JPH01207035A - Blood flow model for examination of hemomanometer - Google Patents
Blood flow model for examination of hemomanometerInfo
- Publication number
- JPH01207035A JPH01207035A JP63031609A JP3160988A JPH01207035A JP H01207035 A JPH01207035 A JP H01207035A JP 63031609 A JP63031609 A JP 63031609A JP 3160988 A JP3160988 A JP 3160988A JP H01207035 A JPH01207035 A JP H01207035A
- Authority
- JP
- Japan
- Prior art keywords
- blood
- liquid
- pressure
- pump
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000017531 blood circulation Effects 0.000 title claims abstract description 16
- 239000007788 liquid Substances 0.000 claims abstract description 29
- 210000004369 blood Anatomy 0.000 claims abstract description 10
- 239000008280 blood Substances 0.000 claims abstract description 10
- 230000036772 blood pressure Effects 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 12
- 238000005086 pumping Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 abstract description 11
- 239000002504 physiological saline solution Substances 0.000 abstract description 5
- 239000000523 sample Substances 0.000 abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 239000011347 resin Substances 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 abstract description 4
- 210000005259 peripheral blood Anatomy 0.000 abstract description 3
- 239000011886 peripheral blood Substances 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 210000001367 artery Anatomy 0.000 abstract 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 239000011780 sodium chloride Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000035487 diastolic blood pressure Effects 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000035488 systolic blood pressure Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000036581 peripheral resistance Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Landscapes
- Instructional Devices (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、非観血式血圧計の評価1校正等を行うために
、実際の動脈系と等価の血流状態を創り出す血圧計検査
用血流モデルに関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a blood pressure monitor for testing that creates blood flow conditions equivalent to the actual arterial system in order to perform evaluation 1 calibration of non-invasive blood pressure monitors. It is related to a blood flow model.
(従来の技術と発明か解決しようとする問題点)従来の
非観血式血圧計の検査は、圧力値の判明している気体を
血圧計のカフ内に導入し、その圧力値と血圧計の指示値
を一致させるように校正していた。(Prior art and the problem to be solved by the invention) In conventional non-invasive blood pressure monitor testing, a gas whose pressure value is known is introduced into the cuff of the blood pressure monitor, and the pressure value and the blood pressure monitor It was calibrated to match the indicated values.
しかしながら、この方法では単に圧力指示値を校正てき
るたけて、コロトコフ音の発生・消滅或は血管の脈動に
基いて認識される最高血圧値、最低血圧値か正しいか否
かを判定することはてきなかった。要するに、この種の
血圧計の詳細な試験方法は、”JIS T 1115″
の解説でも述べられているように、製造業者に任されて
いる。However, with this method, it is not possible to simply calibrate the pressure indication value and determine whether the recognized systolic or diastolic blood pressure values are correct based on the occurrence/disappearance of Korotkoff sounds or the pulsation of blood vessels. I couldn't come. In short, the detailed test method for this type of blood pressure monitor is "JIS T 1115".
As mentioned in the explanation, this is left up to the manufacturer.
本発明は、この点に鑑みて、生体に即応した人工腕に対
して実際の脈動血流状態を与えることのできる血圧計検
査用血流モデルを提供することを目的とする。In view of this point, an object of the present invention is to provide a blood flow model for sphygmomanometer testing that can provide an actual pulsating blood flow state to an artificial arm that corresponds to the living body.
(問題点を解決するための手段)
本発明は、この目的を達成するために、血液を模した液
体(9)を連続的に圧送し、かつその圧力を調整し得る
ポンプ(1)と、このポンプに後続するパイプ(2)に
設けられて圧送されてきた液体(9)の送出を脈波に対
応してオン・オフ制御する弁(3)と、パイプ(2)に
後続して液体(9)を貯え、かつその液面に対するエア
圧調整機構(4a、4b)を備えたタンク(4)と、こ
のタンクに後続する人工腕(20)と、同様にタンク(
4)に後続して人工腕(20)に比べて十分大きな流量
の液体(9)を通流させる並列パイプ(7)と、この並
列パイプ及び人工腕(20)から排水された液体(9)
をポンプ(1)に循環させる大気に解放されたタンク(
8)と、人工腕(20)の流量を調整する流量調整要素
(lO)と、並列パイプ(7)の流量を調整する流量調
整要素(11)とより構成した。(Means for Solving the Problems) In order to achieve this object, the present invention provides a pump (1) that can continuously pump a blood-like liquid (9) and adjust its pressure; A valve (3) is provided on a pipe (2) following the pump to control on/off of the pumped liquid (9) in response to pulse waves, and a (9) and is equipped with an air pressure adjustment mechanism (4a, 4b) for the liquid level; an artificial arm (20) that follows this tank;
4), a parallel pipe (7) through which liquid (9) flows at a sufficiently larger flow rate than the artificial arm (20), and liquid (9) drained from this parallel pipe and the artificial arm (20).
a tank (open to the atmosphere) that circulates the
8), a flow rate adjustment element (lO) that adjusts the flow rate of the artificial arm (20), and a flow rate adjustment element (11) that adjusts the flow rate of the parallel pipe (7).
人工腕(20)は、骨格を模した棒状の剛体(21,2
2)と、生体組織を模して剛体(21,22)を包囲す
る筒状の弾性体(24)と、この弾性体を包囲する液体
(26)又はゲル状体と、皮膚を模して液体(26)又
はゲル状体を包囲するシート(27)と、血液を模した
液体(9)が通流するように血管を模して弾性体(24
)に取付けられた弾性チューブ(25)とから構成した
。The artificial arm (20) is a rod-shaped rigid body (21, 2) imitating a skeleton.
2), a cylindrical elastic body (24) simulating living tissue and surrounding the rigid body (21, 22), a liquid (26) or gel-like body surrounding this elastic body, and a cylindrical elastic body simulating skin. A sheet (27) surrounding the liquid (26) or gel-like body, and an elastic body (24) simulating blood vessels so that the liquid simulating blood (9) flows through the sheet (27).
) and an elastic tube (25) attached to it.
尚、()内の符号は後述する実施例のものを引用しであ
る。Note that the symbols in parentheses refer to those in the embodiment described later.
(作用)
ポンプ(1)及び弁(3)は、第3図に示すウィントケ
・ンセル等価回路における人工心臓を構成する。また、
タンク(4)は片側の腕部な除く動脈系を構成し、液面
の空気圧に対応した大きさの動脈系のコンプライアンス
Cを呈する。さらに、並列パイプ(7)はこの動脈系の
末梢血管を構成し、可変流体抵抗(11)はその末梢抵
抗「を調整可能にする。可変流体抵抗(10)は、人工
腕(20)の流量を調整する。タンク(8)は、液面か
大気に解放されて静圧であることにより静脈として機能
する。(Operation) The pump (1) and the valve (3) constitute an artificial heart in the Wintkensell equivalent circuit shown in FIG. Also,
The tank (4) constitutes an arterial system excluding the arm portion on one side, and exhibits a compliance C of the arterial system corresponding to the air pressure at the liquid level. Furthermore, the parallel pipe (7) constitutes the peripheral blood vessels of this arterial system, and the variable fluid resistance (11) makes it possible to adjust the peripheral resistance. The tank (8) functions as a vein due to its static pressure either at the liquid level or open to the atmosphere.
この等価回路において1人工腕(20)に対して並列パ
イプ(7)を流れる液体流量は十分大きくなるように設
定されることにより人工腕(20)側の抵抗か「に対し
て十分に大きいために1人工腕(20)の流体特性の変
動に対してその入力端における液体の圧力波形Pは殆ど
変動しない。In this equivalent circuit, the flow rate of liquid flowing through the parallel pipe (7) for one artificial arm (20) is set to be sufficiently large, so that the resistance on the artificial arm (20) side is sufficiently large. 1. Even if the fluid characteristics of the artificial arm (20) change, the pressure waveform P of the liquid at its input end hardly changes.
したがって、第4図に示すように、人工腕(20)の入
力圧力波形Pをトランスデユーサを介して観梅測定式に
直接モニタし、弁(3)のオン・オフ期間及びポンプ(
1)の圧力と、タンク(4)におけるコンプライアンス
C及び可変流体抵抗(10,11)の調整による立下が
り特性Aとの調整により、所♀の圧力波形及び最高・最
低血圧値を設定される。Therefore, as shown in FIG. 4, the input pressure waveform P of the artificial arm (20) is directly monitored via the transducer, and the on/off period of the valve (3) and the pump (
A predetermined pressure waveform and systolic and diastolic blood pressure values are set by adjusting the pressure in 1) and the compliance C in the tank (4) and the falling characteristic A by adjusting the variable fluid resistance (10, 11).
これにより、人工腕(20)の弾性チューブ(25)を
実際の脈動に対応する圧力波形Pの液体か通流し、人工
腕(20)にカフて圧力を加えることにより1弾性チュ
ーブ(25)を変形させてコロトコフ音を聴診器で聞い
てリハロ・フチ法による血圧計の検査が行える。同様に
、人工腕(20)の表面に脈波計をセットしてオシロメ
トリック法による血圧計の検査等、その外の方式による
血圧計の検査も可能である。As a result, a liquid having a pressure waveform P corresponding to the actual pulsation is passed through the elastic tube (25) of the artificial arm (20), and pressure is applied to the artificial arm (20) by cuffing the elastic tube (25). By deforming it, you can listen to the Korotkoff sounds with a stethoscope and perform blood pressure tests using the Rehalo-Fuchi method. Similarly, it is also possible to test the blood pressure monitor by other methods, such as by setting a pulse wave meter on the surface of the artificial arm (20) and using the oscillometric method.
さらに、前述の調整手段により流量、圧力レベル、圧力
波形を種々に調整することにより、血圧計を実際の循環
器系の状態に対応させて多様に検査てきる。Furthermore, by variously adjusting the flow rate, pressure level, and pressure waveform using the aforementioned adjustment means, the blood pressure monitor can be used for various tests in accordance with the actual state of the circulatory system.
(発明の実施例)
第1図及び第2図は本発明の一実施例による血流モデル
を示す。(Embodiment of the Invention) FIGS. 1 and 2 show a blood flow model according to an embodiment of the present invention.
同図において、1は電動ポンプであり、血液を模した液
体例えば生理食塩水9を連続的に圧送し、かつ回転速度
の調整てその圧力か調整可能になっている。このポンプ
から圧送される生食水9は、動脈系を模してコンプライ
アンスを呈するタンク4に可どう性の透明樹脂パイプ2
を通して供給される。パイプ2の途中には、圧送されて
きた生食水9を脈波周期に対応してオン・オフ制御し、
かつその周期及びオン時間を調整肩山な電磁弁3と、流
量測定のための電磁血流計用プローブ13とか間挿され
ている。In the figure, reference numeral 1 denotes an electric pump, which continuously pumps a liquid imitating blood, such as physiological saline 9, and whose pressure can be adjusted by adjusting the rotational speed. The saline 9 pumped from this pump is transferred to a flexible transparent resin pipe 2 in a tank 4 that exhibits compliance imitating the arterial system.
supplied through. In the middle of the pipe 2, the saline solution 9 that has been pressure-fed is controlled on and off in accordance with the pulse wave cycle.
A solenoid valve 3 whose period and on time can be adjusted and an electromagnetic blood flowmeter probe 13 for measuring flow rate are interposed.
タンク4は透明容器であり、その上面にはコック4a付
きのパイプ4bを立設されて構成され、このコック操作
によりタンク4内の圧縮空気を外気に解放させて動脈系
のコンプライアンスを大きくさせるか、或はパイプ4b
の先端から空気を圧入することにより、コンプライアン
スを小さくさせるようになっている。The tank 4 is a transparent container, and a pipe 4b with a cock 4a is installed on the top surface of the tank 4. By operating this cock, the compressed air in the tank 4 is released to the outside air to increase the compliance of the arterial system. , or pipe 4b
Compliance is reduced by injecting air from the tip.
さらに、このタンクと、生食水9を蒸発或は汚染しない
ように蓋を備えると共に、大気解放用の隙間を備えたト
レイン用タンクとしての水槽8との間には、片側の腕の
動脈血管を模して人工腕20か間挿された可どう性の透
明樹脂パイプ5と、この腕部分を除く動脈系末梢血管を
模してパイプ5に較べて大きな直径の可どう性で透明樹
脂性の並列パイプ7とか接続されている。Furthermore, between this tank and a water tank 8, which is equipped with a lid to prevent evaporation or contamination of the saline water 9 and which is a train tank with a gap for venting to the atmosphere, an arterial blood vessel of one arm is connected. A flexible transparent resin pipe 5 is inserted into the artificial arm 20 to imitate the artificial arm 20, and a flexible transparent resin pipe with a larger diameter than the pipe 5 is inserted to imitate the arterial peripheral blood vessels excluding the arm portion. It is connected to parallel pipe 7.
水槽8は、パイプ8aを通して電動ポンプlに循環させ
、また水抜き用バルブ8bを備えると共に。The water tank 8 is circulated by an electric pump l through a pipe 8a, and is equipped with a drain valve 8b.
前述のように液面に静圧が加わることにより、静脈系と
して機能する。さらに、その入口側のパイプ5及び7に
は、それぞれハンドル回転でパイプ断面方向に流体抵抗
片を進退させ得る可変流体抵抗l0111が、流量調整
要素として取付けられている。人工腕20への途中のパ
イプ5には、流量測定用プローブ13aと、T分岐14
を通して生食水9の圧力波形を直接モニタする圧カドラ
ンスデューサ12か取付けられている。As mentioned above, by applying static pressure to the liquid surface, it functions as a venous system. Furthermore, variable fluid resistance l0111 is attached to each of the pipes 5 and 7 on the inlet side as a flow rate adjustment element, which can advance and retreat a fluid resistance piece in the cross-sectional direction of the pipe by rotating the handle. The pipe 5 on the way to the artificial arm 20 is equipped with a flow rate measuring probe 13a and a T-branch 14.
A pressure transducer 12 is attached to directly monitor the pressure waveform of saline 9 through the saline.
人工腕20は、第2図に示すように、骨として及び支持
用としての棒状の剛体21及び同様に骨として及びボビ
ンとしてこの棒を囲むほぼ楕円棒状の剛体22と、この
棒の両側に位置すると共に剛体21に固定され、実際の
腕の断面に相応した形状の剛性、かつ透明の側板23と
、剛体22を包囲し、生体組織を模した弾性体24と、
この弾性体に伸縮自在のシート25aで取付けられた血
管としてのゴム製弾性チューブZ5と、弾性体24を包
囲するように充填された透明液体である生食水26と、
側板23とで生食水26を筒状に空気を混入させること
なくシール状態で被う皮膚を模した可どう性のシート2
7とから構成されている。この人工腕は、剛体21の導
出部分で基台29に載置されている。As shown in FIG. 2, the artificial arm 20 includes a rod-shaped rigid body 21 serving as a bone and for support, a roughly elliptical rod-shaped rigid body 22 surrounding the rod as a bone and a bobbin, and a rigid body 22 located on both sides of the rod. At the same time, a rigid and transparent side plate 23 is fixed to the rigid body 21 and has a shape corresponding to the cross section of an actual arm; an elastic body 24 that surrounds the rigid body 22 and imitates living tissue;
A rubber elastic tube Z5 as a blood vessel is attached to this elastic body with a stretchable sheet 25a, and saline 26, which is a transparent liquid, is filled so as to surround the elastic body 24.
A flexible sheet 2 imitating the skin that covers the saline 26 in a cylindrical shape with the side plate 23 in a sealed state without mixing air.
It consists of 7. This artificial arm is placed on a base 29 at the derived portion of the rigid body 21.
血圧計の検査に際しては、生食水9の導電性を利用する
ように電磁血流計をプローブ13.13aに交互にもし
くは双方に取付けて、可変流体抵抗l0111の調整に
より、人工腕20の流体特性の変動に対して十分な精度
の脈波が安定して得られるように、流量を例えば20:
1の割合に設定する。そして、弁+2aによりプリセッ
トされた圧カドランスデューサ12の検出波形をモニタ
しながら、電動ポンプ1の回転速度を調整しつつ圧力レ
ベルを調整し、かつ電磁弁3の調整により圧力波形幅を
調整し、さらにタンク4の液面の圧力調整を行いながら
立下がり波形を調整する。When testing the blood pressure monitor, electromagnetic blood flow monitors are attached to the probes 13 and 13a alternately or both to utilize the conductivity of the saline 9, and the fluid characteristics of the artificial arm 20 are adjusted by adjusting the variable fluid resistance l0111. In order to stably obtain a pulse wave with sufficient accuracy against fluctuations in
Set the ratio to 1. Then, while monitoring the detected waveform of the pressure transducer 12 preset by the valve +2a, the pressure level is adjusted while adjusting the rotational speed of the electric pump 1, and the pressure waveform width is adjusted by adjusting the solenoid valve 3. Further, while adjusting the pressure of the liquid level in the tank 4, the falling waveform is adjusted.
次いて、このように調整された所定の最高及び最低圧力
値並びに圧力波形下で、実際の測定と同様に人工腕20
に装着したカフにより圧力を加え、これによる弾性チュ
ーブ25の変形により液体26を通して伝播・してくる
コロトコフ音を聴診器で聞いてリバロッチ法による血圧
計の評価・調整・校正等の検査を行う。加圧によるチュ
ーブ25の変形は、透明の側板23及び生食水26を通
して観察できる。Then, under the predetermined maximum and minimum pressure values and pressure waveforms adjusted in this way, the artificial arm 20 is measured as in the actual measurement.
Pressure is applied with a cuff attached to the tube, and the Korotkoff sounds propagated through the liquid 26 due to the deformation of the elastic tube 25 are listened to with a stethoscope, and tests such as evaluation, adjustment, and calibration of the blood pressure monitor are performed using the Ribarocchi method. The deformation of the tube 25 due to pressurization can be observed through the transparent side plate 23 and saline 26.
さらに、前述のようにポンプ圧、オン周期、コンプライ
アンス、流体抵抗等を循環器系の種々の状態に対応させ
て設定することにより、種々の状態を模した血流状態で
の血圧計の検査か可能になる。Furthermore, as mentioned above, by setting the pump pressure, on-cycle, compliance, fluid resistance, etc. in accordance with various conditions of the circulatory system, it is possible to test the blood pressure monitor under blood flow conditions that simulate various conditions. It becomes possible.
以上説明した血流モデルは1人工腕20においてオシロ
メトリック法による血圧計の検査にも適用できる。人工
腕に内蔵の生食水の代りに、音響伝播性を備え、カフ圧
により伸縮することなく変形するゲル状物質を用いるこ
ともできる。The blood flow model explained above can also be applied to a blood pressure monitor test using an oscillometric method in one artificial arm 20. Instead of the saline solution built into the artificial arm, a gel-like substance that has acoustic propagation properties and deforms without expanding or contracting due to cuff pressure can also be used.
(発明の効果)
以上1本発明によれば、腕を模した人工腕において実際
の血流状態或は循環器系の種々の状態に対応する血流状
態を創出できる。しかも、血流状態に再現性があるため
に、非観血式血圧計に対して製造時及び製造後の高精度
の評価・調整・校正等が可能となり、また種々の側面か
らの性能検査も可能となる。(Effects of the Invention) According to the present invention, blood flow conditions corresponding to actual blood flow conditions or various conditions of the circulatory system can be created in an artificial arm imitating an arm. Moreover, since the blood flow condition is reproducible, it is possible to perform high-precision evaluation, adjustment, and calibration of non-invasive blood pressure monitors during and after manufacture, as well as perform performance tests from various aspects. It becomes possible.
第1図は本発明の実施例による血圧計検査用血流モデル
の概略斜視図、第2図は同実施例の人工腕の断面図、第
3図は本発明の詳細な説明する図及び第4図は本発明の
詳細な説明するための血圧波形を示す図である。
l・・・電動ポンプ、 3・・・電動弁、4・・・コ
ンプライアンス調整用タンク、8・・・トレイン用タン
ク、 9.26・・・生食水。
10.11・・・可変流体抵抗、 12・・・圧カド
ランススジューサ、 20・・・人工腕、 21.
22・・・剛体、 24・・・弾性体、 25・・
・弾性チューブ。
27・・・シート。FIG. 1 is a schematic perspective view of a blood flow model for blood pressure monitor testing according to an embodiment of the present invention, FIG. 2 is a sectional view of an artificial arm of the same embodiment, and FIG. FIG. 4 is a diagram showing a blood pressure waveform for explaining the present invention in detail. l...Electric pump, 3...Electric valve, 4...Compliance adjustment tank, 8...Train tank, 9.26...Saline water. 10.11... Variable fluid resistance, 12... Pressure cadence reducer, 20... Artificial arm, 21.
22... Rigid body, 24... Elastic body, 25...
・Elastic tube. 27... Sheet.
Claims (1)
整し得るポンプと、このポンプに後続するパイプに設け
られて圧送されてきた前記液体の送出を血液脈波に対応
してオン・オフ制御する弁と、前記パイプに後続して前
記液体を貯え、かつその液面に対するエア圧調整機構を
備えたタンクと、このタンクに後続する人工腕と、この
人工腕に並列となって同様に前記タンクに後続して前記
人工腕に比べて十分大きな流量の前記液体を通流させる
並列パイプと、この並列パイプ及び前記人工腕から排水
された前記液体を前記ポンプに循環させ、かつ液面が大
気に解放された別のタンクと、前記人工腕及び前記並列
パイプの流量をそれぞれ独立に調整する流量調整要素と
を備え、前記人工腕は、骨格を模した棒状の剛体と、生
体組織を模して前記剛体を包囲する筒状の弾性体と、こ
の弾性体を包囲する液体又はゲル状体と、皮膚を模して
前記液体又はゲル状体を包囲するシートと、前記血液を
模した前記液体が通流するように前記弾性体に取付けら
れた弾性チューブとから構成されることを特徴とする血
圧計検査用血流モデル。A pump that can continuously pump a liquid imitating blood and adjust its pressure, and a pump that is installed in a pipe following the pump and turns on and off the pumping of the liquid in response to blood pulse waves. a valve for off-control, a tank that stores the liquid following the pipe and is equipped with an air pressure adjustment mechanism for the liquid level, an artificial arm that follows the tank, and a similar device that is parallel to the artificial arm. a parallel pipe that flows through the liquid at a flow rate sufficiently larger than that of the artificial arm following the tank; and a parallel pipe that circulates the liquid drained from the parallel pipe and the artificial arm to the pump; and a flow rate adjustment element that independently adjusts the flow rates of the artificial arm and the parallel pipe, and the artificial arm includes a rod-shaped rigid body that imitates a skeleton and a body that contains living tissue. A cylindrical elastic body that imitates the rigid body, a liquid or gel-like body that surrounds the elastic body, a sheet that imitates skin and surrounds the liquid or gel-like body, and a sheet that imitates the blood and surrounds the liquid or gel-like body. A blood flow model for blood pressure monitor testing, comprising an elastic tube attached to the elastic body so that the liquid flows therethrough.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63031609A JPH01207035A (en) | 1988-02-13 | 1988-02-13 | Blood flow model for examination of hemomanometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63031609A JPH01207035A (en) | 1988-02-13 | 1988-02-13 | Blood flow model for examination of hemomanometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01207035A true JPH01207035A (en) | 1989-08-21 |
JPH0431256B2 JPH0431256B2 (en) | 1992-05-26 |
Family
ID=12335944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63031609A Granted JPH01207035A (en) | 1988-02-13 | 1988-02-13 | Blood flow model for examination of hemomanometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01207035A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04156820A (en) * | 1990-10-22 | 1992-05-29 | Terumo Corp | Electronic sphygmomanometer and pressure sensing mode setting method applied with said manometer |
EP0499125A2 (en) * | 1991-02-13 | 1992-08-19 | Ambu International A/S | Training apparatus for the practice of puncturing blood vessels |
JP2003305014A (en) * | 2002-04-16 | 2003-10-28 | K & S:Kk | Biological data measuring apparatus |
JP2004147861A (en) * | 2002-10-30 | 2004-05-27 | K & S:Kk | Biological data observation apparatus |
US6953435B2 (en) | 2001-12-10 | 2005-10-11 | Kabushiki Gaisha K -And- S | Biological data observation apparatus |
WO2007100090A1 (en) * | 2006-03-03 | 2007-09-07 | Waseda University | System for evaluating cardiac surgery training |
WO2012002334A1 (en) * | 2010-07-02 | 2012-01-05 | 独立行政法人国立循環器病研究センター | Heart-function simulator |
CN105427699A (en) * | 2015-12-16 | 2016-03-23 | 上海大学 | Multipath human pulse simulation device |
-
1988
- 1988-02-13 JP JP63031609A patent/JPH01207035A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04156820A (en) * | 1990-10-22 | 1992-05-29 | Terumo Corp | Electronic sphygmomanometer and pressure sensing mode setting method applied with said manometer |
EP0499125A2 (en) * | 1991-02-13 | 1992-08-19 | Ambu International A/S | Training apparatus for the practice of puncturing blood vessels |
EP0499125A3 (en) * | 1991-02-13 | 1995-06-21 | Ambu Int As | Training apparatus for the practice of puncturing blood vessels |
US6953435B2 (en) | 2001-12-10 | 2005-10-11 | Kabushiki Gaisha K -And- S | Biological data observation apparatus |
JP2003305014A (en) * | 2002-04-16 | 2003-10-28 | K & S:Kk | Biological data measuring apparatus |
JP2004147861A (en) * | 2002-10-30 | 2004-05-27 | K & S:Kk | Biological data observation apparatus |
WO2007100090A1 (en) * | 2006-03-03 | 2007-09-07 | Waseda University | System for evaluating cardiac surgery training |
WO2012002334A1 (en) * | 2010-07-02 | 2012-01-05 | 独立行政法人国立循環器病研究センター | Heart-function simulator |
CN105427699A (en) * | 2015-12-16 | 2016-03-23 | 上海大学 | Multipath human pulse simulation device |
Also Published As
Publication number | Publication date |
---|---|
JPH0431256B2 (en) | 1992-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1333096C (en) | Noninvasive continuous monitor of arterial blood pressure waveform | |
US5730136A (en) | Venous pump efficiency test system and method | |
US20140128747A1 (en) | Assessing endothelial function using a blood pressure cuff | |
EP2606827A1 (en) | Cuff with ultrasonically transmissive portion and method of observing a tissue under pressure by using the same | |
CN104248478A (en) | Multifunctional device for simulating extracorporeal cardiac functions and testing valve performance | |
JP4166905B2 (en) | Artificial coronary artery and coronary stent performance evaluation simulator | |
JPH01207035A (en) | Blood flow model for examination of hemomanometer | |
CN109195511A (en) | For measuring the non-invasive systems and method of blood pressure variability | |
JP2015501696A5 (en) | ||
EP1558134B1 (en) | Detecting medical conditions with noninvasive body probes | |
JP2009000388A (en) | Vascular endothelial function measurement apparatus | |
KR20080010530A (en) | Blood pressure actuating apparatus and method driven by fluid and thereby test method of a sphygmomanometer | |
KR101871097B1 (en) | Blood vessel simulator | |
CN211094071U (en) | Wrist electronic sphygmomanometer calibrating device | |
EP3705033A1 (en) | Blood pressure measurement device and control method | |
PT1194071E (en) | Method and device for measuring blood pressure | |
RU169590U1 (en) | TONOMETER | |
JP2008289678A (en) | Vascular endothelium function measuring instrument | |
CN210811009U (en) | Dynamic blood pressure simulator for measuring electronic sphygmomanometer | |
Laqua et al. | A phantom with pulsating artificial vessels for non-invasive fetal pulse oximetry | |
CN110522431A (en) | A kind of ambulatory blood pressure simulator measuring electronic sphygmomanometer | |
Stoketee | Demonstration model showing up errors in systolic blood pressure measurements with sphygmomanometer | |
KR100835012B1 (en) | Aging rate measurement apparatus and method of imaginary blood vessel | |
Barendsen | Blood flow in human extremities at rest, after arterial occlusion and after exercise: Semi-continuous flow measurements by triggered venous occlusion plethysmography | |
CN117462101A (en) | Nondestructive testing device for electronic sphygmomanometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080526 Year of fee payment: 16 |