JPH0120733B2 - - Google Patents

Info

Publication number
JPH0120733B2
JPH0120733B2 JP55047664A JP4766480A JPH0120733B2 JP H0120733 B2 JPH0120733 B2 JP H0120733B2 JP 55047664 A JP55047664 A JP 55047664A JP 4766480 A JP4766480 A JP 4766480A JP H0120733 B2 JPH0120733 B2 JP H0120733B2
Authority
JP
Japan
Prior art keywords
photographic
fine particles
silver halide
produced
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55047664A
Other languages
Japanese (ja)
Other versions
JPS56143431A (en
Inventor
Masaaki Takimoto
Takashi Saida
Masataka Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4766480A priority Critical patent/JPS56143431A/en
Publication of JPS56143431A publication Critical patent/JPS56143431A/en
Publication of JPH0120733B2 publication Critical patent/JPH0120733B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/85Photosensitive materials characterised by the base or auxiliary layers characterised by antistatic additives or coatings
    • G03C1/853Inorganic compounds, e.g. metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は帯電防止性を改良したハロゲン化銀写
真感光材料に関するものであり、特に写真特性に
悪影響を与えることなく帯電防止性を改良した写
真感光材料に関するものである。 写真感光材料は一般に電気絶縁性を有する支持
体および写真層から成つているので写真感光材料
の製造工程中ならびに使用時に同種または異種物
質の表面との間に接触摩擦または剥離をうけるこ
とによつて静電電荷が蓄積されることが多い。こ
の蓄積された静電電荷は多くの障害を引起すが、
最も重大な障害は現像処理前に蓄積された静電電
荷が放電することによつて感光性乳剤層が感光し
写真フイルムを現像処理した際に点状スポツト又
は樹枝状や羽毛状の線斑を生ずることである。こ
れがいわゆるスタチツクマークと呼ばれているも
ので写真フイルムの商品価値を著しく損ね場合に
よつては全く失なわしめる。例えば医療用又は工
業用X−レイフイルム等に現われた場合には非常
に危険な判断につながることは容易に認識される
であろう。この現象は現像してみて初めて明らか
になるもので非常に厄介な問題の一つである。ま
たこれらの蓄積された静電電荷はフイルム表面へ
塵挨が付着したり、塗布が均一に行なえないなど
の第2次的な故障を誘起せしめる原因にもなる。 かかる静電電荷は前述したように写真感光材料
の製造および使用時にしばしば蓄積されるのであ
るが例えば製造工程に於ては写真フイルムとロー
ラーとの接触摩擦あるいは写真フイルムの巻取
り、巻戻し工程中での支持体面と乳剤面の分離等
によつて発生する。また仕上り製品に於ては写真
フイルムを巻取り切換えを行なつた場合のベース
面と乳剤面との分離によつて、またはX−レイフ
イルムの自動撮影機中での機械部分あるいは螢光
増感紙との間の接触分離等が原因となつて発生す
る。その他包装材料との接触などでも発生する。
かかる静電電荷の蓄積によつて誘起される写真感
光材料のスタチツクマークは写真感光材料の感度
の上昇および処理速度の増加によつて顕著とな
る。特に最近においては、写真感光材料の高感度
化および高速塗布、高速撮影、高速自動処理化等
の苛酷な取り扱いを受ける機会が多くなつたこと
によつて一層スタチツクマークの発生が出易くな
つている。 これらの静電気による障害をなくすのに最も良
い方法は物質の電気伝導性を上げて蓄積電荷が放
電する前に静電電荷を短時間に逸散せしめるよう
にすることである。 したがつて、従来から写真感光材料の支持体や
各種塗布表面層の導電性を向上させる方法が考え
られ種々の吸湿性物質や水溶性無機塩、ある種の
界面活性剤、ポリマー等の利用が試みられてき
た。例えば米国特許第2882157号、同2972535号、
同3062785号、同3262807号、同3514291号、同
3615531号、3753716号、3938999号等に記載され
ているようなポリマー、例えば、米国特許第
2982651号、同3428456号、同3457076号、同
3454625号、同3552972号、同3655387号等に記載
されているような界面活性剤及び例えば米国特許
第3525621号に記載されているようなコロイダル
シリカ等が知られている。 しかしながらこれら多くの物質はフイルム支持
体の種類や写真組成物の違いによつて特異性を示
し、ある特定のフイルム支持体および写真乳剤や
その他の写真構成要素には良い結果を与えるが他
の異なつたフイルム支持体および写真構成要素で
は帯電防止に全く役に立たないばかりでなく、写
真性にも悪影響を及ぼす場合がある。そして更に
重要な事には、これら多くの物質はその導電性に
湿度依存性があり、低湿度下では導電層としての
機能を失なうという大きな欠点があつた。 又、特公昭35−6616号には酸化第二錫を帯電防
止処理剤として用いる技術について記載されてい
るが、かかる技術は無定形の酸化第二錫コロイド
を用いるものであつて、その導電性に湿度依存性
があり、低湿度下では導電層としての機能を失な
う材料であつて本質的には前述の種々の物質とは
何ら変わるものではない。 一方、例えば米国特許第3062700号、特開昭52
−113224号及び同55−12927号等において、電子
写真感光体あるいは静電記録体の導電性支持体用
る導電性素材としてその導電性が湿度にほとんど
依存しない結晶性の酸化亜鉛、酸化第二錫及び酸
化インジウム等の金属酸化物を用いる事が知られ
ている。しかしながら、これらの結晶性の金属酸
化物粒子をハロゲン化銀乳剤の帯電防止剤として
用いる事は全く知られておらず、更にこれらの導
電性素材がハロゲン化銀感光乳剤層とどの様な相
互作用を持つかは全く予想のつかないものであつ
た。ちなみに米国特許第3245833号に記載されて
いる導電性素材としてハロゲン化銀、ハロゲン化
銅が用いられているが、これらの導電性素材は米
国特許第3428451号に示すようにハロゲン化銀乳
剤層との間で相互作用を有し写真性に悪影響があ
ることが明示されているのである。 本発明の第1の目的は帯電防止された写真感光
材料を提供することである。 本発明の第2の目的は低湿時においても帯電防
止性の優れた写真感光材料を提供することであ
る。 本発明の第3の目的は写真特性を損うことなく
写真感光材料の帯電防止を行う有効な方法を提供
することである。 本発明のこれらの目的は、 ZnO、TiO2、SnO2、Al2O3、In2O3、SiO2
MgO、BaO、、MoO3の中から選ばれた少なくと
も1種の結晶性金属酸化物あるいはこれらの複合
酸化物の微粒子であつて、かつ該微粒子が (1) 焼成により作製され、その後異種原子の存在
下に熱処理された微粒子であるもの (2) 焼成により作製されるときに異種原子を共存
させて得られた微粒子であるもの (3) 焼成により作製するときに酸素濃度を下げて
酸素欠陥を導入した微粒子であるもの のうちのいずれかであり、該微粒子をバインダー
中に分散した導電層をハロゲン化銀写真感光材料
中に少なくとも1層設けたことを特徴とする帯電
防止性の改良された写真感光材料によつて達成さ
れる。 本発明に用いられる導電性粒子として好ましい
のは結晶性の金属酸化物粒子であるが、酸素欠陥
を含むもの及び用いられる金属酸化物に対してド
ナーを形成する異種原子を少量含むもの等は一般
的に言つて導電性が高いので特に好ましく、特に
後者はハロゲン化銀乳剤にカブリを与えないので
特に好ましい。金属酸化物の例としてはZnO、
TiO2、SnO2、Al2O3、In2O3、SiO2、MgO、
BaO、MoO3等、あるいはこれらの複合酸化物が
良く、特にZnO、TiO2及びSnO2が好ましい。異
種原子を含む例としては、例えばZnOに対しては
Al、In等の添加、SnO2に対してはSb、Nb、ハ
ロゲン元素等の添加、またTiO2に対してはNb、
Ta等の添加が効果的である。これら異種原子の
添加量は0.01mol%〜30mol%の範囲が好ましい
が、0.1mol%〜10mol%であれば特に好ましい。 利用できる粒子サイズは10μ以下が好ましい
が、2μ以下であると分散後の安定性が良く使用
し易い。また光散乱性をできるだけ小さくする為
に、0.5μ以下の導電性粒子を利用すると透明感光
材料を形成することが可能となり大変好ましい。 本発明に使用される結晶性の金属酸化物から成
る導電性微粒子は前記の通り(1)〜(3)の方法によつ
て製造される。 第1の方法では微粒子表面の導電性を効果的に
向上させることができるが、熱処理中に粒子成長
が起る可能性があるので条件を選ぶ必要がある。
また、熱処理は還元雰囲気で行う方が良い場合が
ある。第2の方法は最も製造経費が少くて済むと
思われるので好ましい。例えば、SnO2の水和物
であるβ−スズ酸コロイド(無定形)を焼成炉中
に噴霧してSnO2微粒子を得る方法において、β
−スズ酸コロイド中に塩化アンチモン、硝酸アン
チモン、酸化アンチモンの水和物等を共存させて
おくと導電性SnO2微粒子を得ることができる。
また、別の例としてSnCl4、TiCl4を酸化分解し
てSnO2、TiO2を作製する所謂気相法において酸
化分解の時に異種原子の塩類を共存させると導電
性のSnO2、TiO2を得ることができる。 また金属の有機酸塩を加熱分解して金属酸化物
を得る方法において加熱分解の際に異種金属の塩
類を共存させる方法もある。 第3の方法の例としては酸素雰囲気中で金属を
蒸発させて金属酸化物微粒子を得る真空蒸発法に
おいて酸素量を不足気味にしておく方法、あるい
は酸素を十分に供給せずに金属、金属塩類を加熱
する方法がある。 本発明による導電層には、従来知られている導
電性高分子をそのバインダーの一部または全部と
して使用できる。これらの化合物は例えば、ポリ
ビニルベンゼンスルホン酸塩類、ポリビニルベン
ジルトリメチルアンモニウムクロライド、米国特
許第4108802号、同4118231号、同4126467号、同
4137217号等に記載の四級塩ポリマー類、米国特
許第4070189号、OLS2830767(US Ser
NO816127)等に記載された架橋型ポリマーラテ
ツクス類等である。 導電性粒子の使用量は写真感光材料1平方メー
トルあたり0.05〜20gが良く、0.1〜10gが特に
好ましい。 導電性粒子をより効果的に使用して導電層の抵
抗を下げる為に、導電層中における導電性粒子の
体積含有率は高い方が好ましいが、層としての強
度を十分に持たせる為に最低5%程度のバインダ
ーを含ませることが良く、導電性粒子の体積含有
率は5〜95%の範囲が望ましい。 しかし上記の範囲は使用する写真フイルムベー
スの種類、写真、組成物、形態又は塗布方式によ
つて異なることは勿論である。 本発明の写真感光材料の支持体として使用され
るものは例えばセルロースナイトレートフイル
ム、セルロースアセテートフイルム、セルロース
アセテートブチレートフイルム、セルロースアセ
テートプロピオネートフイルム、ポリスチレンフ
イルム、ポリエチレンテレフタレートフイルム、
ポリカーボネートフイルムその他これらの積層
物、等がある。更に詳細にはバライタ又はα−オ
レフインポリマー特にポリエチレン、ポリプロピ
レン、エチレン−ブテンコポリマー等炭素原子2
〜10個のα−オレフインのポリマーを塗布または
ラミネートした紙、を挙げることが出来る。 これらの支持体は感光材料の使用目的に応じ
て、透明なものと不透明なものの中から選択をし
て用いられる。また透明な場合にも無色透明のも
のだけでなく染料、顔料を添加して着色透明にす
ることが可能である。 支持体と写真乳剤層との接着力が不充分なとき
はそのどちらに対しても接着性を持つ層を下塗り
層として設けることが行われている。また接着性
を更に良化させるため支持体表面をコロナ放電、
紫外線照射、火炎処理等の慣用的に行われている
予備処理をしてもよい。 本発明の写真感光材料において各写真構成層は
また次のようなバインダーを含むことができる。
例えば親水性コロイドとしてゼラチン、コロイド
状アルブミン、カゼインなどの蛋白質;カルボキ
シメチルセルロース、ヒドロキシエチルセルロー
ス等のセルロース化合物;寒天、アルギン酸ソー
ダ、でんぷん誘導体等の糖誘導体;合成親水性コ
ロイド例えばポリビニルアルコール、ポリ−N−
ピニルピロリドン、ポリアクリル酸共重合体、ポ
リアクリルアミドまたはこれらの誘導体および部
分加水分解物等が挙げられる。必要に応じてこれ
らのコロイドの二つ以上の混合物を使用する。こ
の中で最も用いられるのはゼラチンであるがここ
に言うゼラチンはいわゆる石灰処理ゼラチン、酸
処理ゼラチンおよび酵素処理ゼラチンを指す。ゼ
ラチンの一部または全部を合成高分子物質で置き
かえることができるほか、いわゆるゼラチン誘導
体すなわち分子中に含まれる官能基としてのアミ
ノ基、イミノ基、ヒドロキシ基またはカルボキシ
ル基をそれらと反応しうる基を1個持つた試薬で
処理、改質したもの、あるいは高分子物質の分子
鎖を結合させたグラフトポリマーで置きかえて使
用してもよい。 本発明に用いられる写真感光材料のハロゲン化
銀乳剤は通常、水溶性銀塩(例えば硝酸銀)溶液
と水溶性ハロゲン塩(例えば臭化カリウム)溶液
とをゼラチンの如き水溶性高分子溶液の存在下で
混合してつくられる。このハロゲン化銀としては
塩化銀、臭化銀のほかに混合ハロゲン化銀例えば
塩臭化銀、沃臭化銀、塩沃臭化銀等を用いること
ができる。これらのハロゲン化銀粒子は公知、慣
用の方法に従つて作られる。勿論いわゆるシング
ルジエツト法、ダブルジエツト法、コントロール
ダブルジエツト法等を用いて作ることも有用であ
る。これらの写真乳剤はT.H.James及びC.E.K.
Mees著、「The Theory of the Photographic
Process」第3版、Mac Millan社刊;P.
Grafikides著、「Chemie Photographique」、
Paul Montel社刊等の成書にも記載され一般に用
いられているアンモニア法、中性法、酸性法等
種々の方法で調製し得る。このようにして調製し
たハロゲン化銀粒子を化学増感剤(例えばチオ硫
酸ナトリウム、N,N,N′−トリメチルチオ尿
素、一価金のチオシアナート錯塩、一価金のチオ
硫酸錯塩、塩化第一スズ、ヘキサメチレンテトラ
ミン等)の存在下で熱処理をし、粒子を粗大化し
ないで感度を上昇させることが出来る。 写真乳剤は必要に応じてシアニン、メロシアニ
ン、カルボシアニン等のポリメチン増感色素類の
単独あるいは組合せ使用、またはそれらとスチリ
ル染料等との組合せ使用によつて分光増感や強色
増感を行なうことができる。 また本発明に用いられる写真感光材料の写真乳
剤には感光材料の製造工程、保存中あるいは処理
中の感度低下やカブリの発生を防ぐために種々の
化合物を添加することができる。それらの化合物
は4−ヒドロキシ−6−メチル−1,3,3a,
7−テトラザインデン−3−メチル−ベンゾチア
ゾール、1−フエニル−5−メルカプトテトラゾ
ールをはじめ多くの複素環化合物、含水銀化合
物、メルカプト化合物、金属塩類など極めて多く
の化合物が古くから知られている。使用できる化
合物の例としてはT.H.James及びC.E.K.Mees著、
「The Theory of the Photographic Process」
第3版(1966年)、MacMillan社刊に原文献を挙
げて記載されている。 ハロゲン化銀写真乳剤がカラー写真感光材料と
して用いられる場合にはカプラーをハロゲン化銀
乳剤層中に含ませてもよい。この様なカプラーは
4当量型のジケトメチレン系イエローカプラー、
2当量型のジケトメチレン系イエローカプラー、
例えば米国特許第3277157号、同3408194号、同
3551155号、特開昭47−26133号、同48−66836号
等に記載された化合物;4当量型又は2当量型の
ピラゾロン系マゼンタカプラーやインダゾロン系
マゼンタカプラー例えば米国特許第2600788号、
同3214437号、同3476560号、特開昭47−26133号
等に記載された化合物;α−ナフトール系シアン
カプラーやフエノール系シアンカプラー例えば米
国特許第2474293号、同3311476号、同3481741号、
等に記載された化合物などが用いられる。そのほ
かに米国特許第3227554号、同3253924号、同
3379529号、同3617291号、同3770436号等に記載
された現像抑制剤を放出しうるカプラーも使用す
ることができる。 本発明の写真感光材料におけるハロゲン化銀乳
剤層およびその他の親水性コロイド層は各種の有
機または無機の硬化剤(単独または組合せて)に
より硬化されうる。代表的な例としてはムコクロ
ル酸、ホルムアルデヒド、トリメチロールメラミ
ン、グリオキザール、2,3−ジヒドロキシ−
1,4−ジオキサン、2,3−ジヒドロキシ−5
−メチル−1,4−ジオキサン、サクシンアルデ
ヒド、グルタルアルデヒドの如きアルデヒド系化
合物;ジビニルスルホン、メチレンビスマレイミ
ド、1,3,5−トリアクリロイル−ヘキサヒド
ロ−s−トリアジン、1,3,5−トリビニルス
ルホニル−ヘキサヒドロ−s−トリアジンビス
(ビニルスルホニルメチル)エーテル、1,3−
ビス(ビニルスルホニルメチル)プロパノール−
2、ビス(α−ビニルスルホニルアセトアミド)
エタンの如き活性ビニル系化合物;2,4−ジク
ロロ−6−ヒドロキシ−s−トリアジン・ナトリ
ウム塩、2,4−ジクロロ−6−メトキシ−s−
トリアジンの如き活性ハロゲン化合物;2,4,
6−トリエチレンイミノ−s−トリアジンの如き
エチレンイミン系化合物;などを挙げることが出
来る。 本発明の写真機成層には界面活性剤を単独また
は混合して添加してもよい。それらは塗布助剤と
して用いられるものであるが、時としてその他の
目的、例えば乳化分散、増感その他の写真特性の
改良、帯電列調整等のためにも適用される。 これらの界面活性剤はサポニン等の天然界面活
性剤、アルキレンオキシド系、グリセリン系、グ
リシドール系などのノニオン界面活性剤、高級ア
ルキルアミン類、第4級アンモニウム塩類、ピリ
ジンその他の複素環類、ホスホニウムまたはスル
ホニウム類のカチオン界面活性剤;カルボン酸、
スルホン酸、リン酸、硫酸エステル、リン酸エス
テル等の酸性基を含むアニオンン界面活性剤、ア
ミノ酸類、アミノスルホン酸類、アミノアルコー
ルの硫酸またはリン酸エステル類等の両性界面活
性剤である。また同様の目的の為にフツ素系界面
活性剤を使用することも可能である。 これら使用しうる界面活性剤化合物例の一部は
米国特許第2271623号、同2240472号、同2288226
号、同2739891号、同3068101号、同3158484号、
同3201253号、同3210191号、同3294540号、同
3415649号、同3441413号、同3442654号、同
3475174号、同3545974号、同3666478号、同
3507660号、英国特許第1198450号をはじめ小田良
平他著「界面活性剤の合成とその応用(槙書店、
1964年)およびA.W.ペリイ著「サーフエスアク
テイブ エージエンツ」(インターサイエンスパ
ブリケーシヨンインコーポレーテイド、1958年)、
J.P.シスリー「エンサイクロペデイア オブ ア
クテイブエージエンツ第2巻」(ケミカルパブリ
ツシユカンパニー、1964年)などの成書に記載さ
れている。 又、本発明に於ては、滑性化組成物、例えば米
国特許第3079837号、同第3080317号、同第
3545970号、同第3294537号及び日本公開特許昭52
−129520号に示されるような変性シリコーン等を
写真構成層中に含むことができる。 本発明の写真感光材料は写真構成層中に米国特
許第3411911号、同3411912号、特公昭53−5331号
等に記載のポリマーラテツクスを、又マツト剤と
してシリカ、硫酸ストロンチウム、硫酸バリウ
ム、ポリメチルメタクリレート等を含むことがで
きる。 本発明の実施によつて写真感光材料の製造工程
中および/あるいは使用時に起るスタチツクに起
因した故障が改善された。 例えば本発明の実施により写真感光材料の乳剤
面とバツク面との間の接触、乳剤面と乳剤面との
間の接触および写真感光材料が一般によく接触す
る物質例えばゴム、金属、プラスチツク及び螢光
増感紙等との接触に起因するスタチツクマークの
発生は著しく減少した。 次に本発明の効果を実施例を挙げて具体的に説
明するが本発明はこれに限定されるものではな
い。 実施例 1 酸化第二錫(平均粒径1.0μ) 100重量部 三塩化アンチモンの10%メタノール溶液10重量部 メタノール 50重量部 からなる混合物を10分間超音波分散し均一分散液
を得た。この分散液を110℃で1時間乾燥後、空
気中800℃で1時間焼成し、やや青味がかつた酸
化第二錫を得た。比抵抗は1000Kg/cm2の圧力で錠
剤状に成形して測定したところ6Ω−cmであつ
た。粒径は、用いた酸化第二錫の平均粒径とほぼ
同じであつた。平均粒径0.5μ、0.2μの酸化第二錫
からはそれぞれ比抵抗25Ω−cm、200Ω−cmの同
サイズの粒子が得られた。 実施例 2 酸化亜鉛 100重量部 Al(NO33・9H2Oの10%水溶液 5重量部 水 100重量部 からなる混合物を10分間超音波照射し均一分散液
を得た。この分散液を110℃で1時間乾燥後1×
10-4Torr600℃で5分間焼成し比抵抗2×102Ω
−cmの酸化亜鉛を得た。粒径は2μであつた。こ
の粒子をボールミルにより粉砕して平均粒径0.7μ
の粒子を得た。 実施例 3 金属錫100重量部と金属アンチモン1重量を濃
硝酸400重量部と反応させアンチモン酸とβ−ス
ズ酸からなるコロイド状沈澱物を得た。この沈澱
物を水1000重量部で3回遠心分離洗浄後、水500
重量部に希釈しコロイド分散液を得た。この分散
液を800℃に加熱された焼成炉中に噴霧し青味が
かつた酸化第二錫微粉末を得た。この微粉末は比
抵抗3.2Ω−cm、粒径0.5μであつた。 実施例 4 酸化チタン 100重量部 五塩化ニオブ10%メタノール溶液 10重量部 メタノール 100重量部 からなる混合物を10分間超音波照射し均一分散液
を得た。この分散液を110℃で1時間乾燥後、1
×10-4Torr、750℃で5分間焼成し青味がかつた
酸化チタン微粉末を得た。この微粉末は比抵抗
6.2×102Ω−cm、粒径1μであつた。 実施例 5 しゆう酸すず10部を電気炉中に入れ200℃/hr
の昇温速度で300℃まで加熱、2時間300℃を保持
後放冷して取りだした。黒茶色の微粒子(1μ以
下)が7.2部得られた。 このものの比抵抗ρν=1.8×10゜Ωcmであつた。 同様に1000℃まで加熱したものは比抵抗ρν=3
×106Ωcmである。 実施例 6 しゆう酸すず10部を薄い容器に入れメチレンク
ロライドをしゆう酸すずがひたる程度、加える。
この中にトリブトキシアンチモン(Sb(OC3H73
を0.1部を加え、撹拌し、80℃に温めメチレンク
ロライドを留去。電気炉で300℃/hrの昇温速度
で800℃まで加熱し放冷後電気炉より取り出した。
やゝ青味がかつた微粒子(1μ以下)が7.17部得ら
れた。 このものの比抵抗ρν=1.3×10゜Ωcmであつた。 実施例 7 実施例1〜6で得られた導電性粒子をポリビニ
ルアルコール(PVA)、ゼラチン中に分散させて
ポリエチレンテレフタレート(PET)フイルム
に塗布して導電層を作製した。PETフイルムは
水のぬれを良くする目的で表面をコロナ処理して
用いた。その結果を第1表にまとめた。粒子対バ
インダー比は重量比で5対1とした。
The present invention relates to a silver halide photographic material with improved antistatic properties, and particularly to a photographic material with improved antistatic properties without adversely affecting photographic properties. Photographic light-sensitive materials generally consist of a support and a photographic layer that have electrical insulation properties. Electrostatic charges often build up. This accumulated electrostatic charge causes many problems, but
The most serious problem is that the photosensitive emulsion layer becomes sensitized due to the discharge of electrostatic charges accumulated before processing, resulting in dot-like spots or dendritic or feather-like line spots when the photographic film is processed. It is something that happens. This is what is called a static mark, and it significantly reduces the commercial value of the photographic film, or in some cases completely destroys it. For example, if it appears in medical or industrial X-ray film, it will be easily recognized that it will lead to a very dangerous judgment. This phenomenon becomes apparent only after development, and is one of the most troublesome problems. Furthermore, these accumulated electrostatic charges may cause secondary failures such as dust adhering to the film surface or inability to apply uniformly. As mentioned above, such electrostatic charges are often accumulated during the production and use of photographic materials. This occurs due to separation of the support surface and emulsion surface, etc. In addition, in the finished product, separation of the base surface and emulsion surface when winding and switching photographic film is performed, or mechanical parts or fluorescent sensitization in an automatic X-ray film camera. This occurs due to contact separation between the paper and the paper. It can also occur due to contact with other packaging materials.
Static marks on photographic materials induced by such electrostatic charge accumulation become more noticeable as the sensitivity of photographic materials increases and the processing speed increases. Particularly in recent years, static marks are more likely to occur due to the increased sensitivity of photographic materials and the increased exposure to harsh handling such as high-speed coating, high-speed photography, and high-speed automatic processing. There is. The best way to eliminate these electrostatic disturbances is to increase the electrical conductivity of the material so that the electrostatic charge can be quickly dissipated before the accumulated charge is discharged. Therefore, methods have been considered to improve the conductivity of supports and various coated surface layers of photographic materials, including the use of various hygroscopic substances, water-soluble inorganic salts, certain surfactants, and polymers. It has been tried. For example, US Patent No. 2882157, US Patent No. 2972535,
No. 3062785, No. 3262807, No. 3514291, No. 3514291, No.
3615531, 3753716, 3938999, etc., e.g.
No. 2982651, No. 3428456, No. 3457076, No.
Surfactants such as those described in US Pat. No. 3,454,625, US Pat. No. 3,552,972 and US Pat. No. 3,655,387 and colloidal silica as described in US Pat. No. 3,525,621 are known. However, many of these materials exhibit specificity depending on the type of film support and photographic composition, giving good results with some film supports, photographic emulsions, and other photographic components, but not with others. Vine film supports and photographic components are not only completely useless in preventing static electricity, but may also have an adverse effect on photographic properties. More importantly, the electrical conductivity of many of these materials is dependent on humidity, and they have a major drawback in that they lose their function as electrically conductive layers under low humidity conditions. In addition, Japanese Patent Publication No. 35-6616 describes a technology using tin oxide as an antistatic treatment agent, but this technology uses amorphous tin oxide colloid, and its conductivity It is a material that has humidity dependence and loses its function as a conductive layer under low humidity, and is essentially no different from the various substances described above. On the other hand, for example, U.S. Patent No. 3062700,
-113224 and No. 55-12927, etc., crystalline zinc oxide whose conductivity is almost independent of humidity, It is known to use metal oxides such as tin and indium oxide. However, it is completely unknown that these crystalline metal oxide particles can be used as antistatic agents in silver halide emulsions, and furthermore, it is unclear how these conductive materials interact with the silver halide photosensitive emulsion layer. It was completely unpredictable whether he would have it or not. Incidentally, silver halide and copper halide are used as the conductive materials described in U.S. Patent No. 3,245,833, but these conductive materials are not compatible with the silver halide emulsion layer as shown in U.S. Pat. No. 3,428,451. It has been clearly shown that there is an interaction between the two, which has an adverse effect on photographic properties. A first object of the present invention is to provide an antistatic photographic material. A second object of the present invention is to provide a photographic material with excellent antistatic properties even at low humidity. A third object of the present invention is to provide an effective method for preventing charging of photographic materials without impairing their photographic properties. These objects of the invention include ZnO, TiO2 , SnO2 , Al2O3 , In2O3 , SiO2 ,
Fine particles of at least one crystalline metal oxide selected from MgO, BaO, MoO3 , or a composite oxide thereof, and the fine particles are produced by (1) calcination, and then mixed with different atoms. (2) Fine particles obtained by coexisting different atoms when produced by calcination.(3) Fine particles obtained by lowering the oxygen concentration and eliminating oxygen defects when produced by calcination. A photographic material having improved antistatic properties, characterized in that a silver halide photographic light-sensitive material is provided with at least one conductive layer containing any of the introduced fine particles dispersed in a binder. This is accomplished using photosensitive materials. Crystalline metal oxide particles are preferable as conductive particles used in the present invention, but particles containing oxygen defects and particles containing a small amount of foreign atoms that form donors for the metal oxide used are generally used. Generally speaking, it is particularly preferred because it has high conductivity, and the latter is especially preferred because it does not cause fog to the silver halide emulsion. Examples of metal oxides are ZnO,
TiO2 , SnO2 , Al2O3 , In2O3 , SiO2 , MgO ,
BaO, MoO 3 , etc., or composite oxides thereof are preferable, and ZnO, TiO 2 and SnO 2 are particularly preferable. As an example of including different atoms, for example, for ZnO,
Addition of Al, In, etc., addition of Sb, Nb, halogen elements, etc. to SnO 2 , and addition of Nb, Nb, etc. to TiO 2 .
Addition of Ta etc. is effective. The amount of these different atoms added is preferably in the range of 0.01 mol% to 30 mol%, particularly preferably 0.1 mol% to 10 mol%. The usable particle size is preferably 10μ or less, but if it is 2μ or less, stability after dispersion is good and it is easy to use. In addition, in order to minimize light scattering, it is very preferable to use conductive particles with a size of 0.5 μm or less, as this makes it possible to form a transparent photosensitive material. The conductive fine particles made of a crystalline metal oxide used in the present invention are produced by the methods (1) to (3) described above. In the first method, the conductivity of the surface of the fine particles can be effectively improved, but since particle growth may occur during the heat treatment, it is necessary to select the conditions.
Further, it may be better to perform the heat treatment in a reducing atmosphere. The second method is preferred because it appears to require the least manufacturing cost. For example, in a method for obtaining SnO 2 fine particles by spraying β-stannic acid colloid (amorphous), which is a hydrate of SnO 2 , into a firing furnace,
- Conductive SnO 2 fine particles can be obtained by coexisting hydrates of antimony chloride, antimony nitrate, antimony oxide, etc. in stannic acid colloid.
As another example, in the so-called gas phase method in which SnCl 4 and TiCl 4 are oxidatively decomposed to produce SnO 2 and TiO 2 , conductive SnO 2 and TiO 2 can be produced by coexisting salts of different atoms during oxidative decomposition. Obtainable. There is also a method of thermally decomposing an organic acid salt of a metal to obtain a metal oxide, in which salts of different metals are allowed to coexist during the thermal decomposition. An example of the third method is a vacuum evaporation method in which metals are evaporated in an oxygen atmosphere to obtain metal oxide fine particles, but the amount of oxygen is slightly insufficient, or metals and metal salts are not supplied with sufficient oxygen. There is a way to heat it. In the conductive layer according to the present invention, conventionally known conductive polymers can be used as part or all of the binder. These compounds include, for example, polyvinylbenzenesulfonic acid salts, polyvinylbenzyltrimethylammonium chloride, U.S. Pat.
Quaternary salt polymers described in US Pat. No. 4,070,189, OLS 2,830,767 (US Ser.
These include crosslinked polymer latexes described in No. 816127) and others. The amount of conductive particles used is preferably 0.05 to 20 g, particularly preferably 0.1 to 10 g, per square meter of the photographic material. In order to use the conductive particles more effectively and lower the resistance of the conductive layer, it is preferable that the volume content of the conductive particles in the conductive layer is high, but in order to have sufficient strength as a layer, it is preferable that the volume content of the conductive particles is at a minimum. It is preferable to include about 5% of the binder, and the volume content of the conductive particles is preferably in the range of 5 to 95%. However, it goes without saying that the above range varies depending on the type of photographic film base used, the photograph, the composition, the form, or the coating method. Examples of the support used in the photographic material of the present invention include cellulose nitrate film, cellulose acetate film, cellulose acetate butyrate film, cellulose acetate propionate film, polystyrene film, polyethylene terephthalate film,
There are polycarbonate films and other laminates of these materials. More specifically, baryta or α-olefin polymers, particularly polyethylene, polypropylene, ethylene-butene copolymers, etc. with 2 carbon atoms
Examples include paper coated or laminated with a polymer of ~10 α-olefins. These supports are selected from transparent ones and opaque ones depending on the intended use of the photosensitive material. Furthermore, even when the material is transparent, it is possible not only to make it colorless and transparent, but also to make it colored and transparent by adding dyes and pigments. When the adhesive strength between the support and the photographic emulsion layer is insufficient, a layer having adhesive properties to both is provided as an undercoat layer. In addition, to further improve adhesion, the surface of the support was treated with corona discharge.
Conventional preliminary treatments such as ultraviolet irradiation and flame treatment may be performed. In the photographic material of the present invention, each photographic constituent layer may also contain the following binder.
Examples of hydrophilic colloids include proteins such as gelatin, colloidal albumin, and casein; cellulose compounds such as carboxymethyl cellulose and hydroxyethyl cellulose; sugar derivatives such as agar, sodium alginate, and starch derivatives; synthetic hydrophilic colloids such as polyvinyl alcohol and poly-N-
Examples include pinylpyrrolidone, polyacrylic acid copolymer, polyacrylamide, or derivatives and partial hydrolysates thereof. Mixtures of two or more of these colloids are used if necessary. Among these, gelatin is the most used, and gelatin here refers to so-called lime-processed gelatin, acid-processed gelatin, and enzyme-processed gelatin. In addition to replacing part or all of gelatin with synthetic polymeric substances, so-called gelatin derivatives, i.e., functional groups contained in the molecule such as amino, imino, hydroxy, or carboxyl groups, can be replaced with groups that can react with them. It may be replaced with a reagent treated or modified with a single reagent, or a graft polymer in which molecular chains of a polymeric substance are bonded. The silver halide emulsion of the photographic light-sensitive material used in the present invention is usually prepared by combining a water-soluble silver salt (for example, silver nitrate) solution and a water-soluble halide salt (for example, potassium bromide) solution in the presence of a water-soluble polymer solution such as gelatin. It is made by mixing. As the silver halide, in addition to silver chloride and silver bromide, mixed silver halides such as silver chlorobromide, silver iodobromide, silver chloroiodobromide, etc. can be used. These silver halide grains are produced according to known and commonly used methods. Of course, it is also useful to use the so-called single jet method, double jet method, controlled double jet method, etc. These photographic emulsions are THJames and CEK
Mees, The Theory of the Photographic
Process” 3rd edition, published by Mac Millan; P.
"Chemie Photographique" by Grafikides,
It can be prepared by various commonly used methods such as the ammonia method, neutral method, and acid method, which are described in books such as those published by Paul Montel. The silver halide grains thus prepared were treated with a chemical sensitizer (e.g., sodium thiosulfate, N,N,N'-trimethylthiourea, monovalent gold thiocyanate complex salt, monovalent gold thiosulfate complex salt, dichloride dichloride). The sensitivity can be increased without coarsening the particles by heat treatment in the presence of tin, hexamethylenetetramine, etc.). Photographic emulsions may be spectral sensitized or supersensitized as necessary by using polymethine sensitizing dyes such as cyanine, merocyanine, and carbocyanine alone or in combination, or in combination with styryl dyes, etc. Can be done. Furthermore, various compounds can be added to the photographic emulsion of the photographic light-sensitive material used in the present invention in order to prevent a decrease in sensitivity and the occurrence of fog during the manufacturing process, storage, or processing of the light-sensitive material. These compounds are 4-hydroxy-6-methyl-1,3,3a,
A large number of compounds have been known for a long time, including 7-tetrazaindene-3-methyl-benzothiazole and 1-phenyl-5-mercaptotetrazole, as well as many heterocyclic compounds, mercury-containing compounds, mercapto compounds, and metal salts. . Examples of compounds that can be used include TH James and CEK Mees,
"The Theory of the Photographic Process"
The 3rd edition (1966), published by MacMillan, cites the original literature. When the silver halide photographic emulsion is used as a color photographic light-sensitive material, a coupler may be included in the silver halide emulsion layer. Such couplers are 4-equivalent type diketomethylene yellow couplers,
2-equivalent diketomethylene yellow coupler,
For example, US Patent No. 3277157, US Patent No. 3408194, US Patent No.
3551155, JP-A-47-26133, JP-A-48-66836, etc.; 4-equivalent or 2-equivalent pyrazolone magenta couplers and indazolone magenta couplers, such as U.S. Pat. No. 2,600,788;
Compounds described in U.S. Pat. No. 3214437, U.S. Pat.
Compounds described in et al. are used. In addition, U.S. Patent No. 3227554, U.S. Patent No. 3253924, U.S. Patent No.
Coupler capable of releasing a development inhibitor described in No. 3379529, No. 3617291, No. 3770436, etc. can also be used. The silver halide emulsion layer and other hydrophilic colloid layers in the photographic light-sensitive material of the present invention can be hardened with various organic or inorganic hardening agents (singly or in combination). Typical examples include mucochloric acid, formaldehyde, trimethylolmelamine, glyoxal, 2,3-dihydroxy-
1,4-dioxane, 2,3-dihydroxy-5
-Aldehyde compounds such as methyl-1,4-dioxane, succinaldehyde, and glutaraldehyde; divinyl sulfone, methylene bismaleimide, 1,3,5-triacryloyl-hexahydro-s-triazine, 1,3,5-trivinyl Sulfonyl-hexahydro-s-triazine bis(vinylsulfonylmethyl)ether, 1,3-
Bis(vinylsulfonylmethyl)propanol-
2. Bis(α-vinylsulfonylacetamide)
Active vinyl compounds such as ethane; 2,4-dichloro-6-hydroxy-s-triazine sodium salt, 2,4-dichloro-6-methoxy-s-
Active halogen compounds such as triazines; 2,4,
Examples include ethyleneimine compounds such as 6-triethyleneimino-s-triazine. Surfactants may be added alone or in combination to the photographic layer of the present invention. Although they are used as coating aids, they are sometimes applied for other purposes, such as emulsification and dispersion, sensitization and other photographic property improvements, and charge sequence adjustment. These surfactants include natural surfactants such as saponin, nonionic surfactants such as alkylene oxide, glycerin, and glycidol, higher alkylamines, quaternary ammonium salts, pyridine and other heterocycles, phosphonium or Sulfonium cationic surfactants; carboxylic acids,
These include anionic surfactants containing acidic groups such as sulfonic acid, phosphoric acid, sulfuric acid esters, and phosphoric acid esters, and amphoteric surfactants such as amino acids, aminosulfonic acids, and sulfuric or phosphoric acid esters of amino alcohols. It is also possible to use fluorine-containing surfactants for the same purpose. Some examples of surfactant compounds that can be used include U.S. Pat. No. 2,271,623, U.S. Pat.
No. 2739891, No. 3068101, No. 3158484,
No. 3201253, No. 3210191, No. 3294540, No.
No. 3415649, No. 3441413, No. 3442654, No. 3441413, No. 3442654, No.
No. 3475174, No. 3545974, No. 3666478, No.
No. 3507660, British Patent No. 1198450, and Ryohei Oda et al., “Synthesis of surfactants and their applications (Maki Shoten,
1964) and Surf S Active Agents by A.W. Perry (Interscience Publications, Inc., 1958),
It is described in books such as JP Sisley's Encyclopedia of Active Agents Volume 2 (Chemical Publishing Company, 1964). In addition, in the present invention, lubricating compositions such as U.S. Pat. No. 3,079,837, U.S. Pat.
No. 3545970, No. 3294537 and Japanese Published Patent No. 1972
Modified silicones such as those shown in No.-129520 can be included in the photographic constituent layer. The photographic light-sensitive material of the present invention contains the polymer latex described in U.S. Pat. No. 3,411,911, U.S. Pat. May include methyl methacrylate and the like. By implementing the present invention, failures caused by statics that occur during the manufacturing process and/or during use of photographic light-sensitive materials have been improved. For example, in the practice of the present invention, contact between the emulsion side and the back side of a photographic light-sensitive material, contact between the emulsion side and the emulsion side, and materials with which photographic light-sensitive materials commonly come into contact, such as rubber, metals, plastics, and fluorescent light. The occurrence of static marks caused by contact with intensifying screens etc. was significantly reduced. Next, the effects of the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. Example 1 A mixture consisting of 100 parts by weight of stannic oxide (average particle size 1.0 μm), 10 parts by weight of a 10% methanol solution of antimony trichloride, and 50 parts by weight of methanol was ultrasonically dispersed for 10 minutes to obtain a uniform dispersion. This dispersion was dried at 110° C. for 1 hour and then calcined in air at 800° C. for 1 hour to obtain stannic oxide with a slightly bluish tint. The specific resistance was 6 Ω-cm when measured by molding it into a tablet at a pressure of 1000 Kg/cm 2 . The particle size was approximately the same as the average particle size of the stannic oxide used. Particles of the same size with specific resistances of 25 Ω-cm and 200 Ω-cm were obtained from stannic oxide with average particle diameters of 0.5 μ and 0.2 μ, respectively. Example 2 A mixture consisting of 100 parts by weight of zinc oxide, 5 parts by weight of a 10% aqueous solution of Al(NO 3 ) 3 ·9H 2 O and 100 parts by weight of water was irradiated with ultrasonic waves for 10 minutes to obtain a uniform dispersion. After drying this dispersion at 110℃ for 1 hour,
10 -4 Torr Baked for 5 minutes at 600℃, specific resistance 2×10 2 Ω
−cm of zinc oxide was obtained. The particle size was 2μ. These particles were ground with a ball mill to produce an average particle size of 0.7μ.
particles were obtained. Example 3 100 parts by weight of tin metal and 1 part by weight of antimony metal were reacted with 400 parts by weight of concentrated nitric acid to obtain a colloidal precipitate consisting of antimonic acid and β-stannic acid. This precipitate was centrifuged and washed three times with 1,000 parts by weight of water, and then washed with 500 parts by weight of water.
The mixture was diluted to parts by weight to obtain a colloidal dispersion. This dispersion was sprayed into a calcining furnace heated to 800°C to obtain fine blue-tinged stannic oxide powder. This fine powder had a specific resistance of 3.2 Ω-cm and a particle size of 0.5 μm. Example 4 A mixture consisting of 100 parts by weight of titanium oxide, 10 parts by weight of a 10% methanol solution of niobium pentachloride, and 100 parts by weight of methanol was irradiated with ultrasonic waves for 10 minutes to obtain a uniform dispersion. After drying this dispersion at 110°C for 1 hour,
By firing at 750° C. and ×10 −4 Torr for 5 minutes, a fine titanium oxide powder with a bluish tint was obtained. This fine powder has a specific resistance
The particle size was 6.2×10 2 Ω-cm and 1 μm. Example 5 10 parts of tin oxalate was placed in an electric furnace at 200°C/hr.
The sample was heated to 300°C at a heating rate of 300°C, held at 300°C for 2 hours, and then cooled and taken out. 7.2 parts of blackish brown fine particles (1μ or less) were obtained. The specific resistance of this material was ρν=1.8×10°Ωcm. Similarly, for those heated to 1000℃, the specific resistance ρν = 3
×10 6 Ωcm. Example 6 Put 10 parts of tin oxalate into a thin container and add methylene chloride to the extent that the tin oxalate is submerged.
Tributoxyantimony (Sb(OC 3 H 7 ) 3
Add 0.1 part of , stir, and warm to 80°C to distill off methylene chloride. It was heated to 800°C at a heating rate of 300°C/hr in an electric furnace, and then taken out from the electric furnace after being allowed to cool.
7.17 parts of fine particles (1μ or less) with a slight bluish tinge were obtained. The specific resistance of this material was ρν=1.3×10°Ωcm. Example 7 The conductive particles obtained in Examples 1 to 6 were dispersed in polyvinyl alcohol (PVA) and gelatin and applied to a polyethylene terephthalate (PET) film to prepare a conductive layer. The surface of PET film was treated with corona to improve its wettability. The results are summarized in Table 1. The particle to binder ratio was 5:1 by weight.

〔ハロゲン化銀乳剤組成〕[Silver halide emulsion composition]

バインダー;ゼラチン9.15g/乳剤80g当り ハロゲン化銀組成;AgI8.5mol%および
AgBr91.5mol% Br-Excess20mol% 銀量;4.42×10-2mol% ハロゲン化銀粒子の平均粒径;0.75μm 〔添加剤組成〕 ポリビニルベンゼンスルホン酸カリウム(2%溶
液);2c.c./乳剤80g当り ドデシルベンゼンスルホン酸ソーダ(1%溶
液);2c.c./乳剤80g当り 〔SnO2粉末/水分散物の分散条件〕 水34c.c.中にSnO2粉末をそれぞれ5mg、20mg、
80mg及び200mg分散した分散物。 上記の含有量でSnO2粉末を含む4種類のハロ
ゲン化銀乳剤をそれぞれ100μmのポリエチレン
テレフタレートフイルムに乾燥塗布銀量が3.2乃
至3.3g/m2となるように塗布し、乾燥してSnO2
粉末を含むハロゲン化銀写真感光材料を準備し
た。比較のために同様の方法でSnO2粉末を含ま
ないハロゲン化銀写真感光材料を準備した。 次にこの様にして作成された資料、更にこの資
料をドライサーモ(50℃、20%RH以下で7日
間)し、ウエツトサーモ(50℃、80%RHで7日
間)した資料について、それぞれハロゲン化銀乳
剤層のカブリ及び感度について調べた。現像液と
しては、D76現像液(イーストマンコダツク社
製)を用い、現像条件は20℃、8分とした。 その結果、SnO2粉末とハロゲン化銀粒子との
相互作用に基づくカブリの増加は認められなかつ
た。又ハロゲン化銀乳剤の感度の変化も認められ
なかつた。
Binder: 9.15 g of gelatin/per 80 g of emulsion Silver halide composition: AgI 8.5 mol% and
AgBr91.5mol% Br - Excess20mol% Silver amount: 4.42×10 -2 mol% Average particle size of silver halide grains: 0.75 μm [Additive composition] Potassium polyvinylbenzenesulfonate (2% solution); 2c.c./ Sodium dodecylbenzenesulfonate (1% solution) per 80 g of emulsion; 2 c.c./per 80 g of emulsion [Dispersion conditions of SnO 2 powder/water dispersion] 5 mg and 20 mg of SnO 2 powder in 34 c.c. of water, respectively.
80mg and 200mg dispersions. Four types of silver halide emulsions containing SnO 2 powder with the above content were applied to a 100 μm polyethylene terephthalate film so that the dry coated silver amount was 3.2 to 3.3 g/m 2 , and dried to form SnO 2
A silver halide photographic material containing powder was prepared. For comparison, a silver halide photographic material containing no SnO 2 powder was prepared in a similar manner. Next, the materials created in this way, and the materials that were subjected to dry thermography (50℃, 20%RH or less for 7 days) and wet thermography (50℃, 80%RH for 7 days), were halogenated. The fog and sensitivity of the silver emulsion layer were investigated. D76 developer (manufactured by Eastman Kodak) was used as the developer, and the development conditions were 20° C. and 8 minutes. As a result, no increase in fog due to interaction between SnO 2 powder and silver halide particles was observed. Also, no change in sensitivity of the silver halide emulsion was observed.

Claims (1)

【特許請求の範囲】 1 ZnO、TiO2、SnO2、Al2O3、In2O3、SiO2
MgO、BaO、MoO3の中から選ばれた少なくと
も1種の結晶性金属酸化物あるいはこれらの複合
酸化物の微粒子であつて、かつ該微粒子が (1) 焼成により作製され、その後異種原子の存在
下に熱処理された微粒子であるもの (2) 焼成により作製されるときに異種原子を共存
させて得られた微粒子であるもの (3) 焼成により作製するときに酸素濃度を下げて
酸素欠陥を導入した微粒子であるもの のうちいずれかであり、該微粒子をバインダー中
に分散した導電層をハロゲン化銀写真感光材料中
に少なくとも1層設けたことを特徴とする帯電防
止性の改良された写真感光材料。
[Claims] 1 ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 ,
Fine particles of at least one crystalline metal oxide selected from MgO, BaO, and MoO 3 or composite oxides thereof, and the fine particles are produced by (1) calcination, and are then prepared by the presence of foreign atoms. (2) Fine particles that have been heat-treated at the bottom. (2) Fine particles that are obtained by coexisting with different atoms when they are produced by firing. (3) Those that are produced by lowering the oxygen concentration and introducing oxygen defects when they are produced by firing. A photographic light-sensitive material with improved antistatic properties, characterized in that the silver halide photographic light-sensitive material is provided with at least one conductive layer in which the fine particles are dispersed in a binder. .
JP4766480A 1980-04-11 1980-04-11 Photographic sensitive material with improved antistatic property Granted JPS56143431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4766480A JPS56143431A (en) 1980-04-11 1980-04-11 Photographic sensitive material with improved antistatic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4766480A JPS56143431A (en) 1980-04-11 1980-04-11 Photographic sensitive material with improved antistatic property

Publications (2)

Publication Number Publication Date
JPS56143431A JPS56143431A (en) 1981-11-09
JPH0120733B2 true JPH0120733B2 (en) 1989-04-18

Family

ID=12781521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4766480A Granted JPS56143431A (en) 1980-04-11 1980-04-11 Photographic sensitive material with improved antistatic property

Country Status (1)

Country Link
JP (1) JPS56143431A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2949192B2 (en) * 1988-07-07 1999-09-13 富士写真フイルム株式会社 Silver halide photographic material
JP2663043B2 (en) * 1990-08-15 1997-10-15 富士写真フイルム株式会社 Silver halide photographic material
JPH06250336A (en) * 1993-02-25 1994-09-09 Konica Corp Silver halide photographic sensitive material having antistatic property
US6783805B2 (en) * 2001-10-12 2004-08-31 Rensselaer Polytechnic Institute Gelatin nanocomposites
JP4369876B2 (en) 2004-03-23 2009-11-25 富士フイルム株式会社 Silver halide photosensitive material and photothermographic material
JP2006056184A (en) 2004-08-23 2006-03-02 Konica Minolta Medical & Graphic Inc Printing plate material and printing plate
US20060057512A1 (en) 2004-09-14 2006-03-16 Fuji Photo Film Co., Ltd. Photothermographic material
JP2006247858A (en) 2005-03-08 2006-09-21 Konica Minolta Medical & Graphic Inc Printing method, block copy sheeting material and method for fitting printing plate material
EP1906235A4 (en) 2005-07-20 2008-07-30 Konica Minolta Med & Graphic Image forming method
US7504200B2 (en) 2007-02-02 2009-03-17 Konica Minolta Medical & Graphic, Inc. Photothermographic material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044818A (en) * 1973-07-21 1975-04-22
JPS515300A (en) * 1974-07-04 1976-01-16 Matsushita Electric Ind Co Ltd DODENSEIBIFUN MATSUNO SEIZOHOHO
JPS5369630A (en) * 1976-12-02 1978-06-21 Oriental Photo Ind Co Ltd Photographic sensitive material
JPS5418999A (en) * 1977-07-08 1979-02-13 Teijin Ltd Conductive fiber
JPS5459926A (en) * 1977-10-21 1979-05-15 Konishiroku Photo Ind Co Ltd Photographic material having antistatic layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044818A (en) * 1973-07-21 1975-04-22
JPS515300A (en) * 1974-07-04 1976-01-16 Matsushita Electric Ind Co Ltd DODENSEIBIFUN MATSUNO SEIZOHOHO
JPS5369630A (en) * 1976-12-02 1978-06-21 Oriental Photo Ind Co Ltd Photographic sensitive material
JPS5418999A (en) * 1977-07-08 1979-02-13 Teijin Ltd Conductive fiber
JPS5459926A (en) * 1977-10-21 1979-05-15 Konishiroku Photo Ind Co Ltd Photographic material having antistatic layer

Also Published As

Publication number Publication date
JPS56143431A (en) 1981-11-09

Similar Documents

Publication Publication Date Title
US4495276A (en) Photosensitive materials having improved antistatic property
US4394441A (en) Photographic sensitive materials
JPS6049894B2 (en) photographic material
JPH08211556A (en) Image formation element containing conductive layer
JPS6018977B2 (en) photographic material
JPH0120733B2 (en)
EP0514903B1 (en) Silver halide photographic material
JPS5836894B2 (en) photographic material
JPH11242308A (en) Multilayered image forming element
JPH0120735B2 (en)
US5372923A (en) Light-sensitive silver halide photographic material
JPH0324657B2 (en)
JPS6398656A (en) Silver halide photographic sensitive material
JPH07168316A (en) Polymer-clad fibrous vanadium pentoxide, antistatic layer containing it and image formation element
US5849472A (en) Imaging element comprising an improved electrically-conductive layer
JPH06250336A (en) Silver halide photographic sensitive material having antistatic property
JPS5862648A (en) Antistaticized silver halide photosensitive material
JPS6023848A (en) Antistatic photosensitive silver halide material
JPS5836768B2 (en) Photographic material with improved antistatic properties
JPH0324656B2 (en)
JPH0427937A (en) Silver halide photographic sensitive material
JPH0120736B2 (en)
JPH0120734B2 (en)
JPS62189461A (en) Silver halide photographic sensitive material improved in antistaticness
JPH05281660A (en) Photographic base and its manufacture by using the same