JPH0120680Y2 - - Google Patents

Info

Publication number
JPH0120680Y2
JPH0120680Y2 JP6111179U JP6111179U JPH0120680Y2 JP H0120680 Y2 JPH0120680 Y2 JP H0120680Y2 JP 6111179 U JP6111179 U JP 6111179U JP 6111179 U JP6111179 U JP 6111179U JP H0120680 Y2 JPH0120680 Y2 JP H0120680Y2
Authority
JP
Japan
Prior art keywords
analysis
sample
ray
diameter
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6111179U
Other languages
Japanese (ja)
Other versions
JPS55162146U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6111179U priority Critical patent/JPH0120680Y2/ja
Publication of JPS55162146U publication Critical patent/JPS55162146U/ja
Application granted granted Critical
Publication of JPH0120680Y2 publication Critical patent/JPH0120680Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はX線マイクロアナライザー等におい
て、電子線照射により試料から発生する特性X線
を半導体検出器で検出し、試料の分析を行う装置
に関する。
[Detailed Description of the Invention] The present invention relates to an apparatus, such as an X-ray microanalyzer, which detects characteristic X-rays generated from a sample by electron beam irradiation with a semiconductor detector and analyzes the sample.

X線マイクロアナライザーには、試料からの特
性X線を分光結晶により各波長ごとに分散して分
析する分散型分析装置の他に、分光結晶を用いず
に試料からの特性X線を直接半導体検出器で検出
し、電気的に各エネルギーごとに分析する非分散
型分析装置が組み込まれる場合がある。
X-ray microanalyzers include a dispersion type analyzer that analyzes characteristic X-rays from a sample by dispersing them into each wavelength using a spectroscopic crystal, as well as a device that directly detects characteristic X-rays from a sample without using a spectroscopic crystal. In some cases, a non-dispersive analyzer is incorporated, which detects the energy with a device and electrically analyzes each energy.

しかして、斯かる非分散型分析装置によつて試
料分析を行なう場合、試料の電子線照射部分から
発生する特性X線を有効に半導体検出器に導くた
めに、通常孔径に比して長い通路を有するコリメ
ーターが使用される。該コリメーターの孔径は散
乱X線による偽信号を減らすためにはできるだけ
小さくする必要がある。
Therefore, when analyzing a sample using such a non-dispersive analyzer, in order to effectively guide the characteristic X-rays generated from the electron beam irradiated part of the sample to the semiconductor detector, a path that is usually longer than the hole diameter is required. A collimator is used. The hole diameter of the collimator needs to be as small as possible in order to reduce false signals due to scattered X-rays.

しかしながら、試料のX線分析においては電子
ビームを試料上の特定点に固定する点分析の他
に、電子ビームを試料上でライン走査させる線分
析や、X線像を得るために電子ビームを試料上で
広域走査させる面分析が行なわれる。この線分析
や面分析を行なうとき、小さい孔径のコリメータ
ーでは試料の中心から離れた位置からのX線はカ
ツトされてしまうため、従来においてはやむなく
孔径を大きな(例えば5mm程度)単一のコリメー
ターを使用し、面分析や線分析時における検出強
度を十分とるようにしているが、散乱X線が半導
体検出器に入射し、分析精度を向上させることが
できない。
However, in X-ray analysis of a sample, in addition to point analysis in which the electron beam is fixed at a specific point on the sample, there is also line analysis in which the electron beam is scanned in a line across the sample, and Area analysis is performed by scanning a wide area on the surface. When performing this line analysis or area analysis, a collimator with a small hole diameter will cut out X-rays from a position far from the center of the sample, so in the past, it was unavoidable to use a single collimator with a large hole diameter (for example, about 5 mm). A meter is used to ensure sufficient detection strength during area analysis or line analysis, but scattered X-rays enter the semiconductor detector, making it impossible to improve analysis accuracy.

本考案は斯様な欠点を解決することを目的とす
るもので、以下図面に基づき詳説する。
The present invention aims to solve such drawbacks, and will be explained in detail below with reference to the drawings.

第1図は本考案の一実施例を示す断面図であ
り、1はX線マイクロナライザーの試料室であ
る。該試料室の内側には試料2を水平移動させる
ための試料ステージ3が設置してあり、又上部に
は前記試料2上に電子線EBを集束して照射する
ための最終段集束レンズ4が置かれている。又、
図示しないが、電子線の偏向器が設置され電子線
EBを所望の線に沿つて、あるいは所望の面内で
走査可能である。
FIG. 1 is a sectional view showing an embodiment of the present invention, and 1 is a sample chamber of an X-ray micronizer. A sample stage 3 for horizontally moving the sample 2 is installed inside the sample chamber, and a final stage focusing lens 4 is provided at the top for focusing and irradiating the electron beam EB onto the sample 2. It has been placed. or,
Although not shown, an electron beam deflector is installed and the electron beam
The EB can be scanned along a desired line or within a desired plane.

5は試料2上に電子線EBを照射することによ
り発生する特性X線Xを検出するための例えばリ
チユウム拡散型シリコンの如き半導体検出器で、
該検出器は試料室1の側壁に固定された検出器保
持体6の先端に保持されている。該検出器保持体
6は銅の如き熱良導体で形成され、又その他端は
液体窒素等を満した冷却槽7に一体に固定されて
いる。従つて、前記半導体検出器5は常に冷却さ
れている。前記半導体検出器5、検出保持体6及
び冷却槽7は遮蔽筒8により包囲されていて、熱
シールドされている。
5 is a semiconductor detector such as lithium-diffused silicon for detecting characteristic X-rays X generated by irradiating the sample 2 with an electron beam EB;
The detector is held at the tip of a detector holder 6 fixed to the side wall of the sample chamber 1. The detector holder 6 is made of a good thermal conductor such as copper, and the other end is integrally fixed to a cooling tank 7 filled with liquid nitrogen or the like. Therefore, the semiconductor detector 5 is constantly cooled. The semiconductor detector 5, the detection holder 6, and the cooling tank 7 are surrounded by a shielding tube 8 and are heat shielded.

9は散乱X線をカツトして試料2からの特性X
線を前記半導体検出器5に入射させるためにこの
半導体検出器の前方におかれたコリメーターで、
該コリメーターは円柱状に形成されていて前記試
料室1の側壁に回転可能に保持されている。該コ
リメーター9には第2図に示すように例えばX線
入射面の直径が夫々0.7mm,2mm,3mmの異なつ
た孔径の3個のX線通過孔10a,10b,10
cが形成してあり、該各孔の中心はコリメーター
10の回転中心0と同芯円上に等間隔におかれて
いる。該X線通過孔は勿論孔径に比して長い通路
を有しており、又X線の出射面の直径は半導体検
出器5の大きさにより決定され、全ての孔で略同
一に形成されている。従つて、前記通過孔10a
は図から分るようにX線の出射面の孔径に比し入
射面の直径は小さいテーパー状に形成され、又1
0b,10cは逆に入射面の直径の方が大きなテ
ーパー状に形成されている。
9 is the characteristic X from sample 2 after cutting out the scattered X-rays.
a collimator placed in front of the semiconductor detector 5 to make the beam incident on the semiconductor detector 5;
The collimator is formed in a cylindrical shape and is rotatably held on the side wall of the sample chamber 1. As shown in FIG. 2, the collimator 9 has three X-ray passing holes 10a, 10b, and 10 having different hole diameters, for example, the diameters of the X-ray incident surface are 0.7 mm, 2 mm, and 3 mm, respectively.
c are formed, and the centers of the respective holes are placed at equal intervals on a concentric circle with the rotation center 0 of the collimator 10. The X-ray passing hole naturally has a long path compared to the hole diameter, and the diameter of the X-ray exit surface is determined by the size of the semiconductor detector 5, and is formed approximately the same in all holes. There is. Therefore, the passage hole 10a
As can be seen from the figure, the diameter of the entrance surface is smaller than the hole diameter of the X-ray exit surface, and the diameter of the X-ray exit surface is tapered.
0b and 10c, on the other hand, are tapered so that the diameter of the incident surface is larger.

11は前記コリメーター9に同芯的に固定され
た筒体で、該筒体の外周には歯車12が形成して
ある。該歯車12には試料室1側壁に回転可能に
保持された軸13に固定された駆動歯車14が噛
合つている。該軸13の他端は大気中に取り出さ
れ、摘子15が設けてある。従つて該摘子15を
回転させれば、軸13、駆動歯車14及び歯車1
2を介して筒体11が回転し、それによつてコリ
メーター9が回転するため、各孔10a,10
b,10cを前記半導体検出器5に順次対向させ
ることができる。
Reference numeral 11 denotes a cylindrical body concentrically fixed to the collimator 9, and a gear 12 is formed on the outer periphery of the cylindrical body. A drive gear 14 fixed to a shaft 13 rotatably held on the side wall of the sample chamber 1 meshes with the gear 12 . The other end of the shaft 13 is taken out into the atmosphere, and a knob 15 is provided. Therefore, when the knob 15 is rotated, the shaft 13, the drive gear 14 and the gear 1 are rotated.
Since the cylinder 11 rotates through the holes 2 and the collimator 9 rotates, each hole 10a, 10
b and 10c can be made to face the semiconductor detector 5 in sequence.

先ず、第1図にその状態を示すようにコリメー
ター9の最小孔径の孔10aを選択すると、孔1
0aは試料2上の電子ビーム照射点のみをとらえ
ている。そのため電子ビーム照射により試料2の
特定点から発生した特性X線Xのみが該孔10a
を通過して半導体検出器5に入射し、試料室1内
部で発生するバツクグラウンドの散乱X線はコリ
メーター9により遮断され、半導体検出器5には
入射しない。従つて、高精度のX線分析(点分
析)を行うことができる。
First, as shown in FIG. 1, when the hole 10a of the collimator 9 with the smallest diameter is selected,
0a captures only the electron beam irradiation point on sample 2. Therefore, only the characteristic X-rays
Background scattered X-rays generated inside the sample chamber 1 are blocked by the collimator 9 and do not enter the semiconductor detector 5. Therefore, highly accurate X-ray analysis (point analysis) can be performed.

次に、電子ビームを試料上で走査して面分析
(X線像表示)や線分析を行う場合にはつまみ1
5を操作し、コリメーター9を回転して走査像観
察の倍率に応じて孔10bあるいは10cを選択
して半導体検出器5の前方位置にセツトする。斯
様な孔10bあるいは10cを使用することによ
り、第3図から分るように試料2上の離れた点、
例えば2aと2bから発生する特性X線を有効に
半導体検出器5に入射させることができ、試料上
の広い領域のX線分析を行なうことができる。
尚、この際コリメーター9の孔10b,10cの
径が大きいことにより幾分かの散乱X線が半導体
検出器5に入射することになるが、このとき先に
述べたコリメーター9の最小径の孔10aによつ
て予め分析しておけば、非分散型分析装置のアナ
ライザーで目的とする特性X線以外はマスキング
することができるため、面分析や線分析を高精度
で行なうことができ利用価値は極めて大である。
Next, when performing area analysis (X-ray image display) or line analysis by scanning the electron beam over the sample, turn knob 1.
5, the collimator 9 is rotated, and the hole 10b or 10c is selected depending on the magnification of scanning image observation and set at a position in front of the semiconductor detector 5. By using such holes 10b or 10c, as can be seen from FIG.
For example, the characteristic X-rays generated from 2a and 2b can be effectively made incident on the semiconductor detector 5, and X-ray analysis of a wide area on the sample can be performed.
At this time, due to the large diameter of the holes 10b and 10c of the collimator 9, some scattered X-rays will enter the semiconductor detector 5, but at this time, the minimum diameter of the collimator 9 mentioned earlier If analyzed in advance using the hole 10a, it is possible to mask all but the desired characteristic X-rays using the analyzer of the non-dispersive analyzer, making it possible to perform surface analysis and line analysis with high precision. The value is extremely great.

尚、前述の説明ではコリメーターの孔は3個設
けたが、これに限定されることなく、2個あるい
は4個以上形成してもよい。
In the above description, three collimator holes were provided, but the number is not limited to this, and two or four or more holes may be formed.

又、コリメーターを回転させることにより複数
のX線通過用孔の交換を行なうように述べたが、
コリメーターを直線的に移動させてもよい。
Also, although it was stated that multiple X-ray passage holes should be replaced by rotating the collimator,
The collimator may be moved linearly.

更に、本考案の実施にあたつてはX線マイクロ
アナライザーに限定されるものではなく、走査電
子顕微鏡や透過電子顕微鏡等にも同様に実施する
ことができる。
Furthermore, the present invention is not limited to an X-ray microanalyzer, but can be similarly applied to a scanning electron microscope, a transmission electron microscope, etc.

以上説明したように、本考案においては、コリ
メーターのX線入射面での孔径が異なり且つ出射
面での直径に比して入射面の直径が小さいものと
大きいものとを用意し、点分析、線分析及び面分
析に応じてX線通過孔を選択して配置し、半導体
検出器が見込む試料の領域を試料分析の大小に応
じて切換えることができるようにしたため、広い
領域の分析を可能にしたまま、狭い領域の分析の
際に検出器への散乱X線の入射を最小限に押えて
分析精度を向上させることができる。
As explained above, in the present invention, we prepare collimators with different hole diameters on the X-ray entrance surface, and one with a smaller diameter on the entrance surface and one with a larger diameter than the diameter on the exit surface, and perform point analysis. , X-ray passing holes are selected and arranged according to ray analysis and area analysis, and the area of the sample that the semiconductor detector sees can be changed according to the size of the sample analysis, making it possible to analyze a wide area. It is possible to improve analysis accuracy by minimizing the incidence of scattered X-rays on the detector when analyzing a narrow area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す断面図、第2
図は本考案に使用されるコリメーターの試料側か
ら見た図、第3図は本考案の使用状況を説明する
図である。 1:試料室、2:試料、3:試料ステージ、
4:集束レンズ、5:半導体検出器、6:検出器
保持体、7:冷却槽、8:遮蔽筒、9:コリメー
ター、10a,10b及び10c:X線通過孔、
11:筒体、12:歯車、13:軸、14:駆動
歯車、15:摘子。
Fig. 1 is a sectional view showing one embodiment of the present invention;
The figure is a view of the collimator used in the present invention as seen from the sample side, and FIG. 3 is a diagram illustrating the usage situation of the present invention. 1: sample chamber, 2: sample, 3: sample stage,
4: Focusing lens, 5: Semiconductor detector, 6: Detector holder, 7: Cooling tank, 8: Shield tube, 9: Collimator, 10a, 10b and 10c: X-ray passing hole,
11: cylinder body, 12: gear, 13: shaft, 14: drive gear, 15: knob.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料表面の点分析、線分析又は面分析を可能に
するように電子線を照射する手段と、該電子線の
照射によつて試料より発生するX線を検出し分光
するための非分散型分析手段を備え、非分散型X
線分析手段は試料面に対向して配置された半導体
検出器を有し、該半導体検出器と試料との間に孔
径に対して長い通路のX線通過孔を有するコリメ
ーターを備えた装置において、該コリメータには
X線の入射面において異なつた直径を有し且つX
線の出射面の直径に比し入射面直径が小さいテー
パー状孔と出射面の直径に比し入射面の直径が大
きいテーパー状孔を含む複数個のX線通過孔を備
えており、分析モードに応じて前記X線通過孔の
うちの任意の孔を半導体検出器に対向した位置に
選択的に配置するための手段を備えてなるX線分
析装置。
Means for irradiating an electron beam to enable point analysis, line analysis, or area analysis of a sample surface, and non-dispersive analysis for detecting and spectroscopy of X-rays generated from the sample by irradiation with the electron beam. Equipped with means, non-distributed
The radiation analysis means has a semiconductor detector disposed opposite to the sample surface, and an apparatus including a collimator having an X-ray passage hole with a long path relative to the hole diameter between the semiconductor detector and the sample. , the collimator has different diameters on the X-ray incident plane and
It is equipped with multiple X-ray passing holes, including a tapered hole whose entrance surface diameter is smaller than the diameter of the exit surface, and a tapered hole whose entrance surface diameter is larger than the diameter of the exit surface. An X-ray analysis apparatus comprising means for selectively arranging any one of the X-ray passing holes at a position facing a semiconductor detector according to the X-ray passing hole.
JP6111179U 1979-05-08 1979-05-08 Expired JPH0120680Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6111179U JPH0120680Y2 (en) 1979-05-08 1979-05-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6111179U JPH0120680Y2 (en) 1979-05-08 1979-05-08

Publications (2)

Publication Number Publication Date
JPS55162146U JPS55162146U (en) 1980-11-20
JPH0120680Y2 true JPH0120680Y2 (en) 1989-06-21

Family

ID=29295076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6111179U Expired JPH0120680Y2 (en) 1979-05-08 1979-05-08

Country Status (1)

Country Link
JP (1) JPH0120680Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171652A (en) * 1982-04-01 1983-10-08 Denki Kagaku Keiki Co Ltd Method for measuring concentration of dust powder by transmitting beta rays
JP3918104B2 (en) * 1997-10-02 2007-05-23 日本政策投資銀行 X-ray fluorescence analyzer and X-ray fluorescence detector

Also Published As

Publication number Publication date
JPS55162146U (en) 1980-11-20

Similar Documents

Publication Publication Date Title
US6548810B2 (en) Scanning confocal electron microscope
US6359964B1 (en) X-ray analysis apparatus including a parabolic X-ray mirror and a crystal monochromator
US7972062B2 (en) Optical positioner design in X-ray analyzer for coaxial micro-viewing and analysis
DE19963331A1 (en) X-ray fluorescence spectroscopy apparatus has a detector for receiving and analyzing a fluorescence beam emanating from a predetermined target location on a sample as result of excitation by a primary X-ray beam
EP3790025B1 (en) X-ray analyzer
RU2249813C2 (en) Device for taking elementary analysis by means of spectrometry of optical emission on laser-generated plasma
JP3284198B2 (en) X-ray fluorescence analyzer
US4243887A (en) Process and apparatus for analyzing a sample with the aid of pulsed laser irradiation
DE19948382A1 (en) Large wafer area detector
US4255656A (en) Apparatus for charged particle spectroscopy
JPH10206356A (en) Fluorescent x-ray analysis device
JPH0120680Y2 (en)
JPH05113418A (en) Surface analyzing apparatus
JP2000504422A (en) X-ray analyzer having two collimator masks
Chen et al. Prompt gamma activation analysis enhanced by a neutron focusing capillary lens
US3107297A (en) Electron probe X-ray analyzer wherein the emitted X-radiation passes through the objective lens
JP3049313B2 (en) X-ray imaging analysis method and apparatus
JP2001133420A (en) Method and apparatus for total reflection x-ray fluorescence analysis
JP2674675B2 (en) X-ray fluorescence analyzer
JPH0883588A (en) X-ray analyzer
JPH0599863A (en) X-ray spectroscope
JPH04140652A (en) Electron spectroscopy analyzer
Chen-Mayer et al. Neutron focusing using capillary optics and its applications to elemental analysis
JPH0361841A (en) Attachment for measuring x-ray absorption spectrum
JPH05346411A (en) Fluorescent x-ray analyzer