JPH01206547A - Ion source with microwave heating type evaporating furnace - Google Patents

Ion source with microwave heating type evaporating furnace

Info

Publication number
JPH01206547A
JPH01206547A JP63030741A JP3074188A JPH01206547A JP H01206547 A JPH01206547 A JP H01206547A JP 63030741 A JP63030741 A JP 63030741A JP 3074188 A JP3074188 A JP 3074188A JP H01206547 A JPH01206547 A JP H01206547A
Authority
JP
Japan
Prior art keywords
microwave
solid sample
microwaves
furnace
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63030741A
Other languages
Japanese (ja)
Other versions
JP2728417B2 (en
Inventor
Hidemi Koike
英巳 小池
Kuniyuki Sakumichi
訓之 作道
Katsumi Tokikuchi
克己 登木口
Takayoshi Seki
孝義 関
Kensuke Amamiya
健介 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63030741A priority Critical patent/JP2728417B2/en
Publication of JPH01206547A publication Critical patent/JPH01206547A/en
Application granted granted Critical
Publication of JP2728417B2 publication Critical patent/JP2728417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the replacement and supply of a solid sample and make the maximum usage temperature about 1000 deg.C by using microwaves to heat the sample in an ion extraction type ion source heating the solid sample and evaporating and guiding it into a discharge chamber as the gas for plasma. CONSTITUTION:Microwaves generated by a microwave generating device 1 are guided into a plasma chamber 6 provided in a discharge electrode 5 via a branch wave guide 2, a microwave power regulator 3a, and a microwave guiding flange 4a to generate the microwave electric field. On the other hand, microwaves are fed to a solid sample evaporating furnace 9 through the branch wave guide 2, a microwave power regulator 3b, a microwave guiding flange 4b, and a evaporating furnace heating wave guide 8, the electric field generated in the plasma chamber 6 is applied to the sample gas evaporated from the solid sample. The electric power can be transmitted if only the wave guide is provided, and this device is completed only by putting the solid sample evaporating furnace absorbing microwaves in it.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン打込み装置や、薄膜形成、表面改質等
のイオン加工機に使われるイオン源に係り、特に数10
0℃の温度で10””Torr程度の蒸気圧を持つ試料
のイオンを、長時間安定に引出すのに好適な機能を持つ
イオン源に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an ion source used in an ion implantation device and an ion processing machine for thin film formation, surface modification, etc.
The present invention relates to an ion source having a function suitable for stably extracting ions from a sample having a vapor pressure of about 10'' Torr at a temperature of 0° C. for a long period of time.

〔従来の技術〕[Conventional technology]

従来のイオン源の試料加熱炉は、特開昭56−1327
54号公報の実施例1に記載のように、タングステンヒ
ータやシースヒータを炉の回りに巻いたものとなってい
た。
A sample heating furnace for a conventional ion source is disclosed in Japanese Patent Application Laid-Open No. 56-1327.
As described in Example 1 of Publication No. 54, a tungsten heater or a sheath heater was wound around the furnace.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、タングステンヒータの場合、断線し
やすいため、試料交換や炉清掃時の取扱いが大変である
。一方シースヒータの場合、最高使用温度が500℃前
後で低い、などの問題があった。
In the above-described conventional technology, the tungsten heater is easily broken, making it difficult to handle when replacing samples or cleaning the furnace. On the other hand, in the case of a sheath heater, there were problems such as a low maximum operating temperature of around 500°C.

本発明の目的は、試料交換や炉清掃時の取扱いが容易で
最高使用温度の高い蒸発炉を持つイオン源を実現するこ
とにある。
An object of the present invention is to realize an ion source that is easy to handle during sample exchange and furnace cleaning, and has an evaporation furnace with a high maximum operating temperature.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、タングステン魯−夕やシースヒータを使
用する限り大なり小なり避けえないものである。そのた
め、上記目的を達成するためには。
The above problems are more or less unavoidable as long as a tungsten heater or sheath heater is used. Therefore, in order to achieve the above objectives.

ヒータを使用しない加熱方法が必要である。具体的には
マイクロ波を加熱に使用することで達成される。
A heating method that does not use a heater is needed. Specifically, this is achieved by using microwaves for heating.

〔作用〕[Effect]

一般に蒸発炉の構成材を使用されているカーボン系材料
は、マイクロ波を効率良く吸収する物質島 で量る。そのため、矩形導波管や同軸線路の中にカーボ
ン系材料で作った蒸発炉を置くだけの簡単な構成で、蒸
発炉のみを効率良く加熱することができる。そして、蒸
発炉の温度を導入するマイクロ波のパワーで制御する。
Carbon-based materials, which are generally used as constituent materials for evaporation furnaces, are material islands that efficiently absorb microwaves. Therefore, with a simple configuration of placing an evaporation furnace made of carbon-based material inside a rectangular waveguide or coaxial line, it is possible to efficiently heat only the evaporation furnace. Then, the temperature of the evaporation furnace is controlled by the power of the introduced microwave.

上記構成の場合、カーボン製蒸発炉は導波管内の任意の
位置に設置できるため、構造の自由度が大きく、試料交
換や炉内清掃時の操作性の良い蒸発炉とすることが可能
となる。
In the case of the above configuration, the carbon evaporation furnace can be installed at any position within the waveguide, so there is a large degree of freedom in the structure, making it possible to create an evaporation furnace with good operability during sample exchange and furnace interior cleaning. .

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。本実
施例では、プラズマの発生にもマイクロ波を使用してお
り、1つのマイクロ波発生器で試料蒸発炉の加熱とプラ
ズマの発生の両方を行なう構成になっている1本イオン
源は、マイクロ波発生器11分岐導波管2.マイクロ波
パワー調整器3a、3b、マイクロ波導入フランジ4a
、4b。
An embodiment of the present invention will be described below with reference to FIG. In this example, microwaves are also used to generate plasma, and the single ion source is configured so that one microwave generator is used to both heat the sample evaporation furnace and generate plasma. Wave generator 11 Branch waveguide 2. Microwave power regulators 3a, 3b, microwave introduction flange 4a
, 4b.

放電電極5.プラズマ室6.気体試料導入管7゜蒸発炉
加熱用導波管8.固体試料蒸発炉9.イオンビーム引出
し電極系10.a界発生器11で構成されている。
Discharge electrode 5. Plasma chamber 6. Gas sample introduction tube 7° Evaporation furnace heating waveguide 8. Solid sample evaporation furnace9. Ion beam extraction electrode system 10. It is composed of an a-field generator 11.

同図において、マイクロ波発生器1で発生したマイクロ
波は、分岐導波管2.マイクロ波パワー調整器3a、マ
イクロ波導入フランジ4aを経由して、放電電極5内に
設置されたプラズマ室6内にマイクロ波電界を発生させ
る。一方、固体試料蒸発炉9に対しては、分岐導波管2
.マイクロ波パワー調整器3b、マイクロ波導入フラン
ジ4b。
In the figure, microwaves generated by a microwave generator 1 are transmitted through a branch waveguide 2. A microwave electric field is generated in the plasma chamber 6 installed in the discharge electrode 5 via the microwave power regulator 3a and the microwave introduction flange 4a. On the other hand, for the solid sample evaporation furnace 9, the branch waveguide 2
.. Microwave power regulator 3b, microwave introduction flange 4b.

蒸発炉加熱用導波管8を通してマイクロ波が供給される
。本実施例の場合、マイクロ波立体回路はすべて矩形導
波管を使用しており、分岐導波管2は、入射したマイク
ロ波を等量ずつ両側に分岐する特性を持っている。また
、マイクロ波パワー調整器3a、3bにはフラップ型可
変減衰器を使用している。そのため、マイクロ波発生器
1は常に一定のマイクロ波を発生する機能だけを持って
いる。プラズマ室6内にマイクロ波電界を発生させた状
態で、磁界発生器11によりプラズマ室6付近にマイク
ロ波電界と直交する方向に磁界を印加し、さらに、気体
試料導入管7あるいは固体試料蒸発炉9からガス状試料
を導入することにより、プラズマ室6内に導入ガスのプ
ラズマを発生させることができる。そして、イオンビー
ム引出し電極系10により、上記プラズマからイオンビ
ーム21が引出される。
Microwaves are supplied through a waveguide 8 for heating the evaporation furnace. In the case of this embodiment, all the three-dimensional microwave circuits use rectangular waveguides, and the branching waveguide 2 has a characteristic of branching an equal amount of incident microwaves to both sides. Further, a flap type variable attenuator is used for the microwave power adjusters 3a and 3b. Therefore, the microwave generator 1 only has the function of always generating constant microwaves. With the microwave electric field generated in the plasma chamber 6, a magnetic field is applied near the plasma chamber 6 by the magnetic field generator 11 in a direction perpendicular to the microwave electric field, and then the gas sample introduction tube 7 or the solid sample evaporation furnace is By introducing the gaseous sample from 9, plasma of the introduced gas can be generated in the plasma chamber 6. Then, the ion beam 21 is extracted from the plasma by the ion beam extraction electrode system 10.

第2図は、固体試料蒸発炉9ならびにプラズマ室6の部
分の詳細を示した図である。蒸発炉加熱用導波管8の中
には、導波管の寸法を小さくするためと固体試料蒸発炉
9を保持する目的で誘電体絶縁物12a、12b、12
Qが挿入されている。
FIG. 2 is a diagram showing details of the solid sample evaporation furnace 9 and the plasma chamber 6. Inside the waveguide 8 for heating the evaporation furnace, dielectric insulators 12a, 12b, 12 are provided for the purpose of reducing the size of the waveguide and for holding the solid sample evaporation furnace 9.
Q is inserted.

固体試料蒸発炉9はカーボン製で炉本体9aと押え蓋9
bで構成されており、炉本体9aには、蒸発した試料を
プラズマ室6に導くための導入孔がついている。そして
マイクロ波の入射側(本実施例の場合、押え蓋9bの端
部)形状を円錐状に形成し、この部分でのマイクロ波の
反射を少なくしている。固体試料の交換、補充は、蒸発
炉加熱用導波管8の先端部介挿え板8bを取りはずし、
誘電体絶縁物12bと押え蓋9bをはずして行なう。
The solid sample evaporation furnace 9 is made of carbon and includes a furnace body 9a and a holding lid 9.
The furnace body 9a has an introduction hole for guiding the evaporated sample to the plasma chamber 6. The microwave incident side (in this embodiment, the end of the presser cover 9b) is formed into a conical shape to reduce reflection of the microwave at this portion. To replace or replenish the solid sample, remove the tip insertion plate 8b of the waveguide 8 for heating the evaporation furnace.
This is done by removing the dielectric insulator 12b and the presser cover 9b.

固体試料蒸発炉9の温度測定にはシース型熱電対13を
使用し、温度測定にマイクロ波の影響が入らないように
している。固体試料蒸発炉9の温度制御は、上記熱電対
13の出力をマイクロ波パワー減衰器にフィードバック
して行なう。固体試料蒸発炉9を1000℃まで加熱す
るのに必要なマイクロ波パワーは、上記炉の設置状況に
より異なるが、内容積10cm3を確保できる炉でも高
々300Wと概算できる。
A sheath type thermocouple 13 is used to measure the temperature of the solid sample evaporation furnace 9 to prevent the temperature measurement from being influenced by microwaves. The temperature of the solid sample evaporation furnace 9 is controlled by feeding back the output of the thermocouple 13 to the microwave power attenuator. The microwave power required to heat the solid sample evaporation furnace 9 to 1000° C. varies depending on the installation situation of the furnace, but it can be estimated to be at most 300 W even in a furnace that can secure an internal volume of 10 cm 3 .

一方、プラズマの生成に必要なマイクロ波パワーも数百
Wのオーダーであり、本実施例は、出力1kW程度のマ
イクロ波発生器1を使用することにより、充分な性能を
発揮することができる。
On the other hand, the microwave power required to generate plasma is on the order of several hundred W, and this embodiment can exhibit sufficient performance by using the microwave generator 1 with an output of about 1 kW.

以上、本実施例によれば、1つのマイクロ波発生器でプ
ラズマの発生と固体試料の蒸発を同時に行なえるので、
従来必要だった固体試料蒸発炉加熱用ヒータ電源をなく
すことができる。さらに、プラズマおよび固体試料蒸発
炉に投入するマイクロ波パワーの調整を可変減衰器で行
なっているので、マイクロ波発生器出力を可変にする必
要がなく、その電源を簡素化できる。
As described above, according to this embodiment, plasma generation and solid sample evaporation can be performed simultaneously with one microwave generator.
The heater power supply for heating the solid sample evaporation furnace, which was previously required, can be eliminated. Furthermore, since the microwave power input to the plasma and solid sample evaporation furnace is adjusted by a variable attenuator, there is no need to vary the output of the microwave generator, and the power source can be simplified.

なお、本実施例では蒸発炉加熱用導波管として矩形断面
のものを用いて説明したが、円形導波管等の他の導波管
を用いても同様の効果が得られることは明らかである。
In this example, a waveguide with a rectangular cross section was used as the waveguide for heating the evaporation furnace, but it is clear that the same effect can be obtained by using other waveguides such as a circular waveguide. be.

さらに、プラズマの発生にマイクロ波放電以外の方式を
用いていても、次項で説明する固体試料蒸発炉の加熱を
マイクロ波で行なうことの効果が得られることも明らか
である。
Furthermore, it is clear that even if a method other than microwave discharge is used to generate plasma, the effect of heating the solid sample evaporation furnace using microwaves, which will be explained in the next section, can be obtained.

また本実施例は、常温で蒸気圧の低い固体試料のみを対
象としたが、試料が固体である必然性はなく、液体試料
に対しても同様の効果が得られることは明らかである。
In addition, although this example targeted only solid samples with low vapor pressure at room temperature, it is not necessary that the sample be solid, and it is clear that the same effect can be obtained for liquid samples as well.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導波管さえあれば電力を送ることがで
き、その中にマイクロ波を良く吸収し高温に耐えうる物
体で作った固体試料蒸発炉を置くだけで装置が完成して
しまうので、従来のヒータを巻いて加熱する固体試料蒸
発炉特有の問題点を一気に解決し、固体試料の交換、補
充が容易で、最高使用温度1000℃程度の炉を持つイ
オン源を実現することができる。
According to the present invention, power can be transmitted as long as there is a waveguide, and the device can be completed by simply placing a solid sample evaporation furnace made of a material that absorbs microwaves well and can withstand high temperatures inside the waveguide. Therefore, it is possible to solve the problems peculiar to conventional solid sample evaporation furnaces that heat by wrapping a heater at once, and to realize an ion source with a furnace that allows easy replacement and replenishment of solid samples and a maximum operating temperature of about 1000 degrees Celsius. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は第1図の
1の部分の詳細図である。 1・・・マイクロ波発生器、2・・・分岐導波管、3a
。 3b・・・マイクロ波パワー調整器、4a、4b・・・
マイクロ波導入フランジ、5・・・放電電極、6・・・
プラズマ室、7・・・気体試料導入管、8 (8a、8
b)・・・蒸発炉加熱用導波管、9 (9a、9b)・
・・固体試料蒸発炉、10・・・イオンビーム引出し電
極系、11−・・磁界発生器、12a、12b、12c
・・・m電体絶縁物、13・・・熱電対、21・・・イ
オンビーム。 第  1  図 Y Z 図 6 アラス゛ン電 3b答全広私用導濃管J杖級 ノ26し /Zb   誤4i肥イ朴r巳縁雀汐 /3  4閤覧1Cズす
FIG. 1 is a diagram showing one embodiment of the present invention, and FIG. 2 is a detailed view of the portion 1 in FIG. 1... Microwave generator, 2... Branch waveguide, 3a
. 3b...Microwave power regulator, 4a, 4b...
Microwave introduction flange, 5...discharge electrode, 6...
Plasma chamber, 7... Gas sample introduction tube, 8 (8a, 8
b)...Evaporation furnace heating waveguide, 9 (9a, 9b).
...Solid sample evaporation furnace, 10...Ion beam extraction electrode system, 11-...Magnetic field generator, 12a, 12b, 12c
... m electric insulator, 13 ... thermocouple, 21 ... ion beam. Fig. 1 Y Z Fig. 6 Alaskan Den 3b Answer All Wide Private Doinou Tube J Cane Class No. 26/Zb Wrong 4i Fat Ipak R Sniff Enjashio/3 4 View 1C Zusu

Claims (1)

【特許請求の範囲】 1、固体試料を加熱して蒸発させ、これを放電室に導入
してプラズマ用ガスとし、このプラズマからイオンを引
出す方式のイオン源において、上記固体試料の加熱をマ
イクロ波で行なうことを特徴とするマイクロ波加熱蒸発
炉付イオン源。 2、請求項1記載のイオン源において、プラズマの発生
にもマイクロ波を使用していることを特徴とする請求項
1記載のマイクロ波加熱蒸発炉付イオン源。 3、請求項2記載のイオン源において、プラズマの発生
と固体試料の加熱を1つのマイクロ波発生器で発生させ
たマイクロ波で行なうことを特徴とする請求項2記載の
マイクロ波加熱蒸発炉付イオン源。
[Claims] 1. In an ion source that heats and evaporates a solid sample, introduces it into a discharge chamber as a plasma gas, and extracts ions from the plasma, the solid sample is heated by microwaves. An ion source with a microwave heating evaporation furnace. 2. The ion source with a microwave heating evaporation furnace according to claim 1, wherein microwaves are also used to generate plasma. 3. The ion source according to claim 2, characterized in that plasma generation and heating of the solid sample are performed using microwaves generated by one microwave generator. ion source.
JP63030741A 1988-02-15 1988-02-15 Ion source with microwave heating type evaporating furnace Expired - Lifetime JP2728417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63030741A JP2728417B2 (en) 1988-02-15 1988-02-15 Ion source with microwave heating type evaporating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63030741A JP2728417B2 (en) 1988-02-15 1988-02-15 Ion source with microwave heating type evaporating furnace

Publications (2)

Publication Number Publication Date
JPH01206547A true JPH01206547A (en) 1989-08-18
JP2728417B2 JP2728417B2 (en) 1998-03-18

Family

ID=12312100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63030741A Expired - Lifetime JP2728417B2 (en) 1988-02-15 1988-02-15 Ion source with microwave heating type evaporating furnace

Country Status (1)

Country Link
JP (1) JP2728417B2 (en)

Also Published As

Publication number Publication date
JP2728417B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
US5367163A (en) Sample analyzing instrument using first and second plasma torches
US20020043520A1 (en) Method and apparatus for plasma skin resurfacing
KR890013820A (en) Membrane Forming Device and Ion Source
EP1093149A3 (en) Decaborane ion source
JP2792558B2 (en) Surface treatment device and surface treatment method
TW569271B (en) Operation method of ion source and ion beam irradiation apparatus
US4585541A (en) Plasma anodization system
EP0325227B1 (en) Method of heating a quartz glass tube
Goode et al. A review of instrumentation used to generate microwave-induced plasmas
JPH01206547A (en) Ion source with microwave heating type evaporating furnace
JPS57177975A (en) Ion shower device
Chen et al. Operation of RF-driven negative hydrogen ion source in China Spallation Neutron Source
US4582997A (en) Ionic current regulating device
JP3454384B2 (en) Ion beam generator and method
US2821662A (en) Ion source
JPH07320671A (en) Ion source for ion implanting device and method for heating solid source
JPH051895Y2 (en)
JPH0836983A (en) Ion source
JPH01246747A (en) Ion source
JPH0982230A (en) Ion source
JP4997596B2 (en) Ion plating method
JP2595640B2 (en) Plasma processing equipment
Ni et al. Li+ ion emission from a hot-plate alumina-silicate source stimulated by flash heating with an infrared laser
JPH02304852A (en) Apparatus for cooling specimen in mass spectrometer
JPS6271147A (en) Ion source with evaporation furnace