JPH01207126A - Method for granulating powder or the like - Google Patents

Method for granulating powder or the like

Info

Publication number
JPH01207126A
JPH01207126A JP63030475A JP3047588A JPH01207126A JP H01207126 A JPH01207126 A JP H01207126A JP 63030475 A JP63030475 A JP 63030475A JP 3047588 A JP3047588 A JP 3047588A JP H01207126 A JPH01207126 A JP H01207126A
Authority
JP
Japan
Prior art keywords
gel
powder
metal ions
polyvalent metal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63030475A
Other languages
Japanese (ja)
Other versions
JP2629013B2 (en
Inventor
Toshiaki Kimura
利昭 木村
Shinji Moriya
守屋 信治
Yoshihiro Ito
義弘 伊藤
Shinichi Shioda
潮田 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Paudal Co Ltd
Snow Brand Milk Products Co Ltd
Original Assignee
Fuji Paudal Co Ltd
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Paudal Co Ltd, Snow Brand Milk Products Co Ltd filed Critical Fuji Paudal Co Ltd
Priority to JP3047588A priority Critical patent/JP2629013B2/en
Publication of JPH01207126A publication Critical patent/JPH01207126A/en
Application granted granted Critical
Publication of JP2629013B2 publication Critical patent/JP2629013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a granular material having a smooth surface and high sphericity by using a sol in which powder is dispersed as a core liquid, dropping this liquid into a solidified liquid contg. polyvalent metal ions to form the granular material and drying this gel. CONSTITUTION:The core liquid is prepd. by dispersing the powder meeting the purpose of use into the sol which forms a gel by reacting with polyvalent metal ions. This core liquid is dropped into the solidified liquid contg. the polyvalent metal ions to form the granular material. This gel is subjected to a surface treatment at need to eliminate flocculating and sticking properties; thereafter, the gel is dried to obtain the granular material. The above-mentioned granular material is previously immersed into the soln. contg. the poolyvalent metal ions and this soln. is immersed in the sol to effect reaction and to form a coating layer. The granular material having the multilayer structure formed with the many layers on the surface of the grains is thereby obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粉体等の造粒方法に関するもので、ファイン
セラミックス、触媒、肥料、医薬、農薬、種子などの分
野において、表面改質、あるいは特定微粒子、酵素、微
生物、細胞などの固定化担体複合化といった造粒自体の
機能性を求める造粒方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for granulating powder, etc., and is used in the fields of fine ceramics, catalysts, fertilizers, medicines, agricultural chemicals, seeds, etc. Alternatively, it relates to a granulation method that seeks functionality of the granulation itself, such as compositing specific fine particles, enzymes, microorganisms, cells, etc. with immobilized carriers.

例えば、ゼオライト、活性炭、アルミナ、グラスファイ
バー、セラミックスを用いて粒状物を形成し、これを触
媒として脱硫、脱色、吸着、脱臭等に用いられる造粒物
の製造法であって、ガラス、アルミナ、フェライト、ジ
ルコニア等の造粒方法にも応用される造粒方法に関する
For example, it is a method for producing granules that is used for desulfurization, decolorization, adsorption, deodorization, etc. by forming granules using zeolite, activated carbon, alumina, glass fiber, ceramics, and using the granules as a catalyst. This invention relates to a granulation method that is also applied to granulation methods for ferrite, zirconia, etc.

(従来の技術) 近年、新素材などファイン化(高純度)に伴い、セラミ
ックスや複合材料、金属材料等耐摩耗性材料などの造粒
の要望が高い。
(Prior Art) In recent years, as new materials have become finer (higher purity), there is a high demand for granulation of wear-resistant materials such as ceramics, composite materials, and metal materials.

従来法によると、造粒は、これまで総て機械的な造粒で
処理されてきた。機械的な造粒方法は、圧縮、転勤、押
出し、流動等である。
According to conventional methods, granulation has so far been entirely carried out by mechanical granulation. Mechanical granulation methods include compression, rolling, extrusion, flow, etc.

圧縮成形法は、医薬などの分野で最も多く用いられるも
ので、臼の中に成形すべき触媒、必要により滑沢剤、結
合剤等補助材料を添加混合した粉末を入れ、杵で圧縮し
て成形する。
Compression molding is the method most commonly used in fields such as medicine, where a powder containing the catalyst to be molded and auxiliary materials such as lubricants and binders are placed in a mortar and compressed with a pestle. Shape.

転勤造粒法は、皿型の平たい内筒を回転させ、その中に
ある粉体を雪だるま式に粒を大きく成長させていく方法
であって、装置としては回転容器型、振動型、流動層型
、混合機型などがある。
The transfer granulation method is a method in which a flat, dish-shaped inner cylinder is rotated to cause the powder inside to grow into larger particles in a snowball-like manner. There are types such as type and mixer type.

転勤造粒のメカニズムは、先ず、湿った粉体を転勤や攪
拌によって転勤させ、核粒子を成形させる。
The mechanism of transfer granulation is that first, wet powder is transferred by transfer or stirring to form core particles.

更に水分などを補給していくと、水系の膜で粉体粒子が
結合し、粒子を形成するものであるが、問題点は水分な
どの均一補給が困難なことから、含水率の多い粒子は粒
表面に過剰水分が浸出しくチクソトロピー現象)、周囲
の湿潤粉体を付着凝集して雪だるま式に急速に粒が成長
していくものである。
When water is further replenished, the powder particles combine with the aqueous film to form particles, but the problem is that it is difficult to uniformly replenish water, so particles with a high water content This is a thixotropic phenomenon in which excess water seeps out onto the grain surface, causing the surrounding wet powder to adhere and agglomerate, causing the grains to rapidly grow in a snowball-like manner.

押出し造粒法は、触媒工業に用いられている押出し成形
造粒であるが、その果たす役割は、あまり大きくない。
The extrusion granulation method is an extrusion granulation method used in the catalyst industry, but its role is not very large.

噴霧造粒法は、石油等炭化水素の接触分解、すなわちF
CC触媒として用いられているもので、粒径としては平
均50〜100μm程度である。
The spray granulation method involves catalytic cracking of hydrocarbons such as petroleum, that is, F
It is used as a CC catalyst, and its particle size is approximately 50 to 100 μm on average.

(発明が解決しようとする課題) 造粒とは微細粒子を結合し、その凝集体を得る方法であ
る。
(Problems to be Solved by the Invention) Granulation is a method of combining fine particles to obtain aggregates thereof.

一般的には、結合剤を用いて材料に可塑性を与え造粒、
あるいは成形する。
Generally, a binder is used to impart plasticity to the material and granulation is carried out.
Or mold it.

ところが、無機材料や金属の場合、結合剤が粉末粒子間
に浸透しづらいため、強力な結合剤を用いる必要がある
However, in the case of inorganic materials and metals, it is difficult for the binder to penetrate between the powder particles, so it is necessary to use a strong binder.

このような強力な結合剤を混合しても、結合剤が十分に
浸蝕されない物性が多いため、可塑性の調整が困難で、
動力当りの生産量が低く、かつメンテナンス費用も多く
かかる問題がある。
Even when such a strong binder is mixed, there are many physical properties that do not erode the binder sufficiently, making it difficult to adjust the plasticity.
There are problems with low production per unit of power and high maintenance costs.

機械的造粒方法の場合、特に粉砕用ボールを用いて超微
粉に形成することは、ファイン化には欠くことのできな
い操作である。
In the case of a mechanical granulation method, forming ultrafine powder using a grinding ball is an essential operation for making fine particles.

しかるに、粉砕ボール同志の衝突や摩擦により粉砕され
るため、ボール表面平滑度が粉砕効率に大きく左右する
と同時に、ボール表面の凹凸はボールそのものの摩擦を
促進し、その摩擦によってできた金属成分が移って灰色
となり、高純度品の得られないコンタミともなる。
However, since pulverization is caused by collision and friction between the pulverizing balls, the smoothness of the ball's surface greatly affects the pulverizing efficiency, and at the same time, the unevenness of the ball's surface promotes the friction of the balls themselves, and the metal components created by that friction are transferred. It turns gray and becomes a contaminant that prevents high-purity products from being obtained.

又、結合剤を添加するときは、その量が多量であると、
それ自身コンタミネーションの原因となるし、得られた
粒状物の表面平滑度が粗い。
Also, when adding a binder, if the amount is large,
This itself causes contamination, and the surface smoothness of the resulting granules is rough.

゛ 特に、転勤、流動方式では、核となる材料表面に結
合剤を噴霧しつつ、粉末を核材料に付着させながら成長
させ、球形粒子をつくる。
゛ In particular, in the transfer and flow method, a binder is sprayed onto the surface of the core material and the powder is allowed to grow while adhering to the core material to form spherical particles.

このとき、結合剤を均一に付着させることは困難なこと
もあり、粒子表面が凹凸となり、平滑度が粗くなり、流
動性も悪くなる。
At this time, it may be difficult to apply the binder uniformly, and the particle surface becomes uneven, resulting in rough smoothness and poor fluidity.

そして、転勤造粒機で球形粒子を得ようとすると、転動
作用が一定方向回転のため、必ずしも粒子転勤運動が球
面転動作用を受けず、楕円の造粒物になり真球度は低く
なる。
When trying to obtain spherical particles using a transfer granulator, since the rolling motion rotates in a fixed direction, the particle transfer motion does not necessarily undergo spherical rolling motion, resulting in elliptical granules with low sphericity. Become.

真球度の低いものは流動性が悪くなるし、粒径がコント
ロールしづらい。
If the sphericity is low, the fluidity will be poor and the particle size will be difficult to control.

又、アルミナ、グラスファイバー、ジルコニア等は、結
合剤との親和性がなく造粒できない。
Furthermore, alumina, glass fiber, zirconia, etc. have no affinity with the binder and cannot be granulated.

したがって本発明では、これら従来の欠点、すなわち真
珠性、粒径、粒子表面の平滑性、摩耗によるコンタミネ
ーションの問題を解消し、全く造粒できなかった粉体も
球形化でき、粒径コントロールもし易く、均一な粒径品
が再現性良くできる、しかも摩耗によるコンタミネーシ
ョンのない、粉体表面活性に影響を受けずに表面平滑な
、真球性の高い造粒方法を得ることを目的とするもので
ある。
Therefore, in the present invention, these conventional drawbacks, namely the problems of nacreousness, particle size, particle surface smoothness, and contamination due to abrasion, can be solved, powders that could not be granulated at all can be made into spherical shapes, and the particle size can be controlled. The objective is to obtain a granulation method that can easily produce products with uniform particle size with good reproducibility, without contamination due to wear, and with a smooth surface and high sphericity without being affected by powder surface activity. It is something.

(課題を解決するための手段) 以上のような目的を達成するために、本発明では、従来
の液中硬化被覆法の一環であるカプセル化方法でり、M
、ペクチン、アルギン酸ナトリウムなどの多糖類溶液と
、カルシウムなどの多価金属イオンを含む溶液を接触さ
せることにより、架橋反応を生じさせ、カプセル化する
方法における架橋反応に注目し、この現象を利用して結
合剤と親和しない粉体を造粒化できるようにした。
(Means for Solving the Problems) In order to achieve the above objects, the present invention uses an encapsulation method that is a part of the conventional submerged coating method, and
, focused on the crosslinking reaction in the method of encapsulation by bringing a polysaccharide solution such as pectin or sodium alginate into contact with a solution containing polyvalent metal ions such as calcium, and utilized this phenomenon. This makes it possible to granulate powders that are not compatible with binders.

すなわち、その第1の発明は、多価金属イオンと反応し
てゲルを作るゾル中に、使用目的に応じた粉体を分散さ
せたものを芯液として、これを多価金属イオンを含む凝
固液中に滴下して粒状物を作り、このゲルを必要に応じ
て表面処理して凝集付着剤をなくし、しかる後乾燥する
ことを特徴とする粉体等の造粒方法であり、第2の発明
は、多価金属イオンを含むゲル中に、使用目的に応じた
粉体を分散した溶液を多価金属イオンと反応してゲルを
作るゾル溶液中に滴下して内部流動性の粒状物を作り、
このゲルを必要に応じて表面処理して凝集付着性をなく
し、しかる後乾燥することを特徴とする粉体等の造粒方
法である。
That is, the first invention uses a core liquid in which powders according to the purpose of use are dispersed in a sol that reacts with polyvalent metal ions to form a gel, and this is used as a core liquid to coagulate the polyvalent metal ions. This is a method of granulating powder, etc., which is characterized by dropping the gel into a liquid to form granules, treating the surface of this gel as necessary to eliminate cohesive adhesives, and then drying it. The invention involves dropping a solution in which powders are dispersed according to the purpose of use into a gel containing polyvalent metal ions into a sol solution that reacts with polyvalent metal ions to form a gel, thereby producing internally fluid granules. Making,
This is a method for granulating powder, etc., which is characterized in that this gel is surface-treated to eliminate agglomeration and adhesion, if necessary, and then dried.

第3の発明は、多価金属イオンと反応してゲルを作るゾ
ル中に、使用目的に応じて選択された粉体を分散したと
ころの単数、又は複数の溶液中に、請求項(1)(2)
によって得られた造粒物を浸漬するに当り、予め多価金
属イオンを含む溶液に浸漬するか、又はせずしてこれを
前記単数の溶液中に浸漬するか、又は複数の溶液中に繰
り返し浸漬して反応せしめてコーティング層を形成し、
これによって造粒体の表面に複数の層を形成して多層構
造の造粒物を得る方法である。
The third invention is claimed in claim (1), in which powders selected depending on the purpose of use are dispersed in a sol that reacts with polyvalent metal ions to form a gel. (2)
When immersing the granules obtained by the above, the granules may be immersed in a solution containing polyvalent metal ions in advance, or they may be immersed in a single solution without prior immersion, or they may be immersed in a plurality of solutions repeatedly. Dip and react to form a coating layer,
This is a method of forming a plurality of layers on the surface of the granule to obtain a granule with a multilayer structure.

そして、前記滴下する溶液は、単一ノズルを用いるの他
、多重構造のノズルを用いるが、後者の場合、多価金属
イオンと反応してゲルを作るゾル中に粉体を分散させた
溶液と、多価金属イオンを含む溶液中に粉体を分散した
溶液との何れか一方をノズルの内方から、他方を外方か
ら外方のノズルに用いられた溶液と反応する粉体を分散
した、又は分散しない溶液中に滴下するものである。
In addition to using a single nozzle, the dripping solution uses a multi-structure nozzle. In the latter case, the solution is a solution in which powder is dispersed in a sol that reacts with polyvalent metal ions to form a gel. , a solution containing polyvalent metal ions in which powder is dispersed, and the powder that reacts with the solution used in the nozzle is dispersed from the inside of the nozzle, and the other from the outside of the nozzle. , or dropped into a solution that does not disperse.

第1の発明によって得られた造粒物は、内部ゲル状のも
のが得られ、全体的にポーラスなものが得られる。
The granules obtained according to the first invention have an internal gel-like structure and are entirely porous.

そして、その方法に用いられる多価金属イオンとは、塩
化カルシウム、塩化マグネシウム、塩化バリウム、塩化
アルミニウム、塩化鉄など多価金属の有機及び無機塩が
用いられる。したかって、凝固液はかかる多価金属イオ
ンを含む?容ン夜である。
The polyvalent metal ions used in this method include organic and inorganic salts of polyvalent metals such as calcium chloride, magnesium chloride, barium chloride, aluminum chloride, and iron chloride. Does the coagulating liquid contain such polyvalent metal ions? It's night.

又、芯液としては、アルギン酸ナトリウム、L、M、ペ
クチン、イオタカラゲナン等の多I!類溶液を所定濃度
に溶解した溶液である。
In addition, as the core liquid, multi-I! This is a solution prepared by dissolving a similar solution to a predetermined concentration.

更に又、得られた粒状物の表面処理をする処理剤として
はアルコール等が用いられ、これによって凝集付着性を
なくする。
Furthermore, alcohol or the like is used as a treatment agent for the surface treatment of the obtained granules, thereby eliminating agglomeration and adhesion.

乾燥は静置乾燥、流動層および震動流動層にて乾燥する
。この他、遠心乾燥、溶媒置換等が考えられる。
Drying is performed by stationary drying, fluidized bed drying, and vibrating fluidized bed drying. In addition, centrifugal drying, solvent replacement, etc. can be considered.

以上のような操作をすることにより、粒状物の凝集が防
止され、必要な球形のものを得ることができ、球形が保
たれて真球度が増すという効果がある。
By performing the above operations, agglomeration of the particulate matter is prevented, the necessary spherical shape can be obtained, the spherical shape is maintained, and the sphericity is increased.

加えられる粉体は、使用目的に応じて各種の粉体が選ば
れるが、ポーラスな造粒物が得られるところから触媒に
用いられる。したがって、触媒を例にとって説明すると
次のようである。
Various powders are selected depending on the purpose of use, but they are used as catalysts because they produce porous granules. Therefore, using a catalyst as an example, the explanation is as follows.

すなわち、一般的に、触媒造粒の目的は反応系ガス、又
は液体の流通を良くすることなどで圧損失の減少、チャ
ネリング(偏流)の防止、均一な接触、触媒の反応槽へ
の供給、又は反応容器よりの排出の容易さ、粉塵発生(
ダスティング)の防止等の主旨から造粒形態としては摩
耗、微粉化を抑えるため、表面の滑らかな球状体である
ことが要求される。
In other words, in general, the purpose of catalyst granulation is to improve the flow of reaction gas or liquid, thereby reducing pressure loss, preventing channeling (uneven flow), uniform contact, and supplying the catalyst to the reaction tank. Or ease of discharge from the reaction vessel, dust generation (
For the purpose of preventing dusting, etc., the granulation form is required to be a spherical body with a smooth surface in order to suppress wear and pulverization.

一方、触媒成分、助触媒成分等を把持させて成形、焼成
して得られる粒状触媒は、より触媒活性(反応率、選択
性)、寿命(化学的劣化)等基本的品質向上や反応機構
の差異等によって、最も適した細孔構造、細孔分布、有
効表面積等の形態が選ばれる。
On the other hand, granular catalysts obtained by gripping catalyst components, co-catalyst components, etc., molding, and firing improve basic quality such as catalytic activity (reaction rate, selectivity) and life (chemical deterioration), and improve the reaction mechanism. Depending on the differences, etc., the most suitable form of pore structure, pore distribution, effective surface area, etc. is selected.

したがって、造粒操作を行う場合、成形圧を加減して細
孔構造(ポーラス)に影ツする装置を避け、同時に前者
の目的に適した操作機器の選択か必要となる。
Therefore, when performing a granulation operation, it is necessary to adjust the molding pressure to avoid equipment that affects the pore structure (porosity), and at the same time to select operating equipment suitable for the former purpose.

触媒の原料となる粉体としては、アルミナ、シリカ、チ
タニア、ジルコニア、マグネシア、ガラス、活性炭、軽
石、珪藻土、モンモリナイト、ボーキサイト、ポリマー
等がある。
Examples of powders used as raw materials for catalysts include alumina, silica, titania, zirconia, magnesia, glass, activated carbon, pumice, diatomaceous earth, montmorinite, bauxite, and polymers.

そして、脱硫に用いられる粉体は、シリカ、アルミナ、
コバルト、モリブデンであり、吸着に用いられる粉体は
、シリカ、アルミナ、ガラス、ゼオライト、活性炭、ア
ルミナ、コバルト、ジルコニア、モリブデンであり、脱
色に用いられる粉体は、活性炭、活性白土であり、脱臭
に用いられる粉体は、活性炭、ゼオライトである。
The powder used for desulfurization is silica, alumina,
The powders used for adsorption are silica, alumina, glass, zeolite, activated carbon, alumina, cobalt, zirconia, and molybdenum, and the powders used for decolorization are activated carbon and activated clay. The powders used are activated carbon and zeolite.

以上の如き粉体を使用した触媒に用いられる造粒物は、
従来の装置では製造不可能な0.2〜0.8φ印〇粒径
範囲の造粒も含め、O01〜10.0φm111の範囲
において、触媒目的に応じ自在に均一な粒径のコントロ
ールができる。
Granules used in catalysts using powders as described above are:
Uniform particle size can be freely controlled in the range of O01 to 10.0φm111, including granulation in the particle size range of 0.2 to 0.8φ, which cannot be produced using conventional equipment, depending on the purpose of the catalyst.

すなわち、用いられるノズル口径、芯液の種類、濃度、
粉体のスラリー濃度を選定して粒径調整をする。滴下ノ
ズルの他に、多重ノズルの外側から圧縮空気を供給し、
その空気量を調整することにより、任意の粒径に小径化
できる。
In other words, the nozzle diameter used, the type and concentration of the core liquid,
Select the powder slurry concentration and adjust the particle size. In addition to the drip nozzle, compressed air is supplied from the outside of the multiple nozzle,
By adjusting the amount of air, the particle size can be reduced to any desired size.

そして、触媒に求められる真球粒子が得られ、担体原料
のもつ特性(細孔構造、細孔分布)を破壊することなく
、そのまま特性を維持した造粒物が得られる。
Then, true spherical particles required for a catalyst can be obtained, and a granulated product can be obtained that maintains the characteristics (pore structure, pore distribution) of the carrier raw material without destroying them.

更に滑らかな均一真球粒子を得るため、圧損失の現象、
粉塵発生の防止、反応容器よりの排出の容易性等、更に
は、触媒活性(反応率、選択性)及び寿命等、品質向上
に効果をみることができる。
In order to obtain even smoother, uniform, true spherical particles, the phenomenon of pressure loss,
Effects can be seen on quality improvement, such as prevention of dust generation and ease of discharge from the reaction vessel, as well as catalyst activity (reaction rate, selectivity) and life span.

次に、第1発明のものが芯液を多糖類溶液としたのに対
し、第2発明のものは多価金属イオンを含む溶液とした
もので、多糖類溶液や多価金属イオンを含む溶液は、第
1発明のものと同様なものが用いるものである。
Next, while the first invention uses a polysaccharide solution as the core liquid, the second invention uses a polysaccharide solution or a solution containing polyvalent metal ions. The same one as that of the first invention is used.

得られた造粒物は内部流動性のものが得られ、緻密な造
粒物のものが得られる。したがって、ファインセラミッ
クスへの応用が考えられ、その使用目的に応じて次のよ
うな粉体が加えられる。
The resulting granules have internal fluidity and are dense. Therefore, application to fine ceramics is considered, and the following powders are added depending on the purpose of use.

そもそも、ファインセラミックスの用途は、電気、電子
分野で絶縁材料、誘電材料、半導体材料であり、磁気的
機能分野で磁気記録ヘッド、フェライト磁石、感温セン
サー、化学的機能分野でガス、温度センサー、触媒担体
、有機触媒である。
In the first place, fine ceramics are used as insulating materials, dielectric materials, and semiconductor materials in the electrical and electronic fields, magnetic recording heads, ferrite magnets, and temperature sensors in the magnetic functional field, and gas and temperature sensors, and temperature sensors in the chemical functional field. It is a catalyst carrier and an organic catalyst.

又、機械的機能分野で切削材料、摩耗材、耐熱材料、生
体機能分野で人工歯根、人工骨、人工関節である。
In addition, in the field of mechanical functions, there are cutting materials, wear materials, and heat-resistant materials, and in the field of biological functions, there are artificial tooth roots, artificial bones, and artificial joints.

ところで、ファインセラミックスの造粒の目的について
考えてみると、上記各用途に応じた形の成形を行う場合
、IC,LSIチップなど数ミクロンといった超薄板の
成形や、超小型のセンサーあるいは摩耗材や人工骨など
、精度を要求される成形などの場合、成形臼に如何に均
一な充填が行われるかが最重要な操作でもあり、焼成後
の品質に大きく影響する要素である。
By the way, if we think about the purpose of granulation of fine ceramics, when molding into shapes suitable for each of the above uses, we can mold ultra-thin plates of several microns such as IC and LSI chips, ultra-small sensors, or wear materials. In the case of molding that requires precision, such as molding or artificial bone, the most important operation is how uniformly the molding mortar is filled, and is a factor that greatly affects the quality after firing.

このため、材料の特性として流動性を如何に良くするか
が要望される。
Therefore, it is desired to improve fluidity as a material characteristic.

したがって、粒子の形状を真球度の高い造粒を行うこと
により、流動性及び充填率が向上する。
Therefore, by granulating particles with high sphericity, fluidity and filling rate are improved.

又、同時に、旧来のセラミックスとは想像もつかない程
精製(高純度)、高純度シリコンなど半導体材料ではイ
レブンナイン(99,999999999%)が要望さ
れる。
At the same time, semiconductor materials such as high-purity silicon are required to have eleven nines (99,999999999%), which is unimaginably refined (high purity) compared to conventional ceramics.

したがって、ノンコンタミネーションの造粒が大きな課
題となっている。
Therefore, non-contamination granulation has become a major issue.

以上のような課題を解決するため、加えられる粉体とそ
の用途を挙げれば次のようである。
In order to solve the above problems, the powders that can be added and their uses are as follows.

粉体          用途 以上の如く、第1.2発明のものは、内部ゲル状のゲル
カプセルや内部流動性のカプセルに各種粉体を含有させ
ることができるものであるが、第3発明のものは、第1
.2発明によって得られた粒状物に多層コーティングで
きるものである。
Powder Usage As mentioned above, the product of the 1.2 invention allows various powders to be contained in an internally gel-like gel capsule or an internally fluid capsule, but the product of the 3rd invention is 1st
.. 2. The granules obtained according to the invention can be coated with multiple layers.

すなわち、多価金属イオンと反応してゲルを作るゾル中
に、各使用目的に応じて選択された粉体を分散させた溶
液に、第1.2発明によって得られた造粒物を一回浸漬
するか、又は繰り返し浸漬して反応させ、多層構造の粒
状物を得るものである。
That is, the granules obtained according to the invention 1.2 are added once to a solution in which powders selected according to each purpose of use are dispersed in a sol that reacts with polyvalent metal ions to form a gel. A granular material with a multilayer structure is obtained by immersion or repeated immersion to react.

そして、滴下ノズルは単一ノズルの他、二重等多重構造
のノズルを用いて造粒することができるもので、その場
合、多価金属イオンと反応してゲルを作るゾル中に粉体
を分散させた溶液と、多価金属イオンを含むゾル中に粉
体を分散させた溶液とを用いて同時に滴下することがあ
って、前記溶液内の何れか一方を外ノズルから滴下する
際、これと反応する粉体を分散した、又は分散しない溶
液中に滴下するものである。
In addition to a single dropping nozzle, a nozzle with a double or multiple structure can be used for granulation. In that case, the powder is mixed into a sol that reacts with polyvalent metal ions to form a gel. A dispersed solution and a solution in which powder is dispersed in a sol containing polyvalent metal ions may be dropped at the same time, and when either of the solutions is dropped from an external nozzle, this The powder that reacts with the powder is dropped into a solution that is dispersed or not dispersed.

ノズルは二重ノズルの他に三重ノズル等の多層ノズルを
用いることもあり、ノズル間は互いに反応する、しかも
異なった粉体を分散した溶液を用いる。
In addition to a double nozzle, a multilayer nozzle such as a triple nozzle may also be used, and between the nozzles, a solution containing different powders that react with each other is used.

三重ノズル等の多層ノズルを用いて滴下した場合、造粒
時間が短く、各層は剥離しづらい。
When dropping using a multilayer nozzle such as a triple nozzle, the granulation time is short and each layer is difficult to peel off.

又、単一ノズルを用いて滴下して得られる造粒物に多層
コーティングした場合、剥離性の問題から農薬、肥料に
適する。
Furthermore, when the granules obtained by dripping using a single nozzle are coated with multiple layers, it is suitable for agricultural chemicals and fertilizers due to the problem of peelability.

従来の多層造粒方法は、皿形造粒機、ドラム造粒機、回
転円盤型造粒機、流動層造粒機等の転勤造粒方法で行っ
ている。
Conventional multilayer granulation methods are carried out by transfer granulation methods such as a dish granulator, a drum granulator, a rotating disk granulator, and a fluidized bed granulator.

その方法は、粉末を予め芯部になるものを造粒するか、
固形物を粉砕した粒を使用する。これを転勤造粒機に入
れ、結合剤を芯物質に噴霧しながら、被覆物質となる粉
体を供給して被覆する方法である。
The method is to granulate the powder in advance to form the core, or
Use granules obtained by crushing solids. This is a method in which this is placed in a transfer granulator, and while a binder is being sprayed onto the core material, a powder serving as a coating material is supplied and coated.

したがって、結合剤の均一噴霧が、実際には極めて困難
なことから、粒径が不揃いとなるばかりか、被覆造粒中
に粒同志の凝集が発生する。
Therefore, uniform spraying of the binder is actually extremely difficult, and not only does the particle size become uneven, but also agglomeration of particles occurs during coating granulation.

又、多層の粉体被覆をする場合は、60〜180分程度
の処理時間が必要であるため、処理能力が少なく、全体
的コストが高くなる。
Furthermore, in the case of multilayer powder coating, a processing time of about 60 to 180 minutes is required, which reduces processing capacity and increases the overall cost.

本発明によれば、芯物質、被覆層を同時に行うことがで
き、粒径が均一で被覆の厚さも均一になる。そして、被
覆形成時間も5〜10分間で行なえる。又、被覆物同志
の凝集もない。したがって、工程処理の大幅な短縮が得
られる。
According to the present invention, the core material and the coating layer can be formed at the same time, and the particle size and coating thickness are uniform. The coating can be formed in 5 to 10 minutes. Furthermore, there is no aggregation of the coatings. Therefore, it is possible to significantly shorten the processing time.

近年、ファインセラミックスの技術進歩と共に、セラミ
ックス原料程度の超微粉化とノンコンタミネーションの
要望が極めて高い。
In recent years, along with technological advances in fine ceramics, there has been an extremely high demand for ultra-fine powder and non-contamination of ceramic raw materials.

現在、これらに対応する粉砕機としては、湿式法、乾式
法、何れもボール摩砕方式のミルにより処理されている
が、従来粉砕用ボールとしては、アルミナボール、鋼球
にウレタンホーム被覆物、メノウ等が一般的に利用され
ている。
Currently, mills that can handle these processes include wet and dry methods, both of which use ball grinding methods, but conventional grinding balls include alumina balls, steel balls coated with urethane foam, Agate etc. are commonly used.

しかし、益々超微粉化の要望に応えるためには、ボール
表面積が大で、かつ表面平滑硬度の高いボールが望まれ
る。
However, in order to meet the increasing demand for ultra-fine powder, a ball with a large surface area, smooth surface, and high hardness is desired.

以上の点から、本発明の第3発明によれば、0.3〜1
.0φ口のアルミナを核としたボール表面に、ジルコニ
ア等極めて硬度の高い金属粉の膜を成形できる。
From the above points, according to the third aspect of the present invention, 0.3 to 1
.. A film of extremely hard metal powder such as zirconia can be formed on the surface of a ball with a 0φ diameter alumina core.

その他、磁気粉末フェライトを核とした表面にアルミナ
膜を形成させることにより、磁気作用を制御し、ボール
の挙動を自由に運動させることが可能であり、ミルの本
体形状の簡易化と共に効率を大幅に向上させることがで
きる。
In addition, by forming an alumina film on the surface of the magnetic powder ferrite core, it is possible to control the magnetic action and move the ball freely, which greatly increases efficiency while simplifying the shape of the mill body. can be improved.

又、各種無機材や有機材による多層粒の造粒は、農薬や
肥料、土壌改良材など、膨潤性や崩壊性のコントロール
が可能となり、徐放性や遅効性等、あるいは除草、殺菌
、殺虫の複合性農薬など調整が可能である。
In addition, multi-layer granulation using various inorganic and organic materials enables control of swelling and disintegration properties of agricultural chemicals, fertilizers, soil conditioners, etc., as well as sustained release and delayed release properties, as well as herbicidal, sterilizing, and insecticidal properties. It is possible to adjust complex pesticides, etc.

更に又、触媒担体の複合層を形成することにより、例え
ば脱硫、吸着あるいは脱色、脱臭等の用途の複合が可能
である。
Furthermore, by forming a composite layer of catalyst carriers, it is possible to combine uses such as desulfurization, adsorption, decolorization, and deodorization.

又、大根、人参、白菜等、各種子に珪藻土、タルク、ク
レー、イソラック等水に馴染み易(、かつポーラスな細
粉を主体とした粉体を被覆することにより、従来極めて
困難とされていた単位の播種を容易とするばかりか、発
芽を一定にし、同時に手播き、あるいは播種機を使用し
た播種作業において、均一に目標粒数の播種を行うこと
が可能となり、農事作業の合理化、労働力の節減をもた
らすことができる。
In addition, by coating seeds such as radish, carrots, and Chinese cabbage with powders such as diatomaceous earth, talc, clay, and isolac that are easily absorbed by water (and mainly consist of porous fine powder) Not only does it make unit sowing easier, but it also makes it possible to maintain constant germination and uniformly sow the target number of grains when sowing by hand or using a sowing machine, streamlining agricultural work and reducing labor costs. can bring about savings.

その他、被覆材に適当な肥料や薬剤を混入して、初期生
育の助長促進及び保護を可能とすることもできる。
In addition, suitable fertilizers and chemicals may be mixed into the covering material to promote and protect early growth.

(作用) 以上の如く、本発明は液中効果被覆法のカプセル技術を
、金属、セラミックス等の粉体の造粒に利用した造粒法
、すなわちゲル化反応を用いた粉体の球形化造粒法であ
る。
(Function) As described above, the present invention is a granulation method that utilizes the capsule technology of the submerged effect coating method for the granulation of powders such as metals and ceramics, that is, the spheroidization of powders using a gelation reaction. This is the particle method.

第1発明のものは、ゲル中に多量の粉体を含む粒子を乾
燥してポーラスな球状造粒物が得られ、第2発明のもの
は粉体をゲルで包んだ球体を乾燥して緻密な構造の造粒
物が得られるもので、以下第1発明のものをゲルカプセ
ル法、第2発明をアクアカプセル法とよぶことにする。
In the first invention, porous spherical granules are obtained by drying particles containing a large amount of powder in a gel, and in the second invention, particles containing a large amount of powder in a gel are dried to form dense particles. Hereinafter, the first invention will be referred to as the gel capsule method, and the second invention will be referred to as the aqua capsule method.

第1発明のものは、例えば芯液にアルギン酸ナトリウム
水溶液中に粉体の芯物質を微粒子として分散させ、カル
シウム等の多価金属イオンを含む凝固液に小滴として滴
下すると、表面張力で球形化され、液表面から球内部へ
のイオン交換反応が起こり、アルギン酸のナトリウム塩
がカルシウム塩に変わり、不溶化して析出するので、ア
ルギン酸カルシウムを壁物質とする球形ゲルカプセルが
生成される。
In the first invention, for example, when a powder core substance is dispersed as fine particles in a sodium alginate aqueous solution and dropped as small droplets into a coagulation liquid containing polyvalent metal ions such as calcium, the core liquid becomes spherical due to surface tension. Then, an ion exchange reaction occurs from the liquid surface to the inside of the sphere, and the sodium salt of alginic acid turns into calcium salt, becomes insolubilized, and precipitates, producing a spherical gel capsule whose wall material is calcium alginate.

芯物質は、L、M、ペクチン、アルギン酸ナトリウムな
どの多Ii類を所定濃度に溶解したものが必要であって
、加えられる粉体の種類によってアルミナ、水酸化アル
ミニウム、チタニア、ジルコニア、酸化亜鉛、酸化鉄、
タルク、シリカ、顔料、各種金属粉体をカプセル化でき
る。
The core material needs to be a mixture of L, M, pectin, sodium alginate, etc., dissolved in a predetermined concentration, and depending on the type of powder added, alumina, aluminum hydroxide, titania, zirconia, zinc oxide, iron oxide,
Talc, silica, pigments, and various metal powders can be encapsulated.

第1の発明にかかるゲルカプセル法は、芯液をアルギン
酸ナトリウム等の多t!頻溶液としたのに対し、第2発
明にかかるアクアカプセル法の芯液は、カルシウム等の
多価金属イオンを含む水溶液とし、L、M、ペクチン、
アルギン酸ナトリウムなどの多糖類溶液に滴下する方法
である。
In the gel capsule method according to the first invention, the core liquid is made of a polyester such as sodium alginate! In contrast, the core liquid of the aqua capsule method according to the second invention is an aqueous solution containing polyvalent metal ions such as calcium, L, M, pectin,
This method involves dropping it into a polysaccharide solution such as sodium alginate.

滴下された芯液は、滴表面から被膜側にゲル被膜を生成
しカプセルができる。被膜の厚さは、反応時間に比例し
て厚くなる。
The dropped core liquid forms a gel film from the droplet surface to the film side, forming a capsule. The thickness of the coating increases in proportion to the reaction time.

又、被Hりの厚さはカルシウム、多11類の濃度を変え
ることにより制御できる。
Further, the thickness of the H coating can be controlled by changing the concentration of calcium and polypropylene 11.

芯物質は、カルシウムなどの多価金属イオンを所定濃度
に溶解することが必要である。そして、被膜液中に粉体
の微粒子を分散させ、スラリー状態とすることによりゲ
ル被膜中に粉体の微粒子を含有させることができる。
The core material is required to dissolve polyvalent metal ions such as calcium to a predetermined concentration. Then, fine powder particles can be contained in the gel coating by dispersing the fine powder particles in the coating liquid to form a slurry state.

第1.2発明のものは、何れも凝固液、又は被膜液に滴
下して得られた造粒物を、必要に応じて、例えばアルコ
ール等に浸漬して表面を硬化させ、しかる後乾燥するも
のである。
In both inventions 1 and 2, the granules obtained by dropping into the coagulating liquid or the coating liquid are immersed in, for example, alcohol, if necessary, to harden the surface, and then dried. It is something.

第3発明のものは、多層被膜構造の造粒物を得る方法で
あって、先ず芯部ゲルカプセルの被膜方法から説明する
The third aspect of the invention is a method for obtaining a granulated product having a multilayer coating structure, and will first be explained from the coating method for the core gel capsule.

すなわち、多価金属イオンと反応してゲルを作るゾル、
例えばアルギン酸ナトリウム水溶液中に粉体を分散させ
た溶液を、単一ノズルを用いて多価金属イオンを含む凝
固液、例えば塩化カルシウムを含む凝固液中に滴下して
得られた粒状物を、水洗い後、多価金属イオンを含む溶
液、例えば塩化カルシウムを含む溶液に浸漬後、多価金
属イオンと反応してゲルを作るゾル、すなわちアルギン
酸ナトリウム水溶液中に粉体を分散した溶液に浸漬する
操作を繰り返し行って、芯部ゲルの球状多層粉体被覆カ
プセルを得る。
In other words, a sol that reacts with polyvalent metal ions to form a gel;
For example, a solution of powder dispersed in an aqueous sodium alginate solution is dropped using a single nozzle into a coagulation liquid containing polyvalent metal ions, such as a coagulation liquid containing calcium chloride, and the resulting granules are washed with water. After that, it is immersed in a solution containing polyvalent metal ions, for example, a solution containing calcium chloride, and then immersed in a sol that reacts with polyvalent metal ions to form a gel, that is, a solution of powder dispersed in an aqueous sodium alginate solution. The process is repeated to obtain spherical multilayer powder-coated capsules with a gel core.

直径12〜2mのもので、圧縮空気により微粒滴下すれ
ば、直径2〜0 、3 mmのものが得られる。
If fine particles are dropped with compressed air from 12 to 2 m in diameter, 2 to 0.3 mm in diameter can be obtained.

粉体としては、例えば活性炭を触媒に用いる。As the powder, activated carbon, for example, is used as a catalyst.

以上が単一ノズルを用いて滴下する方法であるが、多重
のノズルを用いて芯部ゲル粉体の多層被覆をすることが
できる。
The above is a method of dropping using a single nozzle, but multiple nozzles can be used to coat the core gel powder in multiple layers.

すなわち、二重ノズルを用い、内ノズルから多価金属イ
オンと反応してゲルを作るゾル、例えばアルギン酸ナト
リウム水溶液中に粉体、例えばアルミナを分散させた溶
液を滴下し、外ノズルからは多価金属イオンを含むゾル
、例えば塩化カルシウムを含む溶液中にゼオライトの粉
体を分散した溶液を滴下し、滴下に当たっては、必要に
応じて圧縮空気により微粒化して、多価金属イオンと反
応してゲルを作る溶液、例えばアルギン酸ナトリウム水
溶液に滴下して、芯部ゲル球状二層粉体被覆カプセルを
得る。
That is, using a double nozzle, a sol that reacts with polyvalent metal ions to form a gel, such as a solution of powder such as alumina dispersed in an aqueous sodium alginate solution, is dropped from the inner nozzle, and a polyvalent metal ion is dropped from the outer nozzle. A sol containing metal ions, such as a solution of zeolite powder dispersed in a solution containing calcium chloride, is dropped, and when dropping, it is atomized with compressed air as necessary, and reacts with polyvalent metal ions to form a gel. A core gel spherical two-layer powder-coated capsule is obtained by dropping the gel into a solution, such as an aqueous sodium alginate solution.

これを、多価金属イオンを含む溶液に浸漬することなく
多価金属イオンと反応してゲルを作るゾル、例えばアル
ギン酸ナトリウム水溶液中に粉体、例えば活性炭を分散
した溶液に浸漬して、芯部ゲルの球状三層粉体被覆カプ
セルを得る。
This is not immersed in a solution containing polyvalent metal ions, but is immersed in a sol that reacts with polyvalent metal ions to form a gel, such as a solution in which powder, such as activated carbon, is dispersed in an aqueous solution of sodium alginate. A spherical three-layer powder-coated capsule of gel is obtained.

ここで、二種の液体を二流体ノズルから、活性炭を分散
した溶液へ連続滴下すれば、−度に三層構造の造粒体が
できる。
Here, if two kinds of liquids are continuously dropped from a two-fluid nozzle into a solution in which activated carbon is dispersed, a granule having a three-layer structure can be formed at once.

圧縮空気を用いない場合の粒径は、直径12〜2Ifi
I11であるが、圧縮空気を用いて微粒滴下すれば直径
2〜0.2mmのものが得られる。
The particle size when not using compressed air is 12 to 2 Ifi in diameter.
I11, if fine particles are dropped using compressed air, particles with a diameter of 2 to 0.2 mm can be obtained.

次に、芯部内部流動性アクアカプセルの被覆方法は、単
一ノズルを用いて多価金属イオンを含む溶液、例えば塩
化カルシウムを含む溶液中に粉体、例えば炭酸カルシウ
ムを分散した溶液を多価金属イオンと反応してゲルを作
る溶液、例えばアルギン酸ナトリウム水溶液、又はこれ
に粉体を分散した液中に滴下して内部流動性の球状粉体
のアクアカプセルを得る。
Next, the coating method for core-internally fluid aqua capsules involves using a single nozzle to apply a polyvalent metal ion-containing solution, such as a solution containing calcium chloride, in which a powder such as calcium carbonate is dispersed. Aqua capsules of spherical powder with internal fluidity are obtained by dropping the powder into a solution that reacts with metal ions to form a gel, such as an aqueous sodium alginate solution, or a solution in which powder is dispersed therein.

次に水洗浄後、多価金属イオン溶液、例えば塩化カルシ
ウム液に浸漬後、多価金属イオンと反応してゲルを作る
ゾル、例えばアルギン酸ナトリウム水溶液中に粉体、例
えば二酸化チタンを分散させた溶液中に浸漬する操作を
繰り返して、芯部内部流動性の球状多層粉体被覆アクア
カプセルを得る。
Next, after washing with water, it is immersed in a polyvalent metal ion solution, such as a calcium chloride solution, and then a sol that reacts with the polyvalent metal ions to form a gel, such as a solution of powder, such as titanium dioxide, dispersed in an aqueous sodium alginate solution. By repeating the immersion operation, spherical multilayer powder-coated aqua capsules with core internal flowability are obtained.

圧縮空気で微粒滴下すれば、直径2〜0.3+nmのも
のが得られるが、用いなければ直径12〜2閤のものが
得られる。
If fine particles are dropped using compressed air, particles with a diameter of 2 to 0.3+ nm can be obtained, but if not used, particles with a diameter of 12 to 2 nm can be obtained.

次に、多重ノズルを用いた芯部流動性粉体の多層被覆は
次のようである。
Next, multilayer coating of core fluid powder using multiple nozzles is as follows.

すなわち、二重ノズルを用い、内ノズルから多価金属イ
オンを含むゾル、例えば塩化カルシウムを含む溶液中に
粉体、例えばタルクを分散した溶液を、また外ノズルか
らは多価金属イオンと反応してゲルを作るゾル、例えば
アルギン酸ナトリウム水溶液中に粉体、例えばアルミナ
を分散させた溶液を多価金属イオンを含む凝固液、例え
ば塩化カルシウムを含む溶液に滴下して、芯部内部流動
性の球状二層粉体被覆アクアカプセルを得、これを多価
金属イオンを含む溶液に浸漬することなく多価金属イオ
ンと反応してゲルを作るゾル、例えばアルギン酸ナトリ
ウム水溶液中に粉体、例えばジルコニアを分散させた溶
液中に浸漬して、芯部流動性球状三層粉体被覆アクアカ
プセルを得る。粒径は、前述したものと同様である。
That is, using a double nozzle, a sol containing polyvalent metal ions, such as a solution containing powder, such as talc, dispersed in a solution containing calcium chloride is supplied from the inner nozzle, and a solution containing powder, such as talc, which reacts with polyvalent metal ions is supplied from the outer nozzle. A sol, such as a powder such as alumina dispersed in an aqueous sodium alginate solution, is dropped into a coagulating liquid containing polyvalent metal ions, such as a solution containing calcium chloride, to form a gel with a fluid core inside. A two-layer powder-coated aqua capsule is obtained, and the powder, such as zirconia, is dispersed in a sol, such as a sodium alginate aqueous solution, which reacts with polyvalent metal ions to form a gel without immersing it in a solution containing polyvalent metal ions. The capsules are immersed in a solution containing three layers of powder to obtain flowable core spherical three-layer powder-coated aqua capsules. The particle size is similar to that described above.

なお、三重ノズルを用いて二種の互いに反応し、かつ異
なる粉体を分散した溶液を用いて同時に滴下し、外方ノ
ズルからは圧縮空気を噴出しながら滴下する場合もある
In addition, in some cases, a triple nozzle is used to drop two kinds of powders that react with each other and a solution in which different powders are dispersed at the same time, and the droplets are dropped while jetting compressed air from an outer nozzle.

例えば、径が1.5amの中心ノズルからアルギン酸ナ
トリウム水溶液にタルクを分散した溶液を、また径が2
.2mmの中間ノズルから塩化カルシウム溶液にアルミ
ナを分散した溶液を同時に滴下し、径が3閣の外ノズル
から圧縮空気を噴出しながらアルギン酸ナトリウム水溶
液中に滴下したところ、1.5mmのゲル玉が得られ、
乾燥すると1mmのゲル玉になる。
For example, a solution of talc dispersed in a sodium alginate aqueous solution is injected through a central nozzle with a diameter of 1.5 am, and a solution of talc dispersed in a sodium alginate aqueous solution is
.. A solution of alumina dispersed in a calcium chloride solution was simultaneously dropped from a 2 mm intermediate nozzle, and dropped into a sodium alginate aqueous solution while blowing compressed air from an outer nozzle with a diameter of 3 mm, resulting in 1.5 mm gel beads. is,
When dried, it becomes a 1mm gel ball.

以上の如く、ゲルカプセル法又はアクアカプセル法で生
成した粒状物を、スラリー状態とした被膜液で反応させ
ることにより、多層のコーティングが可能である。
As described above, multilayer coating is possible by reacting granules produced by the gel capsule method or aqua capsule method with a coating liquid in a slurry state.

したがって、タルク球体にアルミナとジルコニアをコー
テイング膜として硬度の高いセラミックスの膜を成形で
き、これを焼成したものは粉砕用ボールに用いることが
できる。
Therefore, a highly hard ceramic film can be formed by coating a talc sphere with alumina and zirconia, and the fired product can be used as a grinding ball.

(実施例) 先ず、第1の発明の詳細な説明する。(Example) First, the first invention will be explained in detail.

その代表的な例として、アルギン酸ナトリウム水溶液中
に粉体を混合し、スラリー状態とする。これを芯液とし
て、真空脱泡し脱気する。
As a typical example, powder is mixed into an aqueous sodium alginate solution to form a slurry. This is used as a core liquid to perform vacuum defoaming and deaeration.

脱気した芯液を攪拌しながら、定量ポンプで噴霧ノズル
へ供給する。
While stirring the degassed core liquid, supply it to the spray nozzle using a metering pump.

ノズル穴より吐出される芯液を圧縮空気で小径化し、塩
化カルシウム水溶液からなる凝固液中に滴下させる。滴
下させた芯液は、凝固液中で完全にゲル化させる。
The core liquid discharged from the nozzle hole is reduced in diameter using compressed air and dropped into a coagulating liquid consisting of an aqueous calcium chloride solution. The dropped core liquid is completely gelled in the coagulation liquid.

ゲル化した球状物を取り出し、これをアルコールに含浸
させ表面固化させる。表面固化された球形造粒品を、静
置乾燥か流動層にて乾燥する。
The gelled spheres are taken out and impregnated with alcohol to solidify the surface. The surface-solidified spherical granules are left to dry or dried in a fluidized bed.

ここで芯液に用いられるアルギン酸ナトリウムは、粘性
又は重合度の違いにより多種類あるので、分散せしめる
粉体の物性及び粒子径の差によって選定する。
Since there are many types of sodium alginate used in the core liquid depending on the viscosity or degree of polymerization, the sodium alginate is selected depending on the physical properties and particle size of the powder to be dispersed.

粒径調整としては、使用するノズルの口径及び圧縮空気
量の調整により、任意の粒径に小径化させ、滴下させる
ことができる。
As for particle size adjustment, by adjusting the diameter of the nozzle used and the amount of compressed air, the particles can be reduced to an arbitrary particle size and dropped.

ノズル口径が、例えば1φ鴫の場合、2〜0.5φ鴫程
度のものが作製できる。
If the nozzle diameter is, for example, 1φ, a nozzle with a diameter of about 2 to 0.5φ can be manufactured.

以下、具体的な実施例について説明する。Hereinafter, specific examples will be described.

実施例1 B 水酸化アルミニウム  20%  15%アルギン酸ナ
トリウム 1.0  1.0解膠剤        0
.5  0.5からなるスラリーを芯液として、これを
真空脱泡する。脱気した芯液を攪拌しながら、定量ポン
プで内筒1 、0trna 、外筒1.3mmの2流体
ノズルから塩化カルシウム1%を含む凝固液中に滴下さ
せる。
Example 1 B Aluminum hydroxide 20% 15% Sodium alginate 1.0 1.0 Peptizer 0
.. A slurry consisting of 5.0.5 is used as a core liquid and is degassed under vacuum. While stirring the degassed core liquid, it is dripped into a coagulation liquid containing 1% calcium chloride using a metering pump from a two-fluid nozzle with an inner cylinder of 1 mm, 0 trn and an outer cylinder of 1.3 mm.

滴下された芯液は、凝固液中で完全にゲル化させる。The dropped core liquid is completely gelled in the coagulation liquid.

ゲル化した球状物を取り出し、これをアルコールに含浸
させ、表面固化させる。表面固化された球形造粒品を静
置乾燥か流動層にて乾燥する。
The gelled spheres are taken out and impregnated with alcohol to solidify the surface. The surface-solidified spherical granules are left to dry or dried in a fluidized bed.

以上のものにおいて、1本当り圧縮空気量は1〜5 N
j!/+ainで、ノズルから凝固液までの距離を、粒
子形成のできる15〜27IIIIlに変えて造粒した
In the above items, the amount of compressed air per unit is 1 to 5 N.
j! /+ain, the distance from the nozzle to the coagulation liquid was changed to 15 to 27IIIl, where particle formation was possible, and granulation was carried out.

アルコール脱水乾燥した粒径は、A;0.7nm、B 
;  0.5mmのものが得られた。
The particle size after alcohol dehydration and drying is A: 0.7 nm, B
; 0.5 mm was obtained.

そして、スラリー液中の水酸化アルミニウムの濃度は1
5%で、真球に近いものが得られた。
And the concentration of aluminum hydroxide in the slurry liquid is 1
At 5%, a ball close to a true sphere was obtained.

解膠剤を加えるのは、粉体の分散性を良くするためであ
る。
The purpose of adding a deflocculant is to improve the dispersibility of the powder.

実施例2 アルギン酸ナトリウム  1.0% ^zoR料       15.0 解膠剤         0.5 水              83.5からなるスラ
リーを芯液として、これを実施例1のものと同様に真空
脱泡し、脱気した芯液を攪拌しながら定量ポンプで内径
4 、4 am 、外径5.0mmのノズル単管より塩
化カルシウム1%を含む凝固液中に滴下させる。
Example 2 A slurry consisting of sodium alginate 1.0% ^zoR material 15.0 deflocculant 0.5 water 83.5 was used as a core liquid, and this was vacuum defoamed and degassed in the same manner as in Example 1. While stirring the core liquid, it is dripped into a coagulating liquid containing 1% calcium chloride using a metering pump through a single nozzle tube with an inner diameter of 4.4 am and an outer diameter of 5.0 mm.

滴下させた芯液は、凝固液中で完全にゲル化させる。以
下、実施例1のものと同様に処理する。
The dropped core liquid is completely gelled in the coagulation liquid. Hereinafter, the same process as in Example 1 is carried out.

以上の黄色顔料であるAZo頗料は、66.2%の水分
を含むもので、ノズルと凝固液までの距離15mmで滴
下した。凝固液中での粒径は約5mmであった。
The above yellow pigment AZo pigment contained 66.2% water and was dropped at a distance of 15 mm from the nozzle to the coagulation liquid. The particle size in the coagulation liquid was approximately 5 mm.

以上が内部ゲル状カプセルの場合であるが、これを多層
とする場合について述べる。
The above is a case of an internal gel capsule, but a case where it is made into a multilayered capsule will be described.

実施例3 第1段階 芯液スラリー配合としては、 アルギン酸ナトリウム  1.0% タルク        40.0% 解膠剤        0.1% 水             58.9%を用い、これ
を実施例1のものと同様に2%塩化カルシウム溶液から
なる凝固液に滴下する。
Example 3 The first stage core liquid slurry formulation was sodium alginate 1.0%, talc 40.0%, peptizer 0.1%, water 58.9%, and this was mixed in the same manner as in Example 1. % calcium chloride solution.

芯液をよく混合し、3φ鮒ノズルより凝固液中に滴下し
た。
The core liquid was mixed well and dropped into the coagulation liquid from a 3φ carp nozzle.

反応時間を10分間とる。Allow reaction time of 10 minutes.

約3φ■程度のタルクの球形カプセル体が作製される。A spherical capsule of talc having a diameter of approximately 3φ■ is prepared.

第2段階 以上を第1段階として、これで作製されたものを次の被
膜液中に投入する。
The second stage and above are considered as the first stage, and the product produced in this step is put into the next coating solution.

被膜液 アルギン酸ナトリウム  1.0% アルミナ       20.0% 解膠剤        0.1% 水             79.1%第1段階で作
製された核となるタルク球は凝固液から取り出し、球表
面に付着している凝固液を水洗で拭き取り、被膜液中に
投入するものである。
Coating liquid Sodium alginate 1.0% Alumina 20.0% Deflocculant 0.1% Water 79.1% The talc sphere, which is the core produced in the first step, is removed from the coagulation liquid and attached to the sphere surface. The coagulation liquid is wiped off with water and then poured into the coating liquid.

タルク球投入後、反応時間5分間をとり、被膜液から分
離する。
After adding the talcum sphere, a reaction time of 5 minutes is allowed and the talcum is separated from the coating liquid.

約4φ鴫程度のタルク球にアルミナをコーティングした
カプセル体が作製された。
A capsule body was prepared by coating alumina on a talc sphere having a diameter of about 4 mm.

これを再び、第1段階の凝固液中に含浸させる。This is again impregnated into the first stage coagulation liquid.

第3段階 第2段階で作製したカプセル体を凝固液から取り出し、
水洗し、次の被膜液中に投入する。
Third step: Remove the capsule body prepared in the second step from the coagulation solution.
Rinse with water and add to the next coating solution.

被膜液 アルギン酸ナトリウム  1.0% ジルコニア      20.0% 解膠剤        o、i% 水             78.9%反応時間を5
分間とり、被膜液から分離する。そこで、約5φ鵬程度
の第2段階のカプセル体に、ジルコニアをコーテイング
膜としたカプセル体が作製される。
Coating liquid Sodium alginate 1.0% Zirconia 20.0% Peptizer o, i% Water 78.9% Reaction time 5
Wait for a minute and separate from the coating liquid. Therefore, a second-stage capsule body having a diameter of approximately 5 φ is made with a zirconia coating film.

次に、以上のようなカプセル体を105°Cの熱風で乾
燥した。直径約311IIl程度のタルク球の表面に、
50μのアルミナをコーティングした球の表面に、ジル
コニア50μを更にコーティングした3層からなる造粒
体が作製できた。
Next, the capsule body as described above was dried with hot air at 105°C. On the surface of a talcum sphere with a diameter of about 311 IIl,
A granule consisting of three layers was produced, in which the surface of the sphere coated with 50 μm of alumina was further coated with 50 μm of zirconia.

前記したカプセル体の第1.2段階の違いは、被膜液に
アルミナかジルコニアを混入するかの差であり、この工
程を繰り返すことにより多層のコーティングができる。
The difference between steps 1 and 2 of the capsule described above is whether alumina or zirconia is mixed into the coating liquid, and by repeating this process, a multilayer coating can be formed.

次に、アクアカプセル法、すなわち内部流動性カプセル
法の実施例について述べる。
Next, an example of the aqua capsule method, that is, the internal flow capsule method will be described.

以下、具体的に述べていない処理は実施例1のものと同
様である。
Hereinafter, processes not specifically described are the same as those in the first embodiment.

実施例4 芯液スラリー配合 塩化カルシウム   2.0% ゼラチン      2.0% アルミナ      35.0% 解膠剤       2.1% 水            60.9%被膜液 アルギン酸ナトリウム0.5% 水            99.5%芯液を良く混合
し、3φ■ノズルより被膜液中に滴下した。
Example 4 Core liquid slurry combination Calcium chloride 2.0% Gelatin 2.0% Alumina 35.0% Deflocculant 2.1% Water 60.9% Coating liquid Sodium alginate 0.5% Water 99.5% Core liquid were mixed well and dripped into the coating liquid from a 3φ■ nozzle.

反応時間を5分間とり、被膜液から分離し、約4φ■程
度のアルミナの球形カプセルが作製された。
A reaction time of 5 minutes was allowed, and the capsule was separated from the coating liquid to produce a spherical alumina capsule of about 4φ■.

次いで、105°Cの熱風で乾燥する。直径2φmm程
度のアルミナ球が作製された。
Then, it is dried with hot air at 105°C. Alumina spheres with a diameter of about 2φmm were produced.

実施例5 芯液スラリー配合 塩化カルシウム   2.0% ゼラチン      2.0% 炭酸カルシウム   40.0% 解膠剤       0.1% 水            55.9%被膜液 アルギン酸ナトリウム0.5% 二酸化チタン    20.0% 解膠剤       0.1% 水            79.4%以上のような芯
液を良く混合し、2φ■ノズルより被膜液中に滴下した
Example 5 Core liquid slurry blend Calcium chloride 2.0% Gelatin 2.0% Calcium carbonate 40.0% Deflocculant 0.1% Water 55.9% Coating liquid Sodium alginate 0.5% Titanium dioxide 20.0% A core solution containing 0.1% deflocculant and 79.4% or more water was mixed well and dropped into the coating solution through a 2φ nozzle.

反応時間を5分間とり、被膜液と分離する。A reaction time of 5 minutes is allowed to separate from the coating liquid.

直径約3φ鴫程度の炭酸カルシウム球に二酸化チタンを
コーティングしたカプセル体が作製された。
A capsule body was prepared by coating a calcium carbonate sphere with a diameter of about 3φ with titanium dioxide.

次に、これをアルコール中に5分間含浸後、105°C
の熱風で乾燥した。
Next, after impregnating this in alcohol for 5 minutes, it was heated to 105°C.
dried with hot air.

これで、直径約2φ鵬程度の炭酸カルシウムを核にした
二酸化チタンをコーティングした球が得られた。
In this way, a titanium dioxide coated sphere with a calcium carbonate core having a diameter of about 2φ was obtained.

(発明の効果) 本発明によれば、従来の造粒法では全く造粒できなかっ
た粉体も球形化できる。
(Effects of the Invention) According to the present invention, powders that could not be granulated at all by conventional granulation methods can be spherical.

又、粒径がコントロールもし易く、均一な粒径品が再現
性良くできる。
In addition, the particle size can be easily controlled, and products with uniform particle size can be produced with good reproducibility.

しかも、機械的剪断力を受けないため、摩耗によるコン
タミネーションの問題や、粉体の表面活性に影響を受け
ずに、表面平滑な真球性の高い造粒が可能である。
Moreover, since it is not subjected to mechanical shearing force, it is possible to produce granules with a smooth surface and highly spherical properties without being affected by contamination problems due to wear or the surface activity of the powder.

したがって、摩耗のない流動性にすぐれているものが得
られる。そして、カプセル表面に各種粉体を被覆させた
り、多層状に被覆する多層カプセルができる等、表面改
質の手法として利用できる。
Therefore, a material with excellent fluidity without wear can be obtained. It can also be used as a surface modification method, such as coating the capsule surface with various powders or creating a multi-layered capsule.

更に、サブミクロン粒子の混合において、多種の金属を
均一に混合でき、粒径の範囲は単層で0.1〜5Mで、
従来法に比べて広い。
Furthermore, when mixing submicron particles, various types of metals can be mixed uniformly, and the particle size range is 0.1 to 5M in a single layer.
It is wider than the conventional method.

本発明では、特に最終工程における固化乾燥により、粒
同志の凝集を防ぎ、粒径が保たれて真球度が増すという
効果がある。
In the present invention, solidification and drying, particularly in the final step, has the effect of preventing particles from agglomerating together, maintaining particle size, and increasing sphericity.

以上のことから、圧縮成形法における問題点(1)  
処理能力が極めて少なく、全体的コストが高くつ(。
From the above, problems with compression molding method (1)
The processing power is extremely low and the overall cost is high (.

(2)成形圧縮による細孔構造や細孔分布が破壊する。(2) Pore structure and pore distribution are destroyed due to molding compression.

(3)タブレットの直径が4φ鵬以下では成形が困難、
又処理能力が著しく劣る。
(3) If the diameter of the tablet is less than 4φ, it is difficult to mold it.
Also, the processing capacity is significantly inferior.

転勤造粒法における問題点 (1)歩留が著しく劣り、3φ閤以下の造粒を目的とし
た操作の場合、歩留20〜30%程度、4φ閣以上の粒
径を求める場合でも40〜50%程度と効率が悪い。
Problems with the transfer granulation method (1) The yield is extremely poor, and when the operation is aimed at granulation of 3φ or less, the yield is about 20 to 30%, and even when the grain size is 4φ or more, the yield is 40 to 30%. The efficiency is low at around 50%.

噴霧造粒法における問題点 (1)特定な触媒として用いられ、汎用的でない。Problems with spray granulation method (1) It is used as a specific catalyst and is not universally used.

又、細孔構造の改善が必要となる。Furthermore, it is necessary to improve the pore structure.

(2)粒径はlOOμ以上の造粒が困難である。(2) It is difficult to granulate particles with a particle size of 1OOμ or more.

(3)エネルギーコストが大きい。(3) Energy costs are high.

以上の問題点は、本発明ですべて解消できた。All of the above problems can be solved by the present invention.

そして、第1発明のものによって得られる造粒物はポー
ラスな造粒物が得られるので、触媒造粒に用いられ、第
2発明によって得られる造粒物は緻密な造粒物が得られ
るので、ファインセラミックス造粒に用いられる。
The granules obtained according to the first invention can be used for catalyst granulation because porous granules can be obtained, and the granules obtained according to the second invention can be used as dense granules. , used for fine ceramics granulation.

又、第3発明に得られる造粒物は多層被覆造粒物が得ら
れるので、例えば除草、殺菌、殺虫の複合農薬等に用い
られる。
Further, since the granules obtained in the third invention can be multilayer coated granules, they can be used, for example, in complex agricultural chemicals for weeding, sterilization, and insecticide.

Claims (4)

【特許請求の範囲】[Claims] (1)多価金属イオンと反応してゲルを作るゾル中に、
使用目的に応じた粉体を分散させたものを芯液として、
これを多価金属イオンを含む凝固液中に滴下して粒状物
を作り、このゲルを必要に応じて表面処理して凝集付着
性をなくし、しかる後乾燥することを特徴とする粉体等
の造粒方法。
(1) In the sol that reacts with polyvalent metal ions to form a gel,
The core liquid is made by dispersing powder according to the purpose of use.
The gel is dropped into a coagulating liquid containing polyvalent metal ions to form granules, and the gel is surface-treated as necessary to eliminate agglomeration and adhesion, and then dried. Granulation method.
(2)多価金属イオンを含むゾル中に、使用目的に応じ
た粉体を分散した溶液を多価金属イオンと反応してゲル
を作るゾル溶液中に滴下して内部流動性の粒状物を作り
、このゲルを必要に応じて表面処理して凝集付着性をな
くし、しかる後乾燥することを特徴とする粉体等の造粒
方法。
(2) A solution of powders dispersed according to the purpose of use in a sol containing polyvalent metal ions is dropped into a sol solution that reacts with polyvalent metal ions to form a gel to form internally fluid granules. A method for granulating powder, etc., which comprises preparing the gel, subjecting the gel to surface treatment to eliminate agglomeration and adhesion as necessary, and then drying the gel.
(3)多価金属イオンと反応してゲルを作るゾル中に、
使用目的に応じて選択された粉体を分散したところの単
数又は複数の溶液中に、請求項(1)(2)によって得
られた造粒物を浸漬するに当り、予め多価金属イオンを
含む溶液に浸漬するか、又はせずして、これを前記単数
の溶液中に浸漬するか、又は複数の溶液中に繰り返し浸
漬して反応せしめてコーティング層を形成し、これによ
って造粒体の表面に複数の層を形成して多層構造の造粒
物を得る粉体等の造粒方法。
(3) In the sol that reacts with polyvalent metal ions to form a gel,
When immersing the granules obtained according to claims (1) and (2) in one or more solutions in which powders selected depending on the purpose of use are dispersed, polyvalent metal ions are added in advance. A coating layer is formed by immersing the granule in the single solution or repeatedly immersing it in a plurality of solutions to form a coating layer, thereby forming a coating layer. A method for granulating powder, etc., which forms multiple layers on the surface to obtain a granulated product with a multilayer structure.
(4)多価金属イオンと反応してゲルを作るゾル中に、
粉体を分散させた溶液と多価金属イオンを含む溶液中に
粉体を分散した溶液との何れか一方を多重ノズルの内方
から、他方を外方から、外方のノズルに用いられた溶液
と反応し、かつ粉体を分散した、又は分散しない溶液中
に滴下するものである多層構造の造粒物を得る請求項(
3)の粉体等の造粒方法。
(4) In the sol that reacts with polyvalent metal ions to form a gel,
Either a solution containing powder dispersed or a solution containing powder dispersed in a solution containing polyvalent metal ions is applied from the inside of the multi-nozzle, and the other from the outside, which is used for the outer nozzle. A claim for obtaining a multilayered granulated product that reacts with a solution and is dropped into a solution in which powder is dispersed or not dispersed (
3) Method of granulating powder, etc.
JP3047588A 1988-02-12 1988-02-12 Granulation method for powder etc. Expired - Lifetime JP2629013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047588A JP2629013B2 (en) 1988-02-12 1988-02-12 Granulation method for powder etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047588A JP2629013B2 (en) 1988-02-12 1988-02-12 Granulation method for powder etc.

Publications (2)

Publication Number Publication Date
JPH01207126A true JPH01207126A (en) 1989-08-21
JP2629013B2 JP2629013B2 (en) 1997-07-09

Family

ID=12304881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047588A Expired - Lifetime JP2629013B2 (en) 1988-02-12 1988-02-12 Granulation method for powder etc.

Country Status (1)

Country Link
JP (1) JP2629013B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504905A (en) * 1989-10-12 1993-07-29 インダストリアル プログレス、インク Method for manufacturing single-component aggregating pigment products
US9676150B2 (en) 2011-08-10 2017-06-13 British American Tobacco (Investments) Limited Capsule formation
JP2019042643A (en) * 2017-08-31 2019-03-22 太平洋セメント株式会社 Granulation method of coal ash
US10238141B2 (en) 2011-08-10 2019-03-26 British American Tobacco (Investments) Limited Capsule formation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504905A (en) * 1989-10-12 1993-07-29 インダストリアル プログレス、インク Method for manufacturing single-component aggregating pigment products
US9676150B2 (en) 2011-08-10 2017-06-13 British American Tobacco (Investments) Limited Capsule formation
US10238141B2 (en) 2011-08-10 2019-03-26 British American Tobacco (Investments) Limited Capsule formation
JP2019042643A (en) * 2017-08-31 2019-03-22 太平洋セメント株式会社 Granulation method of coal ash

Also Published As

Publication number Publication date
JP2629013B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
CN101429041B (en) Fire-resistant light granules and method of production thereof
JPH0428684B2 (en)
Beestman Microencapsulation of solid particles
JP4090529B2 (en) Lactose spherical particles and method for producing the same
CN106892648B (en) Preparation method of spherical alumina
JPS6013735B2 (en) Method for producing granules consisting of a core and a coating layer
US3226332A (en) Production of potassium permanganate activated alumina composite
JP2000503294A (en) Spherical ceramic molded body, its production method and use
WO2008024007A2 (en) Sulphur fertilizer and granulated sulphur fertilizer manufacturing method
Jawahar et al. Multi unit particulates systems (MUPS): a novel pellets for oral dosage forms
JPH01207126A (en) Method for granulating powder or the like
US6077605A (en) Silicate coatings and uses thereof
JP2010064946A (en) Method and apparatus for producing ceramic precision sphere by hydrocasting
JPS58214333A (en) Granular substance
JPH09220460A (en) Cooling and granulating method and device therefor
KR100665042B1 (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
JPS605559B2 (en) Method for producing sulfur-coated fertilizer
JPH07315975A (en) Covering method of organic substance
EP0535068B1 (en) Releasably bound active materials
JP3354172B2 (en) Heavy granulation of high drug content powder
JP2005028356A (en) Method for producing composite particle and composite particle produced by the same
JPH1025304A (en) Granulation and granule of powder composed of substances taken in body of animal
KR100858867B1 (en) Abrasion-resistant agglomerate mineral substance granule, powder comprising such granules and production method therefor
JPH1017389A (en) Accurately controlled delayed-elution type coated potassium fertilizer
JPS63258813A (en) Production of fine powdery coated substance of l-ascorbic acid