JPH01204A - Method for producing low melting point metal powder - Google Patents

Method for producing low melting point metal powder

Info

Publication number
JPH01204A
JPH01204A JP62-154937A JP15493787A JPH01204A JP H01204 A JPH01204 A JP H01204A JP 15493787 A JP15493787 A JP 15493787A JP H01204 A JPH01204 A JP H01204A
Authority
JP
Japan
Prior art keywords
melting point
low melting
oil
powder
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-154937A
Other languages
Japanese (ja)
Other versions
JPS64204A (en
Inventor
奥村 濶
日高 謙介
Original Assignee
福田金属箔粉工業株式会社
Filing date
Publication date
Application filed by 福田金属箔粉工業株式会社 filed Critical 福田金属箔粉工業株式会社
Priority to JP62-154937A priority Critical patent/JPH01204A/en
Publication of JPS64204A publication Critical patent/JPS64204A/en
Publication of JPH01204A publication Critical patent/JPH01204A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素量の少ない球状の低融点金属粉末の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing spherical low-melting point metal powder with a low oxygen content.

〔従来の技術〕[Conventional technology]

低融点金属粉末の用途は電子機器、通信機器の回路接続
に用いられているが、この低融点金属粉末の特性として
、粉末表面が酸化していないこと、及び球状であること
が要求される。
Low melting point metal powder is used to connect circuits in electronic devices and communication devices, but the characteristics of this low melting point metal powder are that the powder surface is not oxidized and that it is spherical.

従来、低融点金属粉末の製造方法としては一般には低融
点金属を大気中で溶解して水中に落下させて冷却せしめ
る方法。又は、噴霧法によりチャンバー内に噴霧して冷
却せしめる方法等により行われている。しかしながら、
低融点金属を大気中で溶解した場合、溶湯が酸化するこ
とおよび、粉末を大気中又は水中で冷却することにより
、その表面が酸化する欠点があった。粉末表面が酸化す
ると表面張力が小さくなって粉末形状が不規則状又は涙
滴状になり球状の粉末が得られないため好ましい方法で
はない。
Conventionally, the method for producing low-melting point metal powder is generally to melt the low-melting point metal in the atmosphere and cool it by dropping it into water. Alternatively, a spray method is used to cool the chamber by spraying it into the chamber. however,
When a low melting point metal is melted in the air, the molten metal oxidizes, and when the powder is cooled in the air or water, its surface oxidizes. This is not a preferable method because if the powder surface is oxidized, the surface tension becomes low and the powder shape becomes irregular or teardrop-shaped, making it impossible to obtain a spherical powder.

〔発明が解決しまうとする問題点〕[Problems that the invention is supposed to solve]

本発明は前記従来の技術の問題点に留意してなされたも
のであり、低融点金属粉末を容易にかつ簡単に製造する
ことを種々検討した結果、油中で低融点金属を溶解した
後、粉末化して油中又は油被膜に覆われた状態で冷却す
れば酸素量の少ない粉末で、なおかつ球状の粉末が製造
し得る知見にもとすき本発明を完成したものである。
The present invention has been made in consideration of the problems of the prior art, and as a result of various studies on how to easily and simply produce low melting point metal powder, after melting the low melting point metal in oil, The present invention was completed based on the knowledge that a spherical powder with a low oxygen content can be produced by pulverizing the powder and cooling it in oil or while covered with an oil film.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は低融点金属を引火点以下に加熱した鉱油
系又は油脂系の油の中で溶解し、次いで油と低融点金属
の溶湯が共存する状態で粉砕することを特徴とする低融
点金属粉末の製造方法である。
That is, the present invention is characterized in that a low melting point metal is dissolved in mineral oil or oil based oil heated below its flash point, and then pulverized in a state where the oil and the molten metal of the low melting point metal coexist. This is a method for producing metal powder.

〔作用〕[Effect]

本発明に於いて、低融点金属を溶解する場合、非酸化性
の雰囲気で溶解して、なおかつ、非酸化性の雰囲気で冷
却することは重要なことである。
In the present invention, when melting a low melting point metal, it is important to melt it in a non-oxidizing atmosphere and to cool it in a non-oxidizing atmosphere.

この粉末の形状゛を球状化することには低融点金属の冷
却速度も重要な要因である。
The cooling rate of the low melting point metal is also an important factor in making the powder spherical in shape.

本発明では、酸化量の少ない球状の低融点金属粉末を得
ることが目的であることから低融点金属を溶解して粉末
に到るまで、空気と接触しないことが必要である。粉末
表面が酸化すると表面張力が小さくなって不規則状又は
、涙滴状の粉末になり球状の粉末が得られない。溶湯を
粉末化して急冷した場合、不規則形状で凝固するので球
状の粉末が得られないので好ましくない。
In the present invention, since the purpose is to obtain spherical low-melting point metal powder with a small amount of oxidation, it is necessary to avoid contact with air until the low-melting point metal is melted to form a powder. When the powder surface is oxidized, the surface tension decreases, resulting in an irregular or teardrop-shaped powder, making it impossible to obtain a spherical powder. When the molten metal is powdered and rapidly cooled, it is not preferable because it solidifies in an irregular shape, making it impossible to obtain a spherical powder.

本発明に使用する油は鉱油系の場合、スピンドル油、熱
媒体油、熱処理油等が使用でき、油脂系の場合、なたね
油、サラダ油、ゴマ油、脂肪酸等の使用が可能である。
When the oil used in the present invention is mineral oil-based, spindle oil, heat transfer oil, heat-treated oil, etc. can be used, and when oil-based, rapeseed oil, salad oil, sesame oil, fatty acid, etc. can be used.

これらの油を引火点以下に加熱して、低融点金属を油中
で溶解することにより溶解中の酸化防止が出来る。低融
点金属の溶湯を粉砕する方法は種々考えられるが、先ず
油と共存する低融点金属の溶湯を粉末化に到らしめるよ
うに複数の羽根の付いた撹拌機を溶湯中に導入して撹拌
することにより、低融点金属が球状の粉末に到る。油中
にできた球状の粉末は容器中で冷却するか又は、冷却さ
れた油を投入することにより、低融点金属の凝固点以下
まで温度を下げる。できた粉末は酸素量が少ないために
表面張力が大きくなり、球状の粉末が得られる。又、低
融点金属の溶湯が共存する状態で噴霧法により粉末化す
ることも可能である。加熱した油中で溶解した低融点金
属を油と共存する状態で圧縮空気を使用して噴霧するこ
とにより低融点金属粉末は油被膜に覆われなから噴霧冷
却されるので粉末の酸化防止ができる。又、油被膜に覆
われているので低融点金属の凝固速度が緩慢になり、球
形化が促進され、その結果酸素量の少ない球状の粉末が
得られる。さらには、噴霧法に変えて回転ディスク法を
適用することもできる。加熱した油中で溶解した低融点
金属を油と共存する状態で回転円板上に投入して遠心力
により低融点金属を粉砕する。粉砕された低融点金属粉
末は油被膜に覆われてする状態で冷却されるので酸素量
の少ない球状の粉末が得られる。
By heating these oils below their flash point and dissolving the low melting point metal in the oil, oxidation can be prevented during dissolution. There are various methods for pulverizing the molten metal of low melting point metal, but first, a stirrer with multiple blades is introduced into the molten metal and stirred so that the molten metal of low melting point coexisting with oil becomes powder. By doing so, the low melting point metal becomes a spherical powder. The temperature of the spherical powder formed in the oil is lowered to below the freezing point of the low melting point metal by cooling it in a container or by pouring cooled oil into it. The resulting powder has a high surface tension due to the low oxygen content, resulting in a spherical powder. Further, it is also possible to powderize by a spraying method in the presence of a molten metal of a low melting point metal. By spraying the low melting point metal dissolved in heated oil using compressed air in a state where it coexists with the oil, the low melting point metal powder is not covered with an oil film and is spray cooled, which prevents oxidation of the powder. . Furthermore, since it is covered with an oil film, the solidification rate of the low melting point metal is slowed down, promoting spherical formation, and as a result, a spherical powder with a low oxygen content is obtained. Furthermore, a rotating disk method can also be applied instead of the spray method. A low melting point metal dissolved in heated oil is placed on a rotating disk in a state where it coexists with the oil, and the low melting point metal is pulverized by centrifugal force. Since the pulverized low-melting metal powder is cooled while being covered with an oil film, a spherical powder with a low oxygen content is obtained.

以下、本発明の代表的な実施例および比較側番示す。Typical examples of the present invention and comparative side numbers are shown below.

〔実施例〕〔Example〕

実施例(1) 油脂系のサラダ油を62のステンレス容器の中に22を
入れて200°Cに加熱した。次に98°Cで溶解する
Sn 15wtχ、Bi’ 52 wtχ、残部pbの
合金1kgを油中に投入して溶解した。溶湯中に3枚羽
根を有するシャフトを導入して1BOrpmの速度で1
分間撹拌させた。撹拌を続けながら油を自然冷却して粉
末を凝固させた0次いで油と粉末を分隔し、得られた粉
末をアセトンで脱脂洗浄して粉末表面の油を除去した。
Example (1) Fat-based salad oil was placed in a 62 stainless steel container and heated to 200°C. Next, 1 kg of an alloy of Sn 15wtχ, Bi' 52wtχ, and the balance PB, which melts at 98°C, was poured into oil and dissolved. A shaft with three blades is introduced into the molten metal and the
Stir for a minute. While stirring, the oil was naturally cooled to solidify the powder.Then, the oil and powder were separated, and the resulting powder was degreased and washed with acetone to remove the oil on the surface of the powder.

このようにして得られた粉末の粒径は420〜149μ
隅、アスペクト比1〜1.1の球状であり、酸素量は5
0ppn+であった。
The particle size of the powder thus obtained is 420-149μ
The corner is spherical with an aspect ratio of 1 to 1.1, and the amount of oxygen is 5
It was 0ppn+.

実施例(2) 油脂系のサラダ油を32のステンレス容器の中に21を
入れて200℃に加熱し、187°Cで溶解するSn 
63%1tχ、残部Pbの合金1kgを油中に投入して
溶解した0次いで油と合金溶湯を耐火物容器の底の孔の
径5φIIIIから流出させ、噴霧圧力4kg/ c+
1の圧縮空気で噴霧粉砕してチャンバー内に落下させて
冷却し、凝固させて粉末を製造した。得られた粉末をア
セトンで脱脂洗浄して粉末表面の油を除去した。得られ
た粉末の粒径は149〜63μm1アスペクト比1〜1
.2の球状であり、酸素量は45ppmであった。
Example (2) Put oil-based salad oil 21 into a stainless steel container 32 and heat it to 200°C, and dissolve Sn at 187°C.
1 kg of an alloy of 63% 1tχ and the balance Pb was poured into oil and melted. Then, the oil and molten alloy were flowed out from the hole diameter 5φIII at the bottom of the refractory container, and the spray pressure was 4kg/c+.
A powder was produced by spraying and pulverizing the powder using compressed air at step 1, dropping it into a chamber, cooling it, and solidifying it. The obtained powder was degreased and washed with acetone to remove oil on the powder surface. The particle size of the obtained powder was 149 to 63 μm, and the aspect ratio was 1 to 1.
.. 2, and the oxygen content was 45 ppm.

実施例(3) 鉱油系のJIS K 2242.3種2号相当油を31
のステンレス容器の中に21を入れて240°Cに加熱
し、232°Cで溶解するSn 1kgを投入して油中
で溶解した。次いで油とSn溶湯を耐火物容器の底の孔
の径5φl11mから流出させ、直径10cmの円板状
のディスクを30Orpmの速度で回転させた表面に滴
下して、溶湯を粉砕してチャンバー内に落下し、凝固さ
せて粉末を製造した。得られた粉末をアセトンで脱脂洗
浄して粉末表面の油を除去した。得られた粉末の粒径は
250〜63μm2アスペクト比1〜1.1の球状であ
り、酸素量は53ppmであった。
Example (3) Mineral oil-based JIS K 2242.3 class No. 2 oil equivalent to 31
21 was placed in a stainless steel container and heated to 240°C, and 1 kg of Sn, which dissolves at 232°C, was added and dissolved in oil. Next, the oil and Sn molten metal were flowed out from a hole in the bottom of the refractory container with a diameter of 5φl11m, and dropped onto the surface of a circular disc with a diameter of 10 cm rotated at a speed of 30 rpm to crush the molten metal and put it into the chamber. It was dropped and solidified to produce a powder. The obtained powder was degreased and washed with acetone to remove oil on the powder surface. The resulting powder had a spherical particle size of 250 to 63 μm, an aspect ratio of 1 to 1.1, and an oxygen content of 53 ppm.

比較例(1) Sn 63 wtχ、残部pb金合金kgを大気中で溶
解し、溶湯を耐火容器の底の孔の径5φmmから流出さ
せ、噴霧圧力4kg/c111の圧縮空気で溶湯流を粉
砕して、チャンバー内に落下させて冷却し、粉末を凝固
させた。得られた粉末は不規則状又は涙滴状であった。
Comparative Example (1) Sn 63 wtχ, the remainder PB gold alloy kg was melted in the atmosphere, the molten metal was flowed out from a hole with a diameter of 5 φ mm at the bottom of a fireproof container, and the molten metal flow was pulverized with compressed air at a spray pressure of 4 kg/c111. The powder was then dropped into a chamber to cool and solidify the powder. The powder obtained was irregular or teardrop shaped.

得られた粉末の粒径は149〜63μmであった。酸素
量は370ppmであった。
The particle size of the obtained powder was 149-63 μm. The amount of oxygen was 370 ppm.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により得られる低融点金属粉末は粉末表面
が酸化していないことと球状であることにより、電子機
器等の回路接続に特に好ましく、産業上有用な発明であ
る。
Since the low melting point metal powder obtained by the method of the present invention has an unoxidized powder surface and a spherical shape, it is particularly suitable for connecting circuits of electronic devices, etc., and is an industrially useful invention.

Claims (4)

【特許請求の範囲】[Claims] (1)低融点金属を引火点以下に加熱した鉱油系又は油
脂系の油の中で溶解し、次いで油と低融点の溶湯が共存
する状態で粉砕することを特徴とする低融点金属粉末の
製造方法。
(1) Low melting point metal powder is produced by dissolving the low melting point metal in mineral oil or oil based oil heated below the flash point, and then pulverizing it in a state where the oil and low melting point molten metal coexist. Production method.
(2)粉砕が、油と低融点金属の溶湯が共存する容器に
回転体を投入して撹拌することにより、低融点金属の溶
湯を粉砕することを特徴とする特許請求の範囲第1項に
記載の低融点金属粉末の製造方法。
(2) According to claim 1, the pulverization is performed by pulverizing the molten metal of the low melting point metal by putting a rotating body into a container in which oil and the molten metal of the low melting point coexist and stirring it. A method for producing the low melting point metal powder described above.
(3)粉砕が、油と低融点金属の溶湯が共存する状態で
噴霧法により行われることを特徴とする特許請求の範囲
第1項に記載の低融点金属粉末の製造方法。
(3) The method for producing a low melting point metal powder according to claim 1, wherein the pulverization is carried out by a spraying method in a state where oil and a molten metal of the low melting point metal coexist.
(4)粉砕が、油と低融点金属の溶湯が共存する状態で
回転ディスクに投入して遠心力により粉砕せしめること
を特徴とする特許請求の範囲第1項に記載の低融点金属
粉末の製造方法。
(4) Production of the low melting point metal powder according to claim 1, wherein the pulverization is carried out by charging oil and molten metal of the low melting point metal together into a rotating disk and pulverizing them by centrifugal force. Method.
JP62-154937A 1987-06-22 Method for producing low melting point metal powder Pending JPH01204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62-154937A JPH01204A (en) 1987-06-22 Method for producing low melting point metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62-154937A JPH01204A (en) 1987-06-22 Method for producing low melting point metal powder

Publications (2)

Publication Number Publication Date
JPS64204A JPS64204A (en) 1989-01-05
JPH01204A true JPH01204A (en) 1989-01-05

Family

ID=

Similar Documents

Publication Publication Date Title
US4108643A (en) Method for forming high fraction solid metal compositions and composition therefor
US3948650A (en) Composition and methods for preparing liquid-solid alloys for casting and casting methods employing the liquid-solid alloys
JP2006045676A (en) Method for refining and uniformly distributing alloy component, and removing undesired reaction product and sludge from soft solder at the time of producing fine solder
JPS58167734A (en) Calcium/aluminum alloy
JPS58130114A (en) Purification of silicon
JPH01204A (en) Method for producing low melting point metal powder
JPH0236653B2 (en)
US2243786A (en) Metallurgy
JP3520991B1 (en) Method for producing metallic material in solid-liquid coexistence state
JPS59133302A (en) Manufacture of metal powder
JPH0321602B2 (en)
US2243783A (en) Production of chromium-bearing reaction mixtures and alloys
JP2015537180A (en) Impeller and method for treating sardine hot water using the same
EP0129390A1 (en) Addition agents for addition of alloying ingredients to molten metals
RU2524036C2 (en) Method and device for metal spun casting
KR900700387A (en) Method of producing Sic, MnC and ferroalloy
SU444605A1 (en) Method of centrifugal casting under the slag
JP2000210788A (en) Lead-free solder alloy and its manufacture
JPS5959802A (en) Manufacture of lithium metal master alloy
JPH07145408A (en) Production of rapidly solidified powder
JPH05171229A (en) Production of spherical particle of metal, alloy or metal oxide
JPH09296236A (en) Production of particle-dispersed material
JPS61154788A (en) Soft solder for steel or copper and copper alloy and its production
JPS61245997A (en) Production of spherical powder solder
JPS62112710A (en) Production of metallic powder