おSnO,の焼結は、850’Cで10分間空気中で行
った。焼結後のセンサ2に希硫酸を含浸し、600℃で
30分間熱処理した。
After adding Pd, the 5n02 was ground again to form C with the shape shown in Figure 1.
It was set as O sensor 2. In the figure, 4 and 6 are a pair of coiled electrodes that also serve as heaters, and 8 is a sintered body of 5nO7. Incidentally, the sintering of SnO was performed at 850'C for 10 minutes in air. The sensor 2 after sintering was impregnated with dilute sulfuric acid and heat-treated at 600° C. for 30 minutes.

希硫酸の濃度を変化させて、硫黄化合物の添加量を変化
させた。センサ2の形状や構造は、任意である。
The amount of sulfur compound added was varied by varying the concentration of dilute sulfuric acid. The shape and structure of the sensor 2 are arbitrary.

添加した硫黄化合物は、主としてSO4イオンとして存
在する。硫黄化合物の添加形態や添加時期は任意であり
、例えば5nSO,や(N H、)2SO4、等の溶液
で添加しても良い。またセンサ2の焼結前に添加しても
良い。この場合は例えば、Pdと共に硫黄化合物を添加
する。なお以下では、硫黄化合物は全てSO4に転化し
たしのとして表示する。
The added sulfur compound exists primarily as SO4 ions. The addition form and addition timing of the sulfur compound are arbitrary; for example, it may be added in the form of a solution of 5nSO, (NH,)2SO4, or the like. Further, it may be added before sintering the sensor 2. In this case, for example, a sulfur compound is added together with Pd. In the following, all sulfur compounds are expressed as those converted to SO4.

センサ特性 センサ2の特性は、HL法(特公昭53−43.320
号公報参照)により評価した。即ちセンサ2を60秒間
300℃に加熱し、次いで90秒間80°Cに保つこと
を1サイクルとし、このサイクルを繰り返す。そして低
温側での90秒経過直前のセンサ出力から、COを検出
する。温度変化のパターン、即ち低温側と高温側の温度
や、1周期の時間、等は任意である。またHL法に変え
、センサ2を常時一定の温度(例えば50〜250℃程
度)に保持して、COを検出しても良い。いずれの場合
ら、硫黄化合物の添加により経時変化や温湿度依存性を
抑制できる。またいずれの場合ら、硫黄の添加量は同様
にする。
Sensor characteristics The characteristics of sensor 2 are determined according to the HL method (Japanese Patent Publication No. 53-43.320
Evaluation was made using That is, one cycle consists of heating the sensor 2 to 300° C. for 60 seconds and then keeping it at 80° C. for 90 seconds, and this cycle is repeated. Then, CO is detected from the sensor output just before 90 seconds have elapsed on the low temperature side. The pattern of temperature change, that is, the temperature on the low temperature side and the high temperature side, the time of one cycle, etc., are arbitrary. Alternatively, instead of the HL method, CO may be detected by constantly maintaining the sensor 2 at a constant temperature (for example, about 50 to 250°C). In either case, changes over time and temperature/humidity dependence can be suppressed by adding a sulfur compound. In either case, the amount of sulfur added is the same.

製造したセンサ2を2週間使用した後(エージ゛ンク゛
)、特性の評価を開始した。結果はいずれも各aplの
センサの平均値で示し、経時変化は前記の2週間のエー
ジング終了後50日間の挙動で評価した。また温湿度依
存性は、−10℃の結露雰囲気から50℃相対湿度60
%の高温高湿雰囲気の範囲で評価した。
After using the manufactured sensor 2 for two weeks (age measurement), evaluation of its characteristics was started. All results are shown as the average value of the sensor for each apl, and changes over time were evaluated based on behavior for 50 days after the end of the two-week aging period. In addition, the temperature and humidity dependence ranges from -10°C dew condensation to 50°C relative humidity 60°C.
The evaluation was performed in a high temperature and high humidity atmosphere of 10%.

第2図に、経時変化への硫黄の効果を示す。製造後2週
間エージングしたセンサ2を50日間連続して使用し、
CC01O0pp中での抵抗値を測定した。エージング
直後のセンサ抵抗(Rstd)を基学とし、センサ抵抗
(Rs)の変化を評価する。
Figure 2 shows the effect of sulfur on aging. Sensor 2, which had been aged for two weeks after manufacture, was used continuously for 50 days,
The resistance value in CC01O0pp was measured. Based on the sensor resistance (Rstd) immediately after aging, changes in the sensor resistance (Rs) are evaluated.

なお抵抗値の測定は、20℃1.)160%の雰囲気で
行った。最初の20日間センサ抵抗はやや増加し、以後
安定期へと移行する。SO4無添加のものでは、センサ
抵抗は徐々に減少し安定しない。
The resistance value was measured at 20°C1. ) 160% atmosphere. The sensor resistance increases slightly for the first 20 days, and then shifts to a stable period. When SO4 is not added, the sensor resistance gradually decreases and is not stable.

3 mgr/ grS no 、のSO,を添加すると
、セン→ト低抗はかなり安定である。6 mgr/gr
S no tの添加では、20日目量降の抵l17L1
riは安定である。12mgr/grsno*の添加で
は、抵抗値は初期値付近の値で安定化する。一方36 
mgr/grS nOtの添加では、安定期での高抵抗
化が見られる。発明者らは、センサの温度変化パターン
を変えて同様の測定を行ったが、いずれら同等の効果が
得られた。
With the addition of 3 mgr/grS no of SO, the cent→cent resistance is quite stable. 6mgr/gr
With the addition of S not, the resistance to weight loss on the 20th day was 117L1.
ri is stable. With the addition of 12 mgr/grsno*, the resistance value stabilizes at a value near the initial value. On the other hand 36
When mgr/grS nOt is added, high resistance is observed in the stable period. The inventors performed similar measurements by changing the temperature change pattern of the sensor, but the same effects were obtained in both cases.

これらのことから、S O,に換算してSnO,Igr
当たり、1〜60mgrの硫黄化合物の添加が必要で、
より好ましくは2〜20 mgrs更に好ましくは5〜
20mgrの添加が必要である。
From these facts, SnO, Igr is converted into S O,
It is necessary to add 1 to 60 mgr of sulfur compound per
More preferably 2-20 mgrs, still more preferably 5-20 mgrs
Addition of 20 mgr is required.

発明者は、センサ2を1日使用1日放置を繰り返して5
5日間の変化を測定した。また最初のlO日間使用後、
40日間放置し、特性変化を評価した。使用と放置の繰
り返しに対する結果を表1に、40日間の放置に対する
結果を表2に示す。
The inventor repeatedly used sensor 2 for one day and left it for one day.
Changes were measured over 5 days. Also, after the first 10 days of use,
It was left for 40 days and changes in characteristics were evaluated. Table 1 shows the results of repeated use and storage, and Table 2 shows the results of storage for 40 days.

測定方法は第2図の場合と同様である。The measurement method is the same as in the case of FIG.

表 1 使用と放置の繰り返し* SO4添加量   検出濃度の変化(Co I Oop
pm基準)(mgr/grS no ?)   I O
日月 40日日目55日日目       90   
75   70G       95   85   
85* エージング後2週間経過したセンサを、1日使
用1日放置の操り返しモードで55日間用いた、エージ
ング後2週間経過時でのCC01O0I)pへのセンサ
抵抗(Rs)を記録し、これと同じ抵抗値が得られるC
O濃度を検出濃度として表示。
Table 1 Repeated use and storage * Amount of SO4 added Change in detected concentration (Co I Oop
pm standard) (mgr/grS no?) I O
Sun/Month 40th day 55th day 90
75 70G 95 85
85* A sensor that has been aged for 2 weeks was used for 55 days in a re-operation mode of 1 day of use and 1 day of leaving.The sensor resistance (Rs) to CC01O0I)p was recorded after 2 weeks of aging, and this C that gives the same resistance value as
Displays O concentration as detected concentration.

表 240日間の放置* SO,添加量   検出濃度の変化(CO10Q pp
mWtf4)(mgr/grsno2)   I O日
月 50日日目55日日目       90   8
0   70* センサ2をlO日間連続使用後に40
日間放置し、次いて5日間連続使用、他の測定条件は表
1と同じ。
Table 240 days of storage* SO, amount added Change in detected concentration (CO10Q pp
mWtf4) (mgr/grsno2) IO day month 50th day 55th day 90 8
0 70* 40 after continuous use of sensor 2 for 10 days
The test piece was left for 1 day and then used continuously for 5 days.Other measurement conditions were the same as in Table 1.

SO4の添加は、センサ2の各種ガスへの感度や応答速
度に、有意差を与えなかった。SO4の他の効果は、セ
ンサ2の温湿度依存性を抑制する点に有る。第3図に、
CC01O0pp中でのセンサ2の温湿度依存性を示す
。20℃相対湿度65%でのセンサ抵抗を基準値(Rs
td)とし、各温湿度条件での抵抗値(Rs)との比を
求めた。なお測定は、2a間のエージング後に行った。
The addition of SO4 did not cause any significant difference in the sensitivity or response speed of sensor 2 to various gases. Another effect of SO4 is that it suppresses the temperature and humidity dependence of the sensor 2. In Figure 3,
The temperature and humidity dependence of sensor 2 in CC01O0pp is shown. The sensor resistance at 20°C and 65% relative humidity is the standard value (Rs
td) and the ratio with the resistance value (Rs) under each temperature and humidity condition was determined. Note that the measurement was performed after aging for 2a.

この測定では温湿度依存性と湿度依存性とを一括して扱
ったが、周囲の温度を増しても、湿度を増しても、セン
サ2は低抵抗化する。そして温度依存性よりも、湿度依
存性の方が一般に大きい。
In this measurement, temperature-humidity dependence and humidity dependence were handled together, but even if the ambient temperature or humidity is increased, the resistance of the sensor 2 decreases. Humidity dependence is generally greater than temperature dependence.

図から明らかなように、SO4添加によりセンサ2の温
湿度依存性は減少する。添加効果は、経時変化の場合と
同様、l 2mgr/grsnOtで最適値が得られ、
添加量を36mgr/grsnotまで増すと温湿度依
存性は再び増加する。そして3 mgr/grsnot
の添加量でも、温湿度依存性は改善されている。
As is clear from the figure, the temperature and humidity dependence of the sensor 2 is reduced by adding SO4. As for the addition effect, the optimum value was obtained at l2mgr/grsnOt, as in the case of changes over time.
When the addition amount is increased to 36 mgr/grsnot, the temperature/humidity dependence increases again. and 3 mgr/grsnot
The temperature and humidity dependence is improved even with the amount added.

なお上記の実施例では、特定の貴金属触媒を加えたセン
サに付いて、特定の使用条件での結果を説明した。しか
し5nOa系COセンサに対する、硫黄化合物の経時変
化や温湿度依存性の抑制効果は、貴金属触媒や使用条件
とは無関係に一般に生じるしのであり、実施例には限定
されない。
In addition, in the above-mentioned example, the results under specific usage conditions were explained for a sensor to which a specific noble metal catalyst was added. However, the effect of suppressing the temporal change and temperature/humidity dependence of sulfur compounds on the 5nOa-based CO sensor generally occurs regardless of the noble metal catalyst or usage conditions, and is not limited to the examples.

し発明の効果〕 この発明では、51102系COセンサの経時変化と温
、9度依存性とを抑制する。
[Effects of the Invention] In the present invention, the aging change and temperature and 9 degree dependence of the 51102 series CO sensor are suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例のCoセンサの断面図、第2図、第3
図はそれぞれ実施例の特性図である。 図において、2  Coセンサ、8  Snow焼結体
Figure 1 is a cross-sectional view of the Co sensor of the example, Figure 2, Figure 3.
Each figure is a characteristic diagram of an example. In the figure, 2 Co sensors and 8 Snow sintered bodies.

Claims (3)

【特許請求の範囲】[Claims] (1)SnO_2系COセンサにおいて、 前記SnO_2には、SO_4換算でSnO_21gr
当たり1〜60mgrの硫黄化合物を添加したことを特
徴とするCOセンサ。
(1) In the SnO_2-based CO sensor, the SnO_2 contains SnO_21gr in terms of SO_4.
A CO sensor characterized in that 1 to 60 mgr of sulfur compound is added per CO sensor.
(2)特許請求の範囲第1項記載のCOセンサにおいて
、 硫黄化合物の添加量を、SO_4換算でSnO_21g
r当たり2〜20mgrとしたことを特徴とする、CO
センサ。
(2) In the CO sensor according to claim 1, the amount of the sulfur compound added is SnO_21g in terms of SO_4.
CO, characterized in that it is 2 to 20 mgr per r.
sensor.
(3)特許請求の範囲第1項記載のCOセンサにおいて
、 前記硫黄を硫酸イオンとして存在させることを特徴とす
る、COセンサ。
(3) The CO sensor according to claim 1, wherein the sulfur is present as sulfate ions.
JP3232488A 1988-02-15 1988-02-15 Co sensor Pending JPH01207653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3232488A JPH01207653A (en) 1988-02-15 1988-02-15 Co sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3232488A JPH01207653A (en) 1988-02-15 1988-02-15 Co sensor

Publications (1)

Publication Number Publication Date
JPH01207653A true JPH01207653A (en) 1989-08-21

Family

ID=12355762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3232488A Pending JPH01207653A (en) 1988-02-15 1988-02-15 Co sensor

Country Status (1)

Country Link
JP (1) JPH01207653A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193623A (en) * 1998-12-25 2000-07-14 Fis Kk Gas detecting device
US6319473B1 (en) 1998-06-16 2001-11-20 Figaro Engineering, Inc. Co sensor and its fabrication
CN104880490A (en) * 2015-05-20 2015-09-02 吉林大学 Pd-SnO2 oxide semiconductor sensor for carbon monoxide as well as preparation and application
CN105806899A (en) * 2016-05-25 2016-07-27 吉林大学 Production and application of Pt-SnO2 oxide semiconductor carbon monoxide sensor
CN106053548A (en) * 2016-05-25 2016-10-26 吉林大学 Preparation and application of Pd-doped SnO2-oxide-semiconductor CO sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319473B1 (en) 1998-06-16 2001-11-20 Figaro Engineering, Inc. Co sensor and its fabrication
KR100582505B1 (en) * 1998-06-16 2006-05-23 휘가로기켄 가부시키가이샤 Co sensor and its fabrication
JP2000193623A (en) * 1998-12-25 2000-07-14 Fis Kk Gas detecting device
CN104880490A (en) * 2015-05-20 2015-09-02 吉林大学 Pd-SnO2 oxide semiconductor sensor for carbon monoxide as well as preparation and application
CN104880490B (en) * 2015-05-20 2017-11-03 吉林大学 Pd‑SnO2Oxide semiconductor carbon monoxide transducer
CN105806899A (en) * 2016-05-25 2016-07-27 吉林大学 Production and application of Pt-SnO2 oxide semiconductor carbon monoxide sensor
CN106053548A (en) * 2016-05-25 2016-10-26 吉林大学 Preparation and application of Pd-doped SnO2-oxide-semiconductor CO sensor

Similar Documents

Publication Publication Date Title
US4136000A (en) Process for producing improved solid electrolyte oxygen gas sensors
US4723439A (en) Humidity detector
JP2786507B2 (en) Oxygen sensor
JPH01207653A (en) Co sensor
JPS5937779B2 (en) Oxygen concentration detection element
US6319473B1 (en) Co sensor and its fabrication
JP2830877B2 (en) Solid electrolyte material
JPS5814043B2 (en) humidity sensor element
JP2847979B2 (en) Oxide semiconductor gas sensor
JPS60256045A (en) Electrode for oxygen sensor
JP3517064B2 (en) Stabilization method of oxygen sensor
JPH02232556A (en) Formation of gas detection electrode for co2 sensor
JPH0556463B2 (en)
JPH0436340B2 (en)
JPH0434696B2 (en)
JPS5922901B2 (en) Method for manufacturing gas sensing element
JP2645568B2 (en) Halogenated hydrocarbon gas sensor
JP2000131259A (en) Oxidizing gas sensor
JPH02212756A (en) Oxygen sensor for controlling air/fuel ratio and making thereof
JPS6398558A (en) Preparation of element for detecting concentration of oxygen
JPH05322826A (en) Humidity sensor
JPS6110190Y2 (en)
JPH05322825A (en) Humidity sensor
JPS62452B2 (en)
JPS588122B2 (en) high temperature thermal element