JPH0120747Y2 - - Google Patents

Info

Publication number
JPH0120747Y2
JPH0120747Y2 JP1982111938U JP11193882U JPH0120747Y2 JP H0120747 Y2 JPH0120747 Y2 JP H0120747Y2 JP 1982111938 U JP1982111938 U JP 1982111938U JP 11193882 U JP11193882 U JP 11193882U JP H0120747 Y2 JPH0120747 Y2 JP H0120747Y2
Authority
JP
Japan
Prior art keywords
core
cable
core parallel
insulator
crosstalk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982111938U
Other languages
Japanese (ja)
Other versions
JPS5917517U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11193882U priority Critical patent/JPS5917517U/en
Publication of JPS5917517U publication Critical patent/JPS5917517U/en
Application granted granted Critical
Publication of JPH0120747Y2 publication Critical patent/JPH0120747Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、信号伝送用ケーブル、特にパルス信
号を伝送するコンピユータ内部配線材、あるい
は、端末機器間連絡用の入出力ケーブルに関する
ものである。 従来コンピユータの信号伝送用ケーブルとして
は、主に次の二種類のケーブルが使用されて来
た。即ち、同軸ケーブルとフラツトケーブル(又
はテープ電線)であるが各々次に示す欠点を有し
ていた。 まず同軸ケーブルは電気的特性で他に優れたも
のはない反面、第1図に示す通り中心導体4と絶
縁体3と外部導体(シールド)2とジヤケツト1
の四種類の材料及び三工程の製造プロセスが必要
であつた。このため製造コストが大の上、ケーブ
ルの細経化に難があり、実装密度面から多心化に
限界(せいぜい24心まで)があつた。 一方フラツトケーブルの構造は、第2図に示す
通り、導体5,6と絶縁体7から成る極めてシン
プルな形状となつているため、二種類の材料によ
る一工程の製造プロセスで十分であつた。これは
製造コストが小という利点があるが、電気的特性
であるクロストークが同軸に比較して悪い欠点が
あつた。 特にこのクロストークの悪化は三十回線(シグ
ナル線を一回線と定義する)以上となると顕著に
現われてくる。また、実装密度を大きくするため
フラツトケーブルの積層を実施するが、これもク
ロストークをさらに悪化する原因となる。 本考案の目的は、前記した従来技術(同軸ケー
ブル、フラツトケーブル)の欠点を解消し、コス
ト面、電気特性面を改良することができる新規な
信号伝送用ケーブルを提供することにある。すな
わち本考案の要旨は、一本のシグナル線と二本の
グランド線との外周を断面長方形状の絶縁体で被
覆した三芯平行線を線心単位とし、その複数本の
三芯平行線をその隣接する三芯平行線の絶縁体表
面の少なくとも幅の広い面同志が重ならないよう
に撚り合わせるか束ね、その外周にシースを設け
てケーブル化したことにある。 上記三芯平行線の絶縁体材料としては弗素樹脂
が適している。弗素樹脂は機械的強度、耐熱性難
燃性、電気特性が優れているもので本ケーブルに
適している材質は表1に示すものである。
The present invention relates to a signal transmission cable, particularly an internal wiring material of a computer for transmitting pulse signals, or an input/output cable for communication between terminal devices. Conventionally, the following two types of cables have been mainly used as signal transmission cables for computers. That is, coaxial cables and flat cables (or tape wires) each have the following drawbacks. First of all, coaxial cable has no superior electrical properties, but as shown in Figure 1, it has a central conductor 4, an insulator 3, an outer conductor (shield) 2, and a jacket 1.
Four types of materials and a three-step manufacturing process were required. For this reason, manufacturing costs were high, it was difficult to make the cable thinner, and there was a limit to the number of fibers (up to 24 fibers at most) due to packaging density. On the other hand, the structure of the flat cable is extremely simple, consisting of conductors 5 and 6 and insulator 7, as shown in Figure 2, so a one-step manufacturing process using two types of materials was sufficient. . This has the advantage of low manufacturing cost, but has the disadvantage of poor electrical crosstalk compared to coaxial. In particular, this deterioration of crosstalk becomes noticeable when there are 30 or more lines (a signal line is defined as one line). Furthermore, in order to increase the packaging density, flat cables are stacked, but this also causes further worsening of crosstalk. An object of the present invention is to provide a new signal transmission cable that can overcome the drawbacks of the conventional techniques (coaxial cable, flat cable) and improve cost and electrical characteristics. In other words, the gist of the present invention is that a three-core parallel wire whose outer periphery is covered with an insulator having a rectangular cross section is used as a core unit, and a plurality of three-core parallel wires are The insulator surfaces of the adjacent three-core parallel wires are twisted or bundled so that at least the wide surfaces thereof do not overlap, and a sheath is provided around the outer periphery to form a cable. Fluororesin is suitable as the insulating material for the three parallel wires. Fluororesin has excellent mechanical strength, heat resistance, flame retardancy, and electrical properties, and the materials suitable for this cable are shown in Table 1.

【表】 本考案ケーブルの実施例をさらに説明する。 第3図に示す三芯平行線9を撚合せて第4図に
示す通りの多心ケーブルにする。第3図の三芯平
行線は、直径0.16mmφの銀メツキ無酸素銅の単線
5,6から成り、また絶縁体7には弗素樹脂
FEPを適用する。この三芯平行線7の電気的特
性は、特性インピーダンス95±10Ω遅延時間4.8
±0.3ms/mを満足するものである。この三芯平
行線9を五十本適当なピツチで撚り合わせるか又
は単に束ねた後、和紙等のセパレータ10を施
し、塩化ビニル混和物を被覆してシース8を設け
ケーブル化する。線心の識別を行なうため絶縁体
7は適当な着色剤によりマルチカラー化する。撚
り合わせた三芯平行線9の配列は第4図に示す通
り、その隣接する三芯平行線9の絶縁体7表面の
少なくとも幅の広い面同志が重ならないような方
法が必要である。三芯平行線9が重なればシグナ
ル線間の距離が小となり、漏話量が増加するため
である。重なりを防止する1つの方法は三芯平行
線9にひねりを加えておいて撚り合せる。しかし
このような工夫をしなくても三芯平行線9を束ね
る実験をした結果ケーブル全長に渡り重なる確率
は非常に小さいことが明らかとなつた。 この三芯平行多心ケーブルの漏話量を第2図に
示す多心フラツトケーブルと比較すれば大幅な改
善が可能であることが明らかとなつた。即ち第5
図に示す通り立上り時間Tr=2nsの入力パルスを
第6図に示す測定回路のシグナル線No.0に入れド
ライブ回路とする。隣接したシグナル線No.1,No.
2…から順次近端漏話量を求めるため各々次の式
で漏話量を実測する。 近端漏話量=−20log10(VN/VIN) 遠端漏話量=−20log10(VF/VIN) 三芯平行多心ケーブルの全長に渡る幾何学的隣
接関係はフラツトケーブルに比較して不明確であ
る点に注意を要する。 両ケーブルの漏話量を比較したのが第7図であ
る。斜線を施した範囲が三芯平行多心ケーブルの
遠端近端漏話量の実測値範囲である。隣接したシ
グナル線の遠端漏話量で10dB以上の大幅な改善
が可能となつた。 実用上から考えた場合には、パルスは多数回線
のシグナルとなり、その漏話量は和として影響を
及ぼす。このような使用方法では隣接回路への影
響が少なく本考案の三芯平行多心ケーブルは有効
な手段となつて来る。 本実施例ケーブルはさらに次の改良が可能であ
る。 まず三芯平行多心ケーブルに一括シールド(ア
ルミポリエステルテープ巻、編組シールド)を施
し外部雑音の防止を計る。 また三芯平行線心間の漏話をさらに改善するた
め第8図に示すように各線にアルミポリエステル
テープ12をラツプする。この場合ドレンワイヤ
11を縦添えする。 さらに三芯平行線の端末の加工方法は第9図に
示す通り片端を熱融着等の方法によりフラツト化
13することにより端末処理をワンタツチ化(平
刃により絶縁体を一括して剥離可能する)可能で
ある。また、他端を分岐することにより内部配線
の多目的な使用が可能である。 以上説明した本考案ケーブルは次の効果を有す
る。 まず三芯平行線の製造工程は一工程ですむ。こ
れは、従来の同軸ケーブルに比較して1/3に短縮
出来るためコストのダウンが可能である。 また、実装密度が大となる。同じ線心数で比較
した場合、断面積は同軸ケーブルに比較して約1/
10となる。 さらにフラツトケーブルの欠点である隣接回線
間の漏話を改善できる。 これは三芯平行多心ケーブルでは、各線心のね
じれ、飛び越し等により幾何学的隣接効果が発生
しにくいこと、またグランド−シグナル間の磁界
の分布が各線心間に影響を及ぼすが、第10図の
1,2となる確率は小さくほとんどが3の配置と
なるため磁界の影響が低減されるためである。
[Table] Examples of the cable of the present invention will be further explained. The three-core parallel wires 9 shown in FIG. 3 are twisted together to form a multi-core cable as shown in FIG. 4. The three-core parallel wire in Fig. 3 consists of silver-plated oxygen-free copper single wires 5 and 6 with a diameter of 0.16 mm, and the insulator 7 is made of fluorine resin.
Apply FEP. The electrical characteristics of this three-core parallel wire 7 are that the characteristic impedance is 95±10Ω and the delay time is 4.8.
It satisfies ±0.3ms/m. Fifty of these three-core parallel wires 9 are twisted together at an appropriate pitch or simply bundled, then a separator 10 such as Japanese paper is applied, and a sheath 8 is provided by covering with a vinyl chloride mixture to form a cable. In order to identify the wire cores, the insulator 7 is multi-colored with a suitable coloring agent. As shown in FIG. 4, the twisted three-core parallel wires 9 must be arranged in such a way that at least the wide surfaces of the insulator 7 surfaces of adjacent three-core parallel wires 9 do not overlap. This is because if the three parallel lines 9 overlap, the distance between the signal lines becomes small and the amount of crosstalk increases. One way to prevent overlapping is to twist the three parallel wires 9 and twist them together. However, as a result of an experiment in which the three-core parallel wires 9 were bundled together without such measures, it became clear that the probability that the three-core parallel wires 9 would overlap over the entire length of the cable was extremely small. Comparing the amount of crosstalk of this three-core parallel multi-core cable with that of the multi-core flat cable shown in FIG. 2, it has become clear that a significant improvement is possible. That is, the fifth
As shown in the figure, an input pulse with a rise time Tr=2 ns is input to the signal line No. 0 of the measurement circuit shown in FIG. 6 to form a drive circuit. Adjacent signal line No.1, No.
2. In order to find the amount of near-end crosstalk sequentially from . . . , the amount of crosstalk is actually measured using the following formula. Amount of near-end crosstalk = -20log 10 (V N /V IN ) Amount of far-end crosstalk = -20log 10 (V F /V IN ) The geometrical adjacency relationship over the entire length of a three-core parallel multicore cable is similar to that of a flat cable. It should be noted that the comparison is unclear. Figure 7 shows a comparison of the amount of crosstalk between both cables. The shaded range is the range of actually measured values of the amount of crosstalk at the far end and near end of the three-core parallel multi-core cable. It has become possible to significantly improve the far-end crosstalk of adjacent signal lines by more than 10dB. From a practical standpoint, the pulse becomes a signal for multiple lines, and the amount of crosstalk affects them as a sum. In such a usage method, the three-core parallel multi-core cable of the present invention becomes an effective means since it has little influence on adjacent circuits. The cable of this embodiment can be further improved as follows. First, we applied a bulk shield (aluminum polyester tape wrapping, braided shield) to the three-core parallel multi-core cable to prevent external noise. Further, in order to further improve the crosstalk between the three parallel wire centers, aluminum polyester tape 12 is wrapped around each wire as shown in FIG. In this case, the drain wire 11 is attached vertically. Furthermore, as shown in Figure 9, the processing method for the terminals of three-core parallel wires is to flatten one end using a method such as heat fusion13, thereby making the terminal processing one-touch (the insulator can be peeled off all at once using a flat blade). ) is possible. Furthermore, by branching off the other end, the internal wiring can be used for multiple purposes. The cable of the present invention described above has the following effects. First, the manufacturing process for three-core parallel wires requires only one step. This can reduce costs by 1/3 compared to conventional coaxial cables. Moreover, the packaging density becomes high. When compared with the same number of cores, the cross-sectional area is approximately 1/1 that of a coaxial cable.
It becomes 10. Furthermore, crosstalk between adjacent lines, which is a drawback of flat cables, can be improved. This is because in a three-core parallel multi-core cable, geometric adjacency effects are less likely to occur due to twisting, skipping, etc. of each core, and the distribution of the magnetic field between the ground and signal has an effect on each core. This is because the probability of 1 and 2 in the figure is small and most of the cases are 3, which reduces the influence of the magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多心同軸ケーブルの一例を示す
横断面説明図、第2図は従来の多心フラツトケー
ブルの一例を示す横断面説明図、第3図は本考案
に於て使用される三芯平行線の一実施例を示す横
断面図、第4図は本考案三芯平行多心ケーブルの
一実施例を示す横断面図、第5図は入力パルス条
件説明図、第6図は漏話測定回路説明図、第7図
はフラツトケーブルと三芯平行多心ケーブルの漏
和量特性図、第8図は本考案に於て使用されるシ
ールド付三芯平行線の一実施例横断面図、第9図
は本考案ケーブルの端末の加工方法の一実施例斜
視説明図、第10図1,2,3は本考案ケーブル
の三芯平行線が及ぼす磁界の影響を示す説明図で
ある。1……ジヤケツト、2……外部導体(編組
シールド)、3……絶縁体、4……中心導体、5
……グランド線(印)、6……シグナル線(●
印)、7……絶縁体、8……シース、9……三芯
平行線、10……セパレータ、11……ドレンワ
イヤ、12……アルミポリエステルテープ、13
……熱融着部。
Fig. 1 is an explanatory cross-sectional view showing an example of a conventional multi-core coaxial cable, Fig. 2 is an explanatory cross-sectional view showing an example of a conventional multi-core flat cable, and Fig. 3 is an explanatory cross-sectional view showing an example of a conventional multi-core flat cable. FIG. 4 is a cross-sectional view showing an embodiment of the three-core parallel multi-core cable of the present invention, FIG. 5 is an explanatory diagram of input pulse conditions, and FIG. 7 is an explanatory diagram of a crosstalk measurement circuit, FIG. 7 is a leakage characteristic diagram of a flat cable and a three-core parallel multi-core cable, and FIG. 8 is an example of a shielded three-core parallel cable used in the present invention. A cross-sectional view, FIG. 9 is a perspective explanatory view of an embodiment of the method for processing the end of the cable of the present invention, and FIG. 10 is an explanatory diagram showing the influence of the magnetic field exerted by the three core parallel lines of the cable of the present invention. It is. 1... Jacket, 2... Outer conductor (braided shield), 3... Insulator, 4... Center conductor, 5
...Ground wire (mark), 6...Signal wire (●
mark), 7... Insulator, 8... Sheath, 9... Three-core parallel wire, 10... Separator, 11... Drain wire, 12... Aluminum polyester tape, 13
...Heat fusion part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一本のシグナル線の導体と、該導体の左右に所
定間隔で平行配置された二本のグランド線の導体
と、これら三本の導体外周を被覆して絶縁一体化
する断面長方形状の絶縁体とから成る三芯平行線
を線心単位とし、前記複数本の三芯平行線の該隣
接する三芯平行線の絶縁体表面の少なくとも幅の
広い面同志が重ならないように集合し、外周にシ
ースを設けて構成したことを特徴とする信号伝送
用ケーブル。
One signal line conductor, two ground line conductors arranged in parallel at a predetermined interval on the left and right sides of the signal line, and an insulator with a rectangular cross section that covers the outer periphery of these three conductors and integrates them with insulation. The three-core parallel wires consisting of are taken as a core unit, and the plurality of three-core parallel wires are assembled so that at least the wide surfaces of the insulator surfaces of the adjacent three-core parallel wires do not overlap, and the outer periphery is A signal transmission cable characterized by being configured with a sheath.
JP11193882U 1982-07-23 1982-07-23 Signal transmission cable Granted JPS5917517U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11193882U JPS5917517U (en) 1982-07-23 1982-07-23 Signal transmission cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11193882U JPS5917517U (en) 1982-07-23 1982-07-23 Signal transmission cable

Publications (2)

Publication Number Publication Date
JPS5917517U JPS5917517U (en) 1984-02-02
JPH0120747Y2 true JPH0120747Y2 (en) 1989-06-22

Family

ID=30259689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11193882U Granted JPS5917517U (en) 1982-07-23 1982-07-23 Signal transmission cable

Country Status (1)

Country Link
JP (1) JPS5917517U (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645799U (en) * 1987-06-29 1989-01-13
JP4372855B2 (en) * 1998-01-28 2009-11-25 オリンパス株式会社 Signal transmission cable
JP2008198577A (en) * 2007-02-15 2008-08-28 Auto Network Gijutsu Kenkyusho:Kk Shield wire
JP5535901B2 (en) * 2008-04-25 2014-07-02 沖電線株式会社 Shielded flat cable capable of high-speed transmission
CN111566760B (en) * 2017-12-27 2021-10-22 住友电气工业株式会社 Double-shaft parallel cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS433057Y1 (en) * 1965-05-27 1968-02-08
JPS5722644U (en) * 1980-07-16 1982-02-05

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585293Y2 (en) * 1976-04-09 1983-01-29 日立電線株式会社 cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS433057Y1 (en) * 1965-05-27 1968-02-08
JPS5722644U (en) * 1980-07-16 1982-02-05

Also Published As

Publication number Publication date
JPS5917517U (en) 1984-02-02

Similar Documents

Publication Publication Date Title
CA2543341C (en) Local area network cabling arrangement with randomized variation
US6998537B2 (en) Multi-pair data cable with configurable core filling and pair separation
US7790981B2 (en) Shielded parallel cable
US5298680A (en) Dual twisted pairs over single jacket
US7262366B2 (en) Bundled cable using varying twist schemes between sub-cables
JP2004529468A (en) Cable with twisted filler and common sheath
US6563052B2 (en) Electric installation cable
US20080073106A1 (en) Twisted pairs cable having shielding layer and dual jacket
TWM572563U (en) Wire assambly and cable using the same
JPH0120747Y2 (en)
WO2015026029A1 (en) Communication cable including non-continuous shielding tape, and non-continuous shielding tape
CN216311370U (en) Mixed-medium double-coaxial differential transmission signal line
US20220217878A1 (en) Cable
TWI806146B (en) High speed transmission cable and cable end connector with high speed transmission cable
JPH1196837A (en) Communication cable
JPH1125765A (en) Pairs of cables
CN221101713U (en) Multilayer lapped data cable
CN220439310U (en) Data transmission line
CN216353558U (en) Parallel pair data cable
US11887749B2 (en) Cable
CN212516608U (en) Flame-retardant fireproof electric wire
CN216212478U (en) Electromagnetic compatibility network data transmission cable and assembly
US20220215988A1 (en) Cable
EP4309193A1 (en) Telecommunication cable with tape
KR20230068501A (en) Ethernet cable