JPH01206282A - Distance measuring apparatus - Google Patents

Distance measuring apparatus

Info

Publication number
JPH01206282A
JPH01206282A JP3128988A JP3128988A JPH01206282A JP H01206282 A JPH01206282 A JP H01206282A JP 3128988 A JP3128988 A JP 3128988A JP 3128988 A JP3128988 A JP 3128988A JP H01206282 A JPH01206282 A JP H01206282A
Authority
JP
Japan
Prior art keywords
light
voltage
circuit
light source
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3128988A
Other languages
Japanese (ja)
Other versions
JP2563195B2 (en
Inventor
Masaaki Ogawa
小川 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP63031289A priority Critical patent/JP2563195B2/en
Publication of JPH01206282A publication Critical patent/JPH01206282A/en
Priority to US07/541,439 priority patent/US5001508A/en
Application granted granted Critical
Publication of JP2563195B2 publication Critical patent/JP2563195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To automatically alter the light emitting current of a light source according to the condition of an object, by supplying the output of a light detection means with respect to a setting means for setting the min. value capable of being processed by a distance operation means to a drive means for controlling the intensity of the light source. CONSTITUTION:The pulse P1 from a pulse generating circuit 26 is supplied to a drive circuit 24 and a light source 10 emits light on the basis of the magnitude of a current I0. In a moment when the pulse P1 rises, reflected light does not yet reach a photodetector 18 and voltage V3 is low and the voltage V0 from a setting circuit 23 for setting the min. value of all of output currents from the photodetector 18 capable of being processed by a distance operation circuit 28 is larger than the voltage V3. Therefore, the voltage V4 from a control means 22 is highest and the intensity of the light from the light source 10 becomes max. When the reflected light is inputted to the photodetector 18, the voltage V3 becomes high and exceeds the set voltage V0 to become high to a large extent while the voltage V4 from the control means 22 is suddenly dropped and the intensity of the light from the light source 10 is also suddenly dropped.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、写真機等に用いられ、撮影に際して被写体ま
での距離を測定する測距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distance measuring device used in a camera or the like to measure the distance to a subject when photographing.

[従来の技術] アクティブ方式の測距装置として、第5図に示すものが
提案される。
[Prior Art] As an active type distance measuring device, one shown in FIG. 5 has been proposed.

光源!0(赤外線発光光源等)からの光がレンズ系I2
を通って被写体14に投射され、これからの反射光がレ
ンズ系16を通って受光素子18上に光スポットとして
投影される。
light source! 0 (infrared light emitting light source, etc.) is transmitted through lens system I2.
The reflected light passes through the lens system 16 and is projected onto the light receiving element 18 as a light spot.

この受光素子18はposition 5ensiti
ve datector即ら位置検出器であり、光スポ
ットの位置により、電極18aおよび電極+8bから得
られる電流!、およびI、の大きさが異なり、I+/I
tから投射光10aに対する反射光10bの角度θを求
め、被写体14までの距離を測定している。
This light receiving element 18 has a position of 5
ve detector is a position detector, and depending on the position of the light spot, the current obtained from electrode 18a and electrode +8b! , and I are different in magnitude, and I+/I
The angle θ of the reflected light 10b with respect to the projected light 10a is determined from t, and the distance to the subject 14 is measured.

このとき、受光素子18上に得られる光スポットが弱い
と、距離演算回路がノイズのために処理動作できないの
で、電流IIおよび!、は計算処理できる程度の大きさ
が必要である。したがって、測距の際の最悪条件(被写
体14が遠くて光の反射率も低い)を考慮して、測定時
は常に光源10に対して大きな電流を供給し、これを強
い光で発光させている。
At this time, if the light spot obtained on the light receiving element 18 is weak, the distance calculation circuit cannot perform processing due to noise, so the current II and ! , must be large enough to be computationally processable. Therefore, in consideration of the worst conditions during distance measurement (the subject 14 is far away and the light reflectance is low), a large current is always supplied to the light source 10 during measurement, causing it to emit strong light. There is.

[発明が解決しようとする問題点1 しかし、測距には電流■1およびI、の比が得られれば
よく、その絶対値は関係ないので、良好条件(被写体■
4が近くて光の反射率が高い)で強い光を出射させるこ
とは無駄であり、電力をいたずらに消費することになり
、特に電池を使用した装置において多数回測定を行う場
合には、電池の消耗が大きくなって測定回数が低下する
問題点があった。
[Problem to be solved by the invention 1 However, for distance measurement, it is sufficient to obtain the ratio of the currents ■1 and I, and their absolute values are irrelevant.
It is wasteful to emit strong light when the number 4 is close and the light reflectance is high, and it wastes power.Especially when performing multiple measurements with a battery-powered device, it is wasteful to emit strong light. There was a problem that the number of measurements decreased due to increased wear and tear.

また、常に強く発光させると光源IOが劣化し易く、大
電流がパルス状に流れるのでノイズが生じ易くなり、周
辺の回路に悪影響を与える問題点もあった 本発明の目的は、上記問題点に鑑み、光源lOの発光電
流を、被写体i4の条件によって自動的に変更できる測
距装置を提供することにある。
In addition, if the light source IO is emitted strongly all the time, the light source IO tends to deteriorate, and a large current flows in a pulsed manner, which tends to generate noise, which has a negative impact on the surrounding circuits.The purpose of the present invention is to solve the above problems. In view of the above, it is an object of the present invention to provide a distance measuring device that can automatically change the light emitting current of the light source lO depending on the conditions of the subject i4.

[問題点を解決するための手段] この目的を達成するために、本発明では、光スポットの
受光位置を検知する受光手段と、該受光手段の出力を用
いて目標物までの距離を測定する距離演算手段とを備え
た粗側装置において、該距離演算手段が処理できる受光
手段からの最小値を予め設定する設定手段と、該目標物
を照射する光ねの強さを制御するドライブ手段と、該受
光手段と該設定手段とのそれぞれの出力が供給されるこ
とにより、該受光手段の該設定手段に対する出力を該ド
ライブ手段に供給する制御手段とを有することを特徴と
している′。
[Means for solving the problem] In order to achieve this object, the present invention includes a light receiving means for detecting the light receiving position of a light spot, and a distance to a target object is measured using the output of the light receiving means. a setting means for presetting a minimum value from the light receiving means that can be processed by the distance calculating means; and a driving means for controlling the intensity of the beam of light irradiating the target object. , and control means for supplying the output of the light receiving means to the setting means to the drive means by being supplied with respective outputs of the light receiving means and the setting means.

[実施例] (1)第1実施例 第1図には本発明が適用された第!実施例の要部ブロッ
ク図が示されている。
[Embodiments] (1) First Embodiment FIG. 1 shows a diagram to which the present invention is applied! A block diagram of main parts of the embodiment is shown.

受光素子18からの電流!、および■、は加算演算手段
20の一部を構成する電流−電圧変換420&および電
流−電圧変換器20bに供給され、これからの出力(電
圧)vlおよびV、が加算演算手段20の他部を構成す
る加算回路20cに印加され、V r + V * =
 V sが計算される。
Current from light receiving element 18! , and ■ are supplied to the current-to-voltage converter 420 & and the current-to-voltage converter 20b that constitute a part of the addition calculation means 20, and the outputs (voltages) vl and V from these are supplied to the other parts of the addition calculation means 20. V r + V * = V r + V * =
Vs is calculated.

電圧V、は制御手段22に印加され、一方これには設定
回路23から、電圧v0に変換された設定値が印加され
る。この例では制御手段22は差動増幅器である。
A voltage V is applied to the control means 22, to which a setting value converted into a voltage v0 is applied from a setting circuit 23. In this example, the control means 22 is a differential amplifier.

電圧■oとV、との差に基づいて得られる制御手段22
からの電圧v4がドライブ回路24に印加される。
Control means 22 obtained based on the difference between the voltages o and V
A voltage v4 from is applied to the drive circuit 24.

図示しないが、レリーズシャツタ釦等からの信号(ブツ
シュによるスイッチのオン等)により、タイミングパル
ス発生回路26からパルスP+が得られ、これがドライ
ブ回路24に供給される。
Although not shown, a pulse P+ is obtained from the timing pulse generation circuit 26 in response to a signal from a release shutter button or the like (such as turning on a switch by a button), and this is supplied to the drive circuit 24.

これにより電圧V4または電圧v4が変換された電流■
。が光源!0に供給され、その大きさに対応した強さで
光源IOが発光される。
As a result, the voltage V4 or the current converted from the voltage v4■
. is the light source! 0, and the light source IO emits light with an intensity corresponding to the size.

さらに、タイミングパルス発生回路26からはパルスP
、より遅れてP2が得られ、これが距離演算回路28に
供給され、この時点で■1およびV。
Furthermore, a pulse P is output from the timing pulse generation circuit 26.
, P2 is obtained later, and this is supplied to the distance calculation circuit 28, and at this point, ■1 and V.

に基づいて距離演算がなされ、端子30に出力される。A distance calculation is performed based on this and is output to the terminal 30.

次にその動作を第2図を用いて説明する。なお、設定回
路(23)は、距離演算回路28が処理できる受光素子
18からの全出力電流11 +I tの最小値を設定す
るものである。また、ドライブ回路24の出力電流の上
限は、上記した最悪条件をクリアする値である。
Next, the operation will be explained using FIG. 2. Note that the setting circuit (23) sets the minimum value of the total output current 11 +I t from the light receiving element 18 that can be processed by the distance calculation circuit 28. Further, the upper limit of the output current of the drive circuit 24 is a value that clears the above-described worst condition.

時点1+でシャツタ釦等のスイッチがオン(同図へのp
o)されると、ある期間後にタイミングパルス発生回路
26からパルスP1(同図B)が得られる。このパルス
P、の前縁および後縁の時点をt!およびt4とし、期
間をTIとする。パルスPtはドライブ回路24に供給
され、よって光源10が電流!。の大きさに基づいて発
光する。
Switches such as the shirt button are turned on at time 1+ (p to the same figure)
o), the pulse P1 (B in the figure) is obtained from the timing pulse generation circuit 26 after a certain period of time. The time points of the leading and trailing edges of this pulse P, are t! and t4, and the period is TI. The pulse Pt is supplied to the drive circuit 24, so that the light source 10 receives a current! . emits light based on the size of the

この光は被写体14から反射光となって受光素子18に
入射されるが、パルスP、の立ち上がり瞬時では反射光
は未だ受光素子18に到達しておらず、したがって電圧
V、は極めて小またはOであり、設定回路23からの電
圧■。の方が高い。
This light becomes reflected light from the subject 14 and enters the light receiving element 18, but at the instant of the rise of the pulse P, the reflected light has not yet reached the light receiving element 18, and therefore the voltage V is extremely small or O , and the voltage from the setting circuit 23 is ■. is higher.

したがって制御手段22からの電圧v4はこの時点t、
で最も高く、即ち電流Io(同図C)が最も多く、光源
IOの光の強さはこの時点で最大となる。
Therefore, the voltage v4 from the control means 22 is at this time t,
In other words, the current Io (C in the figure) is the highest, and the intensity of the light from the light source IO is maximum at this point.

反射光が受光素子18に入力すると電圧V、は高くなる
。反射率がよい場合には電圧V、は同図りに示すように
設定電圧v0を越えて大幅に高く(第2図りでvSlと
して示す)なり、したがって制御手段22からの電圧v
4は急激に低下(電流1oも急激に低下)し、これによ
り光源!0の光の強さも急激に低下する。
When the reflected light enters the light receiving element 18, the voltage V increases. When the reflectance is good, the voltage V, as shown in the same figure, becomes significantly higher than the set voltage v0 (indicated as vSl in the second figure), and therefore the voltage v from the control means 22 increases.
4 suddenly decreases (the current 1o also decreases rapidly), and this causes the light source! The intensity of light at zero also drops rapidly.

このようにして受光素子18への反射光の入射が急激に
減衰し、電圧V、が急激に低下して設定回路23からの
設定値v0と対応した時点以降は光の強さは一定となっ
て安定する。時点t4で発光は停止される。
In this way, the incidence of the reflected light on the light-receiving element 18 is rapidly attenuated, and the voltage V is rapidly reduced, and after the point in time when it corresponds to the set value v0 from the setting circuit 23, the intensity of the light becomes constant. becomes stable. Light emission is stopped at time t4.

また、発光の強さがほぼ安定した時点t3〜ts(Tt
)間で同図Eに示すようにタイミングパルス発生回路2
6からパルスP、が得られ、これにより距離演算回路2
8において距離演算処理がなされ、端子30に測定値が
出力される。電流の変化が大きいほどノイズは大きくな
る。距離演算処理中のt4で発生するノイズは従来に比
べて減少するので、ノイズによる誤演算を軽紘でき、正
確な測定値が得られる。
Also, the time t3 to ts (Tt
) between the timing pulse generation circuit 2 and
6, a pulse P is obtained from the distance calculation circuit 2.
8, distance calculation processing is performed and the measured value is output to the terminal 30. The greater the change in current, the greater the noise. Since the noise generated at t4 during distance calculation processing is reduced compared to the conventional method, erroneous calculations due to noise can be reduced and accurate measured values can be obtained.

次に時点t6で再びシャツタ釦が押されると、時点t7
〜ts(’t’+)間にパルスPtが得られ、前回と同
様に電流I0が光源10に供給されて発光する。時点t
7における電流I0の大きさは時点jtの場合と同じで
ある。被写体14の反射率が悪く受光素子18に入射さ
れる反射光が前回に比して弱いと、電圧V、の初期値は
時点t、のそれより低く(第2図りでv3!として示す
)なり、したがって電流!。は前回に比して徐々に減衰
する。
Next, when the shirt button is pressed again at time t6, time t7
A pulse Pt is obtained between ~ts ('t'+), and the current I0 is supplied to the light source 10 to emit light as in the previous time. Time t
The magnitude of the current I0 at point 7 is the same as at time jt. If the reflectance of the subject 14 is poor and the reflected light incident on the light receiving element 18 is weaker than the previous time, the initial value of the voltage V will be lower than that at time t (shown as v3! in the second diagram). , hence the current! . is gradually attenuated compared to the previous time.

しかし、反射光が弱いので前回の電流値までは減衰しな
い時点で電圧v3がvoと対応して安定する。前回の安
定状態の電流!。の値をI。Iとし、今回のそれを!。
However, since the reflected light is weak, the voltage v3 becomes stable corresponding to vo at the time when the current does not attenuate to the previous current value. Last steady state current! . The value of I. Let's call it I and use it this time! .

、とすると、I al< I。、の関係になり、前回よ
り比較的強い光で安定する。
, then I al< I. , and the light becomes stable with relatively stronger light than the previous time.

いずれの場合でも、電流■。は反射光の強さに応じて減
衰されるので、従来に比して電力の消費に役立つ。第2
図Cにおいて点線斜線を付した部分のエネルギーが節約
される。
In either case, the current ■. is attenuated according to the intensity of reflected light, which helps reduce power consumption compared to conventional methods. Second
Energy is saved in the dotted hatched area in Figure C.

(2)第2実施例 第3図には第2実施例の要部ブロック図が示されている
。本例は制御手段22を除き、他の構成は第1図の場合
と同様である。よって本例の制御手段22を説明し、他
部には第1図との対応部分に同一符号を付して説明を省
略する。
(2) Second Embodiment FIG. 3 shows a block diagram of the main parts of the second embodiment. In this example, except for the control means 22, the other configurations are the same as in the case of FIG. Therefore, the control means 22 of this example will be explained, and the same reference numerals will be given to the other parts corresponding to those in FIG. 1, and the explanation will be omitted.

本例の制御手段22は(除算回路22a)、(乗算回路
22b)、(記憶回路22c)で構成される。
The control means 22 of this example is composed of (a division circuit 22a), (a multiplication circuit 22b), and (a storage circuit 22c).

設定回路23からの電圧v0と加算回路20cからの電
圧V、とが除算回路22aに入力され、V o/v 、
の計算がなされ、値Q1が得られる。
The voltage v0 from the setting circuit 23 and the voltage V from the addition circuit 20c are input to the division circuit 22a, and V o/v ,
is calculated and the value Q1 is obtained.

この値Q、は乗算回路22bに人力され、後述するQ、
と乗算(QIXQI)され、出力Q、が得られる。
This value Q, is input manually to the multiplication circuit 22b, and Q, which will be described later, is
(QIXQI) to obtain the output Q.

これが記憶回路22cに人力されて記憶され、この記憶
値がQ、となって乗算回路22bに入力されると共にド
ライブ回路24にも入力される。
This is manually input and stored in the storage circuit 22c, and this stored value becomes Q and is input to the multiplier circuit 22b and also to the drive circuit 24.

またタイミングパルス発生回路26から得られるリセッ
ト信号Prが記憶回路22cに入力されると、これが初
期値にリセットされる。
Further, when the reset signal Pr obtained from the timing pulse generation circuit 26 is input to the storage circuit 22c, it is reset to the initial value.

第2実施例の動作を第4図のタイミングチャートを用い
て説明する。なお、第2図との対応部分には同一符号を
付す。
The operation of the second embodiment will be explained using the timing chart of FIG. Note that parts corresponding to those in FIG. 2 are given the same reference numerals.

時点t、でスイッチがオン(同図へ)されると、パルス
P0の後縁(時点11)でタイミングパルス発生回路2
6からリセットパルスPr(同図B)が得られ、記憶回
路22cがリセットされてそのQ3が初期化される。こ
の初期値は、上記最悪条件が考慮されて大きい値が選ば
れる。第4図CはこのQ3の値を示す。
When the switch is turned on at time t (to the same figure), the timing pulse generation circuit 2 at the trailing edge of pulse P0 (time 11)
6, a reset pulse Pr (B in the same figure) is obtained, the memory circuit 22c is reset, and its Q3 is initialized. This initial value is selected to be a large value in consideration of the above-mentioned worst condition. FIG. 4C shows the value of Q3.

リセッパルスPrの後縁時点(時点t3)で同図りに示
すようにタイミングパルス発生回路26からパルスP、
が得られてこれがドライブ回路24に入力される。これ
により第4図Eに示す如くドライブ回路24から大きい
電流I0が光源!0に供給され、光源10が強い光をも
って発光する。時点t、〜t、は発光期間TIであり、
本例ではこのT1の期間における電流!。の値は一定で
あり、光淵10はT8期間同一の強さの光で発光する。
At the trailing edge of the reset pulse Pr (time t3), the timing pulse generation circuit 26 generates a pulse P, as shown in the figure.
is obtained and input to the drive circuit 24. This causes a large current I0 to flow from the drive circuit 24 to the light source, as shown in FIG. 4E! 0, and the light source 10 emits strong light. Time t, ~t, is a light emission period TI,
In this example, the current during this period of T1! . The value of is constant, and the light source 10 emits light of the same intensity during the T8 period.

T8期間ではさらに除算回路22aでV。/V、の演算
がなされる。このとき、電圧v3(第4図F)はV、。
In the T8 period, the voltage is further increased to V in the division circuit 22a. /V is calculated. At this time, the voltage v3 (FIG. 4F) is V.

>>V、の状態にあり、除算回路22aから得られるQ
、の値は1より小さい。この結果、乗算回路22bにお
ける乗算演算(QIXQ+=Q、)値も比較的小さくな
る(Q、より小さくなる)。
>>V, and Q obtained from the division circuit 22a
, is less than 1. As a result, the value of the multiplication operation (QIXQ+=Q,) in the multiplication circuit 22b also becomes relatively small (Q becomes smaller).

タイミングパルス発生回路26からのパルスP。Pulse P from the timing pulse generation circuit 26.

(第4図G)により、上記Q、の値が記憶回路22Cに
記憶され、Q、となる。即ちリッセト時(時点ta)大
きい値であったQ、がこれより小さな値に書き換えられ
る。同時に距離演算回路28ではV 、/V 、より距
離演算がなされる(第4図H)。
(FIG. 4G), the value of Q is stored in the storage circuit 22C and becomes Q. That is, Q, which was a large value at the reset time (time ta), is rewritten to a smaller value. At the same time, the distance calculation circuit 28 calculates the distance from V 2 and /V 2 (FIG. 4H).

T、はこの演算期間である。以上を第1回の発光とする
T is the calculation period. The above is considered to be the first light emission.

時点t7で再びタイミングパルス発生回路26からパル
スP、が得られ、第1回の発光で記憶回路22cに記憶
されたQ3の値(前回に比べてV。
At time t7, a pulse P is obtained from the timing pulse generation circuit 26 again, and the value of Q3 stored in the storage circuit 22c in the first light emission (V compared to the previous time).

/VS。倍)に基づく大きさの電流■。により光源10
が発光する(発光量は■。に比例するので前回に比べて
■。/Vt。倍となる)。この発光はTI(時点り、〜
ts)間一定の強さで継続されるが、前回に比しvo/
vz。倍に弱くなる。したがって反射光もVo/V3o
倍に弱くなる。第4図の時点L7〜t。
/VS. ■ the magnitude of the current based on (times). light source 10
emits light (the amount of light emitted is proportional to ■., so it is twice ■./Vt. compared to the previous time). This luminescence is TI (at the time of ~
ts) continues with a constant strength, but compared to the previous time vo/
vz. It becomes twice as weak. Therefore, the reflected light is also Vo/V3o
It becomes twice as weak. Time point L7-t in FIG.

間では、反射光に基づく電圧V 31 (V 31−V
 1oXVO/V3゜=V0)が、設定値v0に一致し
ていることを示している。そして除算回路22aでV 
0/V31= Q lが計算され、今回ではQ、−1と
なり、乗算回路22bでQ IX Q s = Q t
が計算され、今回ではQ 、= Q 、となり、したが
って記憶回路22cの記憶内容は時点t、で書き換えら
れるが、今回は第1回の発光後のそれと同じになる。以
上を第2回の発光とする。
Between, the voltage V 31 (V 31 - V
1oXVO/V3°=V0) corresponds to the set value v0. Then, in the division circuit 22a, V
0/V31=Q l is calculated, this time it becomes Q, -1, and the multiplier circuit 22b calculates Q IX Q s = Q t
is calculated, and this time, Q ,=Q , and therefore, the memory contents of the memory circuit 22c are rewritten at time t, but this time they are the same as those after the first light emission. The above is considered as the second light emission.

さらに、時点tllでタイミングパルス発生回路26か
らパルスP、が得られ、上述と同様にして発光動作がな
される。この回(第3回)も、第2回の発光時のQ、が
記憶回路22cに記憶されているので、第4図Eの時点
tll〜t+3期間に示すように、比較的弱い発光がな
される。
Furthermore, a pulse P is obtained from the timing pulse generation circuit 26 at time tll, and a light emission operation is performed in the same manner as described above. In this time (third time) as well, since Q at the time of the second light emission is stored in the memory circuit 22c, a relatively weak light emission is performed as shown in the period from time tll to t+3 in FIG. 4E. Ru.

そしてもしこの第3回の発光で反射光が弱すぎてV 3
.< V 、となると、Q、の値(v o/v s*)
が1より大となり、したがって第3回の発光時に記憶さ
れていた記憶回路22cの03が、これより大きな値に
書き換えられ、次回の発光では、この補正された値に基
づいて適切な強さの発光が得られる。
And if the reflected light is too weak in this third light emission, V 3
.. < V, then the value of Q (vo/v s*)
becomes larger than 1, so 03 in the memory circuit 22c that was stored at the time of the third light emission is rewritten to a larger value, and the next time the light is emitted, an appropriate intensity is set based on this corrected value. Luminescence is obtained.

この第2実施例では、前回の反射光の状態に基づいて次
回の発光の強さを制御しているものであり、数回又はl
O数回の測定の平均値をもって距離測定を行う場合に、
第2回目以降の発光を適切な強さに制御でき、したがっ
て無駄なかつ大きなエネルギー消費を回避できる。
In this second embodiment, the intensity of the next light emission is controlled based on the state of the previous reflected light, and the intensity of the next light emission is controlled several times or once.
When measuring distance using the average value of several measurements,
The second and subsequent light emissions can be controlled to an appropriate intensity, thus avoiding wasteful and large energy consumption.

[発明の効果] 本発明の測距装置によれば、反射光の強さに対応して、
光源の発光の強さを制御する制御回路が設けられている
ので、反射率の良い被写体を照射して測距する場合に、
無駄な発光電流を消費することがなく、特に電池を使用
して多数回測距ケる場合に、その電池の不要な消耗を回
避でき、多数回の測距操作を行い得る優れた効果を有す
る。
[Effects of the Invention] According to the distance measuring device of the present invention, depending on the intensity of reflected light,
A control circuit is provided to control the intensity of light emitted from the light source, so when measuring distance by illuminating a subject with good reflectance,
It does not consume unnecessary light emitting current, and has the excellent effect of avoiding unnecessary battery consumption, especially when distance measurement is performed multiple times using batteries, and allowing multiple distance measurement operations to be performed. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測距装置の第1実施例を示すブロック
図、第2図は、その動作を説明するタイムチャート、第
3図は、第2実施例を示すブロック図、第4図は、その
動作を説明するタイムチャート、第5図は、測距装置の
基本説明図である。 IO:光源      I8:受光素子22:制御手段
    23:設定回路24ニドライブ回路 26:タイミングパルス発生回路 28:距離演算回路
FIG. 1 is a block diagram showing the first embodiment of the distance measuring device of the present invention, FIG. 2 is a time chart explaining its operation, FIG. 3 is a block diagram showing the second embodiment, and FIG. 5 is a time chart explaining its operation, and FIG. 5 is a basic explanatory diagram of the distance measuring device. IO: Light source I8: Light receiving element 22: Control means 23: Setting circuit 24 Nidrive circuit 26: Timing pulse generation circuit 28: Distance calculation circuit

Claims (1)

【特許請求の範囲】 光スポットの受光位置を検知する受光手段と、該受光手
段の出力を用いて目標物までの距離を測定する距離演算
手段とを備えた距測装置において、 該距離演算手段が処理できる受光手段からの全出力の最
小値を予め設定する設定手段と、 該目標物を照射する光源の強さを制御するドライブ手段
と、 該受光手段と該設定手段とのそれぞれの出力が供給され
ることにより、該受光手段の該設定手段に対する出力を
該ドライブ手段に供給する制御手段と、 を付設したことを特徴とする測距装置。
[Scope of Claims] A distance measuring device comprising a light receiving means for detecting a light receiving position of a light spot, and a distance calculating means for measuring a distance to a target using an output of the light receiving means, the distance calculating means a setting means for presetting the minimum value of the total output from the light receiving means that can be processed by the light receiving means; a driving means for controlling the intensity of the light source that illuminates the target object; A distance measuring device comprising: a control means for supplying the output of the light receiving means to the setting means to the driving means.
JP63031289A 1988-02-13 1988-02-13 Ranging device Expired - Fee Related JP2563195B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63031289A JP2563195B2 (en) 1988-02-13 1988-02-13 Ranging device
US07/541,439 US5001508A (en) 1988-02-13 1990-06-22 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031289A JP2563195B2 (en) 1988-02-13 1988-02-13 Ranging device

Publications (2)

Publication Number Publication Date
JPH01206282A true JPH01206282A (en) 1989-08-18
JP2563195B2 JP2563195B2 (en) 1996-12-11

Family

ID=12327150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031289A Expired - Fee Related JP2563195B2 (en) 1988-02-13 1988-02-13 Ranging device

Country Status (1)

Country Link
JP (1) JP2563195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045926A (en) * 2006-08-11 2008-02-28 Omron Corp Optical displacement sensor and its control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331515A (en) * 1986-07-24 1988-02-10 Nippon Shiyuumatsuhaa Kk Filtering method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331515A (en) * 1986-07-24 1988-02-10 Nippon Shiyuumatsuhaa Kk Filtering method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045926A (en) * 2006-08-11 2008-02-28 Omron Corp Optical displacement sensor and its control method

Also Published As

Publication number Publication date
JP2563195B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US5001508A (en) Range finder
JPH01206282A (en) Distance measuring apparatus
JPS59119336A (en) Camera used together with flashing device
US6292256B1 (en) Distance measurement system
JP3594816B2 (en) Distance measuring device
US6944397B2 (en) Distance measuring device
US5023647A (en) Automatic status discriminator
US6549874B2 (en) Distance measuring device
JP2000214375A (en) Range finder device
JPS61226607A (en) Range finder
US6292257B1 (en) Distance measurement system
US6188844B1 (en) Rangerfinder apparatus
JP3749639B2 (en) Ranging device
JP2599279B2 (en) Distance measuring device
US6195510B1 (en) Rangefinder apparatus
JP3234999B2 (en) Camera ranging device
JP3443886B2 (en) Photoelectric sensor
JP3361179B2 (en) Camera ranging device
US6188842B1 (en) Rangefinder apparatus
US6583861B2 (en) Rangefinder apparatus
JP3130559B2 (en) Active distance measuring device
JP3817097B2 (en) Ranging device
JPS5988721A (en) Range finder of camera
JP3389406B2 (en) Camera ranging device
JP3288984B2 (en) Distance measuring device and automatic focusing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees