JPH01205024A - Dephosphorization method for ion alloy containing cr - Google Patents

Dephosphorization method for ion alloy containing cr

Info

Publication number
JPH01205024A
JPH01205024A JP2991688A JP2991688A JPH01205024A JP H01205024 A JPH01205024 A JP H01205024A JP 2991688 A JP2991688 A JP 2991688A JP 2991688 A JP2991688 A JP 2991688A JP H01205024 A JPH01205024 A JP H01205024A
Authority
JP
Japan
Prior art keywords
molten metal
dephosphorization
slag
flux
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2991688A
Other languages
Japanese (ja)
Other versions
JPH068453B2 (en
Inventor
Keiichi Maya
真屋 敬一
Toru Matsuo
亨 松尾
Kazumi Ishida
石田 一美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2991688A priority Critical patent/JPH068453B2/en
Publication of JPH01205024A publication Critical patent/JPH01205024A/en
Publication of JPH068453B2 publication Critical patent/JPH068453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To easily dephosphorize an iron alloy with high efficiency by specifying the temp. of a molten metal and the SiO2 component on a bath surface before desulfurizing the metal of the iron alloy contg. a specific ratio of Cr, then properly charging a flux, carbonaceous material and iron oxide thereto under specific conditions. CONSTITUTION:The temp. of the molten metal prior to dephosphorization is kept at >=1,510 deg.C and <=about 1,780 deg.C and the SiO2 component existing on the bath surface is removed to <=10kg/t.molten metal at the time of dephosphorizing the melt of the iron alloy contg. >=5wt.% Cr while stirring the melt. The flux consisting of 20-50wt.% CaO, 25-80wt.% CaF2, <=35% CaCl2 is then added at 20-120kg/t.molten metal, the carbonaceous material (about >=1mm grain size) at 1-25kg/t.molten metal and the iron oxide (iron ore, etc.) at about <=25kg/t.molten metal to the molten metal to dephosphorize the molten metal. The iron alloy contg. Cr is thereby easily and inexpensively dephosphorized with the high efficiency without generating harmful slag.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はCrを含有する鉄合金の脱燐方法に係り、特
にOrを5重量%以上含有する鉄合金を経済的に脱燐す
る方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for dephosphorizing iron alloys containing Cr, and particularly to a method for economically dephosphorizing iron alloys containing 5% by weight or more of Or. .

[従来の技術] 一般に、Crを5重量%以上含有する高Cr 11ある
いはステンレス鋼中の燐(以下Pと表示)は、鋼の機械
的性質や応力腐蝕割れに悪影響をおよぼす有害不純物で
おる。しかしながら、Crを含む鉄合金の脱燐は、通常
の溶鋼の脱燐法として採用されている転炉吹錬のように
強い酸化精錬法を適用しても、溶湯中のCrが優先的に
酸化されるのみで脱燐は進行せず不可能とされていた。
[Prior Art] Generally, phosphorus (hereinafter referred to as P) in high Cr 11 or stainless steel containing 5% by weight or more of Cr is a harmful impurity that adversely affects the mechanical properties and stress corrosion cracking of steel. However, for dephosphorization of iron alloys containing Cr, even if a strong oxidation refining method such as converter blowing, which is commonly used as a dephosphorization method for molten steel, is applied, Cr in the molten metal is preferentially oxidized. However, dephosphorization did not proceed and was thought to be impossible.

しかるに最近、低燐ステンレス鋼の必要性が増し、下記
に示す脱燐法が開発された。
However, recently, the need for low-phosphorus stainless steel has increased, and the dephosphorization method described below has been developed.

従来の脱燐法は(A>還元脱燐法と(B)M化脱燐法の
2つに大別され、(A)の脱燐法には■エレクトロスラ
ブ再溶解法(ESR)にてCa  CaF2系フラック
スを用いて脱燐する方法、■取鋼内でCaC2CaFz
 、 CaC2を用いて脱燐する方法等が知られている
。この■、■とも、Caで脱燐を行なうものであり、脱
燐反応としては、 3 (Ca) +2 [P]−(Ca3P2 )で表わ
される還元脱燐であって、■は CaC2−Ca+2 C というCaC2の分解反応によって生ずるCaを利用し
たちのである。
Conventional dephosphorization methods are roughly divided into two: (A> reduction dephosphorization method and (B) M conversion dephosphorization method. For (A) dephosphorization method, ■ electroslab remelting method (ESR) is used. Dephosphorization method using Ca CaF2-based flux, ■ CaC2CaFz in steel processing
, a method of dephosphorizing using CaC2, etc. are known. Both (1) and (2) dephosphorize with Ca, and the dephosphorization reaction is a reductive dephosphorization represented by 3 (Ca) +2 [P]-(Ca3P2), and (2) is CaC2-Ca+2C. It utilizes Ca produced by the decomposition reaction of CaC2.

一方、(B)の脱燐法には■Ca0−FeCb系フラッ
クスによる脱燐法(特公昭57−7212> 、■アル
カリ金属の炭酸塩、耐化物、水酸化物の1種、アルカリ
土類金属のフッ化物、塩化物の1種、鉄。
On the other hand, the dephosphorization method of (B) includes: ■Dephosphorization method using Ca0-FeCb-based flux (Japanese Patent Publication No. 57-7212>), ■Alkali metal carbonates, resistant substances, one type of hydroxide, alkaline earth metal Fluoride, a type of chloride, iron.

ニッケルの酸化物の1種、アルカリ土類金属の酸化物、
炭酸塩の1種を含むフラックスを用いて脱燐する方法(
特開昭57−17923> 、■アルカリ土類金属(炭
酸塩、水酸化物)1種以上、アルカリ土類金属のハロゲ
ン化物の1種以上とから成るフラッフススを添加し、さ
らに生成するスラグが硬化することのない量の酸化剤を
添加する方法がある(特開昭58−151416)。
A type of nickel oxide, alkaline earth metal oxide,
A method of dephosphorizing using a flux containing one type of carbonate (
JP-A-57-17923>, ■Fluff soot consisting of one or more alkaline earth metals (carbonates, hydroxides) and one or more alkaline earth metal halides is added, and the resulting slag is hardened. There is a method of adding an oxidizing agent in an amount that does not cause oxidation (Japanese Patent Laid-Open No. 151416/1983).

[発明が解決しようとする課題] Crを含有する鉄合金の脱燐方法のうち、前記(A>還
元脱燐法は■、■いずれも脱燐処理後のスラグ中にCa
3P2が存在することになり、これが (Ca3P2 ) +3H20→3 (CaO) + 
2 P)13で示されるように、大気中のH2Oと反応
しにんにく臭の強い有毒なフォスフイン(p )+3 
>を発生するという問題がある。
[Problems to be Solved by the Invention] Among the dephosphorization methods for iron alloys containing Cr, the above-mentioned (A>reductive dephosphorization method) both (1) and (2) contain Ca in the slag after the dephosphorization treatment.
3P2 will exist, which is (Ca3P2 ) +3H20→3 (CaO) +
2 P) As shown in 13, phosphine (p)+3 is a toxic compound that reacts with H2O in the atmosphere and has a strong garlic odor.
> occurs.

一方、(B)!化脱燐法は前記のような脱燐後のスラグ
処理の問題はなく、しかもコスト的に安価なフラックス
を用いるの″C″処理コストが(A>の還元脱燐法より
安くつくという利点がある。しかしながら、従来の酸化
脱燐法は溶湯の脱燐をより効果的に行なうための条件、
また、処理コストをより安くするためのフラックスや酸
化剤の添加条件等については明らかになっておらず、そ
の改善が望まれていた。
On the other hand, (B)! The chemical dephosphorization method does not have the above-mentioned problem of slag treatment after dephosphorization, and has the advantage that the "C" treatment cost is cheaper than the reductive dephosphorization method (A>) because it uses an inexpensive flux. However, the conventional oxidative dephosphorization method requires certain conditions to more effectively dephosphorize the molten metal.
Furthermore, the conditions for adding flux and oxidizing agents to lower processing costs have not been clarified, and improvements have been desired.

この発明は従来の技術のこのような問題点に鑑みなされ
たものであり、脱燐処理後のスラグ処理上の問題のない
酸化脱燐の中で、最もコストの安いCaO系フラックス
と、酸化剤に安価な酸化鉄を主として用いる溶湯の脱燐
方法において、脱燐処理中にスラグが硬化することがな
いように制御し、脱燐効果を十分に発揮できる条件で脱
燐する方法を提案しようとするものである。
This invention was made in view of the problems of the conventional technology, and uses the lowest cost CaO-based flux and oxidizing agent in oxidative dephosphorization that does not cause problems in slag treatment after dephosphorization. In a molten metal dephosphorization method that mainly uses cheap iron oxide, we would like to propose a method to control the slag so that it does not harden during the dephosphorization process and perform dephosphorization under conditions that can fully demonstrate the dephosphorization effect. It is something to do.

[課題を解決するための手段I Crを含有する溶湯から[P]を酸化脱燐により除去す
るためには、次の2点が重要である。
[Means for Solving the Problems I] In order to remove [P] from a molten metal containing Cr by oxidative dephosphorization, the following two points are important.

■ [Cr]が過大に酸化しない程度の弱い酸素ポテン
シャルをもつスラグによって、溶湯中の[P]をP20
5という酸化物にすることである。
■ [P] in the molten metal is reduced to P20 by using slag that has a weak oxygen potential that does not excessively oxidize [Cr].
5, which is an oxide.

その理由は、酸素ポテンシャルが高い場合には有害な[
P]より有益な[Cr]の方が優先的に酸化され、スラ
グ中に高融点酸化物Cr2O3が増加し、スラグの硬化
を招き、脱燐が物理的に進行しなくなるからである。
The reason is that when the oxygen potential is high, it is harmful [
This is because [Cr], which is more useful than [P], is oxidized preferentially, and the high melting point oxide Cr2O3 increases in the slag, causing hardening of the slag and physically preventing dephosphorization.

■ 脱燐生成物でおる酸性酸化物P205をスラグ中に
安定化させるため、スラグは塩基性酸化物を含有してい
なければならない。塩基性酸化物としては、Na2O、
Li20 、 BaO等があるが、最も一般的で安価な
ものはCaOである。しかし、CaOは伯の塩基性酸化
物に比べ塩基性が低く、高融点(m 、o 2570℃
)である。また、脱燐には酸化力を高くすることが重要
であるが、この場合高融点のCr2O3(m 、 D2
275℃)も生成し、しかもスラグへの溶解度も小さい
ので、スラグが硬化し易い。このためCaOの場合はス
ラグが硬化しない程度で酸化力を高くすることは容易で
ない。
■ The slag must contain a basic oxide in order to stabilize the acidic oxide P205, which is a dephosphorization product, in the slag. Basic oxides include Na2O,
There are Li20, BaO, etc., but the most common and inexpensive one is CaO. However, CaO is less basic than basic oxides and has a high melting point (m, o 2570°C
). In addition, it is important to increase the oxidizing power for dephosphorization, and in this case, Cr2O3 (m, D2
275° C.) and has low solubility in the slag, making it easy for the slag to harden. Therefore, in the case of CaO, it is not easy to increase the oxidizing power to such an extent that the slag does not harden.

そこで、この発明では安価なCaO系フラックスを用い
て脱燐する方法において、脱燐処理中にスラグが硬化す
ることなく脱燐効果を十分に発揮できる条件を見出した
もので、その要旨はCrを5重量%以上含有する鉄合金
をCaO系フラックスと酸化鉄を用いて脱燐するに際し
、脱燐前の溶湯温度を1510℃以上とし、かつ浴面上
に存在する5j02分を10ki/t・溶湯以下となる
ように除滓した後、CaO20〜50重量%、CaF2
25〜80重量%、 Ca(Jz35重量%以下から成
るフラックス20〜120kc3/t・溶湯、炭材1〜
25に’3/t・溶湯、酸化鉄25kg/t・溶湯以下
を用いて処理することを特徴とするものである。
Therefore, in this invention, in a method of dephosphorization using an inexpensive CaO-based flux, we have found conditions that can fully exhibit the dephosphorization effect without hardening the slag during the dephosphorization process. When dephosphorizing an iron alloy containing 5% by weight or more using CaO-based flux and iron oxide, the temperature of the molten metal before dephosphorization is set to 1510°C or higher, and the 5j02 min existing on the bath surface is heated to 10 k/t.molten metal. After removing the sludge to the following, CaO20-50% by weight, CaF2
Flux consisting of 25-80% by weight, Ca (Jz 35% by weight or less) 20-120kc3/t, molten metal, carbon material 1-
It is characterized in that it is processed using 25 kg/t of molten metal and 25 kg/t of iron oxide or less of molten metal.

[作  用] 脱燐前の溶湯温度を1510℃以上と限定したのは、こ
れより低い温度ではフラックスの滓化が悪く脱燐反応が
進みにくいためである。
[Function] The reason why the temperature of the molten metal before dephosphorization is limited to 1510° C. or higher is because at a temperature lower than this, the flux is poorly formed into slag and the dephosphorization reaction is difficult to proceed.

なお、いったんフラックスが滓化すれば処理後の温度は
1300°C程度でも問題ない。
Note that once the flux becomes a slag, there is no problem even if the temperature after treatment is about 1300°C.

また、実際にはフラックスの添加により溶湯温度は10
0℃以上低下するので、処理前温度は1510°C以上
に高める必要がある。
Also, in reality, the temperature of the molten metal is 10% due to the addition of flux.
Since the temperature decreases by 0°C or more, it is necessary to raise the pre-treatment temperature to 1510°C or more.

脱燐前の溶湯温度の上限は特に限定するものではないが
、耐火物溶損を少なくすることおよび、フラックス添加
後の溶湯温度が高すぎ脱燐が悪くなることを防止する面
から1780℃以下とするのが好ましい。
The upper limit of the temperature of the molten metal before dephosphorization is not particularly limited, but it is set to 1780°C or less in order to reduce the erosion of refractories and to prevent the temperature of the molten metal after addition of flux from becoming too high and deteriorating the dephosphorization. It is preferable that

また、処理前の浴面上に存在する5j02分を10kg
/t・溶湯以下となるように除滓するのは、5j02分
が10kv/t・溶湯を超えて多くなるとスラグの塩基
性が低下し、脱燐反応が進みにくいためである。
In addition, 10 kg of 5j02 that exists on the bath surface before treatment
The reason why the slag is removed so that it is less than 10 kv/t.molten metal is that if 5j02 min exceeds 10 kv/t.molten metal, the basicity of the slag will decrease and the dephosphorization reaction will be difficult to proceed.

なお5j02分が少ない分は何ら差しつかえない。There is no problem with the short 5j02 minutes.

特にCr鉱石を溶湯に溶かし、Cを酸素で溶融還元し、
Crを含む鉄合金を溶製する場合、溶融還元後のスラグ
(si、o2を含む)を除滓する必要があり、また通常
の電気炉−AO[)操業でも脱燐を進行し易くするため
に[si]を0.1fflffi%程度以下まで脱珪し
た■4の5j02を多吊含むスラグの除滓は必要である
In particular, Cr ore is dissolved in molten metal, C is melted and reduced with oxygen,
When melting iron alloys containing Cr, it is necessary to remove slag (including SI and O2) after melting and reduction, and also to facilitate dephosphorization even in normal electric furnace - AO [) operation. It is necessary to remove the slag containing a large amount of 5j02 of (4) which has been desiliconized to below about 0.1fffffi% [si].

次に、この発明のフラックスについて詳述する。Next, the flux of this invention will be explained in detail.

Crを含有する溶湯中のPをP 205といった形に酸
化するためには、まず酸化剤が必要であり、脱燐するた
めにはこのP2O5を安定化させる塩基性酸化物が必要
である。
In order to oxidize P in a molten metal containing Cr into a form such as P205, an oxidizing agent is first required, and in order to dephosphorize it, a basic oxide that stabilizes this P2O5 is required.

塩基性酸化物としては、Na2O,Li2O,BaO等
があるが、最も一般的なものは前記したとおりCaOで
ある。従来は特にCr含有溶湯のようにCr(7)酸化
ロスが少ない状態で脱燐するような低い酸素ポテンシャ
ルの脱燐には、CaOより強塩基性のLi2O源となる
ものが必要であった。しかし、Li2CO3といったも
のは高価である。
Basic oxides include Na2O, Li2O, BaO, etc., but the most common one is CaO as described above. Conventionally, dephosphorization at a low oxygen potential, such as in a Cr-containing molten metal in which oxidation loss of Cr(7) is small, requires a source of Li2O that is more basic than CaO. However, materials such as Li2CO3 are expensive.

そこで、この発明は安価なCaO系フラックスで脱燐を
可能とするためのフラックスとして、CaO20〜50
重量%、CaF225〜80重量%、 CaCb 35
重量%以下から成るフラックスを用いることとした。
Therefore, this invention uses CaO20-50 as a flux to enable dephosphorization with an inexpensive CaO-based flux.
Weight %, CaF225-80 weight%, CaCb 35
It was decided to use a flux consisting of less than % by weight.

すなわち、塩基性酸化物としてのCaO量は多い程好ま
しいが、他の媒溶剤として使用するCaFzあるいはC
aCbおよび、酸化物として使用する酸化鉄等、ざらに
はSiO2の存在する状態で、CaOが滓化し溶融スラ
グを形成することが必要であるため、フラックス中のC
aO量は50重量%以下に制限される。50重但%を超
えると滓化しないからである。他方、フラックス中のC
aOの下限は脱燐レベルで制限される。
In other words, the larger the amount of CaO as the basic oxide, the better, but the amount of CaFz or C used as other solvents is
Since aCb and iron oxide used as an oxide, etc., need to turn into slag and form molten slag in the presence of SiO2, C in the flux is
The amount of aO is limited to 50% by weight or less. This is because if it exceeds 50%, it will not become a slag. On the other hand, C in the flux
The lower limit of aO is limited by the level of dephosphorization.

つまり、CaOが20重量%未満ではスラグの塩基性が
低下し、効果的な脱燐が進行しなくなるので、CaOの
含有量は20〜50重最%が好適である。
That is, if CaO is less than 20% by weight, the basicity of the slag will decrease and effective dephosphorization will not proceed, so the CaO content is preferably 20 to 50% by weight.

また、媒溶剤としてCaF2 、 CaCf2を選択し
たのは、以下に示す理由による。
Moreover, the reason why CaF2 and CaCf2 were selected as the solvent is as follows.

第1図はCaOを30重量%と固定し、CaF2とCa
(Jzを変化させた場合の、酸化剤を含まない場合のス
ラグの溶融を示す図である。
Figure 1 shows CaO fixed at 30% by weight, CaF2 and Ca
(This is a diagram showing the melting of slag in the case of not containing an oxidizing agent when Jz is changed.

CaF2にCaCR2が加わった場合、スラグの融点は
低下する。この図より、CaF21るいはCaCλ2単
独より、CaF2とCaCR2を併用した方が媒溶剤と
しての効果が大きいことがわかる。
When CaCR2 is added to CaF2, the melting point of the slag decreases. This figure shows that the combined use of CaF2 and CaCR2 is more effective as a solvent than CaF21 or CaCλ2 alone.

なお、フラックス中のCaF2量を25〜80重量%と
限定したのは、25手但%未満では媒溶剤としての効果
が少なく、高価なCaCbを例えば35重用量以上と多
く配合する必要があるし、他方80重伍%を超えると、
Ca0分が少なくなり脱燐が悪化するためである。
The reason why the amount of CaF2 in the flux is limited to 25 to 80% by weight is because if it is less than 25% by weight, the effect as a solvent is low, and it is necessary to mix in a large amount of expensive CaCb, for example, 35% by weight or more. , on the other hand, if it exceeds 80%,
This is because dephosphorization deteriorates as Ca0 min decreases.

また、フラックス中のCaCf2聞を35重量%以下と
限定したのは、CaCfzがこれ以上ではこの媒溶剤の
コストが高くつき、この場合むしろCaFzを併用し、
CaCR2を35重量%とした方が得策であるためでお
る。CaCf2の下限は特に限定するものではないが、
CaF2と併用による時の媒溶剤効果を高める点から5
単量%以上とするのが好ましい。
In addition, the reason why the amount of CaCf2 in the flux is limited to 35% by weight or less is because if CaCfz is more than this, the cost of this solvent will be high, so in this case, it is preferable to use CaFz in combination,
This is because it is better to set CaCR2 to 35% by weight. Although the lower limit of CaCf2 is not particularly limited,
5 from the point of enhancing the solvent effect when used in combination with CaF2
It is preferable that the amount is at least % monomer.

上記フラックスの添加量を20〜120 kg/t・溶
湯に限定したのは、20kCJ/t・溶湯未満では高い
脱燐効果が得られず、他方120 kg/t・溶湯を超
えると処理温度の降下が大きくなりすぎるためである。
The reason for limiting the amount of flux added above to 20 to 120 kg/t/molten metal is that if it is less than 20 kCJ/t/molten metal, a high dephosphorization effect cannot be obtained, whereas if it exceeds 120 kg/t/molten metal, the processing temperature will drop. This is because it becomes too large.

この発明において、酸化剤として酸化鉄(鉄鉱石、スケ
ール、ダスト)を選択したのは、CaOと共に1200
°Cという低融点のカルシウムフェライトを作り、Ca
Oの滓化を促進するためである。
In this invention, iron oxide (iron ore, scale, dust) was selected as the oxidizing agent because of the 1200
Calcium ferrite with a low melting point of °C is made, and Ca
This is to promote slag formation of O.

この酸化鉄は溶湯中のC7を一部Cr2O3にし、この
Cr2O3も酸化剤として働く。
This iron oxide converts some of the C7 in the molten metal into Cr2O3, and this Cr2O3 also acts as an oxidizing agent.

第2図に、CaO30重但%−CaCRz 35重量%
−CaF235重量%フラックスにより、16重足%C
r溶湯を脱燐処理した後のスラグ中のT−FeとCr2
O3の関係を示す。
Figure 2 shows 30% by weight of CaO-35% by weight of CaCRz.
- CaF235 wt% flux, 16 wt% C
r T-Fe and Cr2 in the slag after dephosphorizing the molten metal
The relationship between O3 is shown.

この図より、(T−Fe)と(Cr203)は正の相関
があることがわかる。また、添加する酸化鉄量が多い程
、(T−Fe)と(CrzOs)は共に多くなることが
わかる。
From this figure, it can be seen that there is a positive correlation between (T-Fe) and (Cr203). Furthermore, it can be seen that as the amount of iron oxide added increases, both (T-Fe) and (CrzOs) increase.

また、同図に高温顕微鏡により測定した脱燐処理後のス
ラグの融点を示す。
The figure also shows the melting point of the slag after dephosphorization, measured using a high-temperature microscope.

脱燐処理温度を1300〜1510°Cとした場合、ス
ラグの融点がこれ以下となるためには、 (T −Fe) < 4重量% (Cr203)く6〜8重量% である。これ以上(CrzOs)が増加するとスラグが
硬化し、物理的に反応が進行しなくなる。
When the dephosphorization treatment temperature is 1300 to 1510°C, in order for the melting point of the slag to be lower than this, (T-Fe) < 4% by weight (Cr203) and 6 to 8% by weight. If (CrzOs) increases more than this, the slag will harden and the reaction will not physically proceed.

他の配合比のCaO系フラックスは大体において、Ca
C&235重徂%−〇aF235重量%フラックスより
高い融点をもっているので、上記の酸化剤成分の組成の
上限はやや低くなると考えられる。
CaO-based fluxes with other blending ratios generally contain Ca
Since it has a higher melting point than the C&235wt%-○aF235wt% flux, it is thought that the upper limit of the composition of the above-mentioned oxidizing agent component is slightly lower.

ここで、脱燐処理中にこの酸化剤成分の量をコンミルロ
ールするためには、炭材をCaO系フラックスに予め添
加するか、おるいはCaO系フラックスの添加後、滓化
してから添加することが有効でおる。さらに、脱燐処理
の進行に合せて分投することも効果的である。
In order to reduce the amount of the oxidizing agent component during the dephosphorization process, the carbonaceous material must be added to the CaO-based flux in advance, or after the addition of the CaO-based flux, it must be slag-formed before being added. It is effective to do so. Furthermore, it is also effective to dispense the water in portions as the dephosphorization process progresses.

これによって、スラグ中に生成した過剰のCr2O3を
炭材により還元し、スラグ中の(Cr2o3)をある濃
度範囲内に抑え、スラグの滓化を維持することができる
As a result, excess Cr2O3 generated in the slag can be reduced by the carbon material, the (Cr2o3) in the slag can be suppressed within a certain concentration range, and the slag formation of the slag can be maintained.

第3図に、溶湯のCとスラグのCr2O3の関係を示す
FIG. 3 shows the relationship between C in the molten metal and Cr2O3 in the slag.

この図より[C]が低くなると(Cr203)は急激に
増大する傾向にあるが、炭材を添加することで同図の黒
丸プロットに示すように、(Cr20a)を減少させる
ことができ、スラグの滓化を維持することができた。
This figure shows that (Cr203) tends to increase rapidly when [C] decreases, but by adding carbonaceous material, (Cr20a) can be decreased as shown in the black circle plot in the same figure, and the slag We were able to maintain the slag formation.

添加すべき酸化鉄および炭材の量は、溶湯のC1炉の密
閉性、脱燐処理の撹拌力、処理温度により変わる。
The amounts of iron oxide and carbonaceous material to be added vary depending on the sealability of the C1 furnace for the molten metal, the stirring power of the dephosphorization treatment, and the treatment temperature.

例えば、[C]が低い場合、酸化鉄を多量添加するとス
ラグ中のCr203が急激に増加し、そのため炭材を多
量に添加しなければならない。
For example, when [C] is low, adding a large amount of iron oxide causes a rapid increase in Cr203 in the slag, and therefore a large amount of carbonaceous material must be added.

また、炉の密閉性が不十分であると脱燐処理中に空気の
巻込みによる[Cr]の空気酸化が起り、スラグ中のC
r2O3が増加するため、酸化鉄は少但で十分であり、
逆に炭材は多聞添加する必要がある。
In addition, if the sealing of the furnace is insufficient, air oxidation of [Cr] will occur due to the entrainment of air during the dephosphorization process, resulting in carbon in the slag.
Since r2O3 increases, less iron oxide is sufficient;
On the other hand, it is necessary to add a large amount of carbonaceous material.

また、脱燐処理において撹拌力が不十分な場合、スラグ
中に生成したCr2O3分が溶湯のCにより還元されに
くく、(Cr203)が増加する傾向となるので、炭材
を多量添加しなければならない。
In addition, if the stirring power is insufficient during the dephosphorization process, the Cr2O3 component generated in the slag is difficult to be reduced by the C of the molten metal, and (Cr203) tends to increase, so a large amount of carbonaceous material must be added. .

さらに、処理温度が低い場合、(Cr203)が生成し
易いので、添加する酸化鉄量を抑え炭材を多量添加しな
ければならない。
Furthermore, if the processing temperature is low, (Cr203) is likely to be generated, so it is necessary to suppress the amount of iron oxide added and add a large amount of carbon material.

例えば、10t AO[)炉において、処理温度150
0℃、[C]=3%の場合、酸化鉄20kLj/t・溶
湯の添加に対し炭材を10に’j/t・溶湯添加するこ
とにより、(Cr20dを6〜8重量%以下に抑制する
ことが可能となる。
For example, in a 10t AO[) furnace, the processing temperature is 150
At 0°C and [C] = 3%, by adding carbonaceous material to 10'j/t/molten metal for the addition of iron oxide 20kLj/t/molten metal, (Cr20d is suppressed to 6 to 8% by weight or less. It becomes possible to do so.

以上の結果より、脱燐処理温度により酸化鉄および炭材
の添加量は変わるが、酸化鉄の上限は溶鉄中のCが飽和
で空気の巻込みの少ない炉による脱燐処理の場合、スラ
グが硬化しない25 kq / t・溶湯が好ましく、
また下限は特に限定するものではないが、[C]が低く
空気の巻込み量の多い炉による脱燐処理の場合[Cr]
が空気酸化され、脱燐処理が進行するに伴い自然にスラ
グ中にCr203が増加するので、脱燐処理初期の酸化
力を与え得る程度の添加■で十分である。
From the above results, the amount of iron oxide and carbonaceous material added varies depending on the dephosphorization temperature, but the upper limit of iron oxide is saturated when C in the molten iron is saturated and slag is 25 kq/t molten metal that does not harden is preferable,
Although the lower limit is not particularly limited, in the case of dephosphorization treatment using a furnace with a low [C] and a large amount of air entrainment, [Cr]
is oxidized in the air, and Cr203 naturally increases in the slag as the dephosphorization process progresses, so it is sufficient to add Cr203 to the extent that it can provide oxidizing power at the initial stage of the dephosphorization process.

また、炭材の添加量の上限は最大の場合でも酸化鉄と同
じ25kg/t・溶湯で十分であり、他方下限はスラグ
硬化防止のため1kg/t・溶湯以上必要とする。
Furthermore, the upper limit of the amount of carbonaceous material added is the same as iron oxide, 25 kg/t molten metal, which is sufficient even in the maximum case, while the lower limit is 1 kg/t molten metal or more in order to prevent slag hardening.

なお、炭材の粒径については特に限定するものではない
が、細粒すぎるとスラグ中のCr2O3の還元が急激に
起り、酸化力が極端に低下してしまうことがある。さら
に、スラグ中のCr2O3の還元よりも溶湯の加炭に使
われてしまう傾向がある。このため、炭材の粒径は1m
/m以上が望ましい。また、炭材には0粒を焼き固めた
ペレット状のものでもよい。
The particle size of the carbonaceous material is not particularly limited; however, if the particles are too fine, reduction of Cr2O3 in the slag may occur rapidly, and the oxidizing power may be extremely reduced. Furthermore, Cr2O3 in the slag tends to be used for carburizing the molten metal rather than reducing it. Therefore, the particle size of the carbon material is 1 m
/m or more is desirable. Further, the carbonaceous material may be in the form of pellets made by baking and hardening zero grains.

また、この発明において、溶湯のCは予め3〜4重量%
に調整しておくことが望ましい。すなわら、3重量%未
満では脱燐率が極端に低下し、他方4重量%を超えると
脱炭コストの増加、耐火物溶損等の問題が生ずるためで
ある。
In addition, in this invention, the C content of the molten metal is 3 to 4% by weight in advance.
It is desirable to adjust it to That is, if it is less than 3% by weight, the dephosphorization rate will be extremely reduced, while if it exceeds 4% by weight, problems such as increased decarburization cost and melting of refractories will occur.

第4図は脱燐におよぼす[C]の影響を示す図である。FIG. 4 is a diagram showing the influence of [C] on dephosphorization.

この図より、[C]が高いはど脱燐率が高くなり、[C
]が低くなると脱燐は急激に悪化することがわかる。ま
た、50重量%近い脱燐率を上げるためには[C]を3
重3重量上に高めることが必要であることがわかる。し
かし、[C]が44重%を超えると、加炭が進みにくく
作業時間が長時間かかり、また溶鉄中にクロムカーバイ
ドが析出し、溶湯表面が硬化することがある。ざらに、
騰*ffi理後の脱炭過程に負担がかがる。また、同図
黒丸プロットに示すように、[C]は3〜4重匿%で5
0%近い脱燐率が得られることがわかる。
From this figure, the higher the [C], the higher the dephosphorization rate;
] It can be seen that dephosphorization deteriorates rapidly as the value decreases. In addition, in order to increase the dephosphorization rate by nearly 50% by weight, [C] should be added to 3
It turns out that it is necessary to increase the weight by 3 weights. However, when [C] exceeds 44% by weight, carburization is difficult to proceed and it takes a long time to work, and chromium carbide may precipitate in the molten iron, causing the surface of the molten metal to harden. Roughly,
This puts a burden on the decarbonization process after decarbonization. In addition, as shown in the black circle plot in the same figure, [C] is 5% at 3 to 4 times concentration.
It can be seen that a dephosphorization rate of nearly 0% can be obtained.

したがって、処理前の溶湯のCは3〜4重量%が好適で
ある。
Therefore, the C content of the molten metal before treatment is preferably 3 to 4% by weight.

この発明方法を実施するための装置としては、AOD炉
あるいは、炉底より撹拌ガスを導入できる炉を用いるこ
とができる。また、取鍋でArバブリング撹拌、インペ
ラー撹拌を行なって処理することも可能である。
As an apparatus for carrying out the method of this invention, an AOD furnace or a furnace into which stirring gas can be introduced from the bottom of the furnace can be used. It is also possible to perform Ar bubbling agitation or impeller agitation in a ladle.

フラックスの添加方法としては、粒状のものを浴面に上
置きする方法で添加してもよいが、インジェクション法
により浴中に添加する方が滓化性が向上し良好な脱燐が
可能である。
Flux can be added by placing granular flux on the bath surface, but it is better to add it into the bath by injection method, which improves slag formation and allows better dephosphorization. .

また、酸化鉄の添加方法としては、初期に一括投入して
もよいが、特に[C]が低い含Cr溶湯の場合(Cr2
03)が過激に生じスラグが硬化するのをするのを防止
するためには分投するのが好ましい。
In addition, iron oxide may be added all at once at the initial stage, but especially in the case of Cr-containing molten metal with low [C] (Cr2
In order to prevent excessive formation of 03) and hardening of the slag, it is preferable to dispense in portions.

[実 施  例] Cr含有鉄合金10tonを電気炉で大気溶解し、へ〇
0炉に注入後1600℃に調整した溶湯浴面の5LOz
分を10kiに除滓した後、脱燐処理した結果を第1表
に示す。
[Example] 10 tons of Cr-containing iron alloy was melted in the atmosphere in an electric furnace, and after being poured into a 〇0 furnace, the surface of the molten metal bath was adjusted to 1600°C.
Table 1 shows the results of dephosphorization treatment after removing slag to 10 ki.

なお、第1表には比較のため、Cベレットを添加せずに
、試験No、1と同様に脱燐処理した結果を試験−3に
示す。
For comparison, Table 1 shows the results of the dephosphorization treatment in the same manner as Test No. 1 without adding C pellets in Test-3.

本発明例の試験N0.1ではCaO40重量%−CaF
260重量%からなるフラックス1トンとCペレット1
00klを同時に添加し、Arガスで10分間撹拌しな
からFe2O3を25に9ずっ10o均分投し脱燐処理
した。
In test No. 1 of the present invention example, CaO 40% by weight - CaF
1 ton of flux consisting of 260% by weight and 1 C pellet
00 kl was added at the same time, and after stirring with Ar gas for 10 minutes, Fe2O3 was added in equal portions of 9 x 10 degrees to 25 to perform dephosphorization treatment.

処理後温度は1380℃であった。その後、スラグを除
滓し、通常精錬工程に入った。その結果、48%の脱燐
率と80%を超える脱硫率が得られた。
The temperature after treatment was 1380°C. After that, the slag was removed and the regular refining process started. As a result, a dephosphorization rate of 48% and a desulfurization rate of over 80% were obtained.

試験No、2ではCaO30重量%−CaFz35重量
%−Ca(J235i1%からなるフラックス1トンと
Cベレット100kiを同時に添加し、Arガスで15
分間撹拌しなからFe203を25に9ずつ100kq
分投し脱燐処理した。処理後温度は1400℃であった
。その後、スラグを除滓し、通常精錬工程に入った。そ
の結果、65%の脱燐率と80%を超える脱硫率が得ら
れた。
In test No. 2, 1 ton of flux consisting of 30 wt% CaO-35 wt% CaFz-Ca (1% J235i) and 100 kg of C pellet were added at the same time, and Ar gas
After stirring for a minute, add 25 to 9 of Fe203 to 100 kq.
It was distributed and dephosphorized. The temperature after treatment was 1400°C. After that, the slag was removed and the regular refining process started. As a result, a dephosphorization rate of 65% and a desulfurization rate of over 80% were obtained.

これに対し、比較例の試験No、3では脱燐スラグは処
理中に若干硬くなり、脱燐率は36%であった。
On the other hand, in Comparative Example Test No. 3, the dephosphorization slag became slightly hard during the treatment, and the dephosphorization rate was 36%.

以下余白 (発明の効果1 以上説明したごとく、この発明方法によれば、有害なス
ラグを生ずることもなく、簡単カリ安価に、しかも高効
率で、Crを含む鉄合金の脱燐を行なうことができる。
Blank space below (Effect of the invention 1 As explained above, according to the method of this invention, it is possible to dephosphorize iron alloys containing Cr easily, inexpensively, and with high efficiency without producing harmful slag. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法におけるフラックスの溶融温度を
示す図である。 第2図はスラグ中のCr203とT−Feの関係、およ
びスラブの溶融温度を示す図である。 第3図は溶鉄中の[C]とスラグのCrzOsの関係を
示す図である。 第4図は脱燐率におよぼず[C]の影響を示す図である
。 出願人  住友金屈工業株式会社 第1図 第2図 (Cr2O5) (重量%〕 第3図 第4図 〔C)(311%)
FIG. 1 is a diagram showing the melting temperature of flux in the method of this invention. FIG. 2 is a diagram showing the relationship between Cr203 and T-Fe in the slag and the melting temperature of the slab. FIG. 3 is a diagram showing the relationship between [C] in molten iron and CrzOs in slag. FIG. 4 is a diagram showing the influence of [C] on the dephosphorization rate. Applicant: Sumitomo Kinku Kogyo Co., Ltd. Figure 1 Figure 2 (Cr2O5) (% by weight) Figure 3 Figure 4 [C] (311%)

Claims (1)

【特許請求の範囲】[Claims] Crを5重量%以上含有する鉄合金の溶湯を撹拌しつつ
フラックスを用いて脱燐する方法において、脱燐前の溶
湯温度を1510℃以上とし、かつ浴面上に存在するS
iO_2分を10kg/t・溶湯以下となるように除滓
した後、CaO_20〜50重量%、CaF_225〜
80重量%、CaCl_235重量%以下から成るフラ
ックス20〜120kg/t・溶湯、炭材1〜25kg
/t・溶湯、酸化鉄25kg/t・溶湯以下を用いて処
理することを特徴とするCrを含む鉄合金の脱燐方法。
In a method of dephosphorizing a molten iron alloy containing 5% by weight or more of Cr using flux while stirring, the temperature of the molten metal before dephosphorization is set to 1510°C or higher, and the S present on the bath surface is
After removing the sludge so that iO_2 min becomes 10 kg/t・molten metal or less, CaO_20~50% by weight, CaF_225~
Flux consisting of 80% by weight, CaCl_235% by weight or less 20-120kg/t, molten metal, 1-25kg of carbon material
A method for dephosphorizing an iron alloy containing Cr, characterized in that the treatment is carried out using less than 25 kg/t of molten metal and iron oxide of 25 kg/t/t of molten metal.
JP2991688A 1988-02-10 1988-02-10 Method for dephosphorizing iron alloy containing Cr Expired - Fee Related JPH068453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2991688A JPH068453B2 (en) 1988-02-10 1988-02-10 Method for dephosphorizing iron alloy containing Cr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2991688A JPH068453B2 (en) 1988-02-10 1988-02-10 Method for dephosphorizing iron alloy containing Cr

Publications (2)

Publication Number Publication Date
JPH01205024A true JPH01205024A (en) 1989-08-17
JPH068453B2 JPH068453B2 (en) 1994-02-02

Family

ID=12289318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2991688A Expired - Fee Related JPH068453B2 (en) 1988-02-10 1988-02-10 Method for dephosphorizing iron alloy containing Cr

Country Status (1)

Country Link
JP (1) JPH068453B2 (en)

Also Published As

Publication number Publication date
JPH068453B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JP2897640B2 (en) Dephosphorization method of high chromium high manganese molten alloy iron
JPH0246647B2 (en)
WO2003029497A1 (en) Method for dephsophorization of molten irona
JPS627807A (en) Dephosphorizing method for molten iron
JPH01205024A (en) Dephosphorization method for ion alloy containing cr
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPS6031885B2 (en) Dephosphorization method for high chromium molten steel
JPS6212301B2 (en)
JP3297997B2 (en) Hot metal removal method
JPS6121285B2 (en)
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JP2856106B2 (en) Hot metal desulfurization method
JPH111714A (en) Steelmaking method
SU1071645A1 (en) Method for making steel
JPH07109507A (en) Method for pretreating molten iron
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron
JPH01215917A (en) Method for melting stainless steel
JP2002212615A (en) Method for dephosphorizing molten iron
CA1075012A (en) Process for dephosphorizing molten pig iron
JPH03122210A (en) Two step counterflow refined steelmaking method using duplex converters
JPH0676613B2 (en) Dephosphorization method of high manganese molten iron
JPH0798970B2 (en) Dephosphorization method for molten iron alloy containing chromium
JP2000178627A (en) Pretreatment of molten iron
JPS6237686B2 (en)
JPS58113308A (en) Lime-base refining flux for simultaneous dephosphorization and desulfurization of molten iron and using method for said flux

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees