JPH01204722A - Manufacture polyester film - Google Patents

Manufacture polyester film

Info

Publication number
JPH01204722A
JPH01204722A JP2976888A JP2976888A JPH01204722A JP H01204722 A JPH01204722 A JP H01204722A JP 2976888 A JP2976888 A JP 2976888A JP 2976888 A JP2976888 A JP 2976888A JP H01204722 A JPH01204722 A JP H01204722A
Authority
JP
Japan
Prior art keywords
temperature
stretching
heat treatment
polyester film
relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2976888A
Other languages
Japanese (ja)
Other versions
JPH0445335B2 (en
Inventor
Kazunori Tanaka
和典 田中
Masahiko Mogi
正彦 茂木
Youji Nakae
中栄 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2976888A priority Critical patent/JPH01204722A/en
Publication of JPH01204722A publication Critical patent/JPH01204722A/en
Publication of JPH0445335B2 publication Critical patent/JPH0445335B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a film which is superior in isotropy of thermal expansivity and has a low thermal coefficient of shrinkage, by a method wherein the title method is designed so that stretching is performed while raising a temperature at a specific speed and passes through a relaxation process also. CONSTITUTION:An unstretched sheet is produced by melting and extruding polyester resin to undergo a stretching process. Stretching is performed in a longitudinal direction, to begin with. Then the same is heated at a temperature of 90 deg.C or higher and then stretched larerally while performing a temperature rise at a speed not exceeding 10 deg.C/second. Then a tightly-drawn heat treatment process is performed at a temperature rising speed of not exceeding the 10 deg.C/ second and a fixed tenter width until the temperature attains to the necessary maximum temperature. Then a relaxation process is performed at need. The relaxation of 0.5-6% in a lateral direction is performed, to begin with, in the relaxation processes. Then the title method is designed so that after cooling, the relaxation of 0.1-1.0% is performed in the longitudinal direction at 80-120 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、温度膨張係数の等方性が改良されたポリエ
ステルフィルムを得ることのできるポリエステルフィル
ムの製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a polyester film, which makes it possible to obtain a polyester film with improved isotropy in thermal expansion coefficient.

〔従来の技術〕[Conventional technology]

ポリエステルフィルムは、一般に、つぎのようにしてつ
くられている。ポリエステル樹脂を押出機に供給して溶
融押し出しし、口金でシート状に成形する。これを冷却
ドラムに巻きつけて冷却固化することにより、未延伸シ
ートをつくる。この未延伸シートを、90℃の一定温度
で縦方向に延伸する。つぎに、第2図に示されているよ
うに、100℃の一定温度で横方向に延伸する。このあ
と、170〜230℃でテンター幅一定の緊張熱処理を
行い、冷却を行ってポリエステルフィルムを得るのであ
る。このポリエステルフィルムは、必要に応じて、所定
の幅にスリットされて巻き取られる。なお、上記緊張熱
処理ののち、横方向の熱収縮改善を目的として、横方向
リラックスを行うことがある。
Polyester films are generally made as follows. The polyester resin is fed into an extruder, melted and extruded, and formed into a sheet using a die. This is wound around a cooling drum and cooled and solidified to produce an unstretched sheet. This unstretched sheet is stretched in the longitudinal direction at a constant temperature of 90°C. Next, as shown in FIG. 2, the film is stretched in the transverse direction at a constant temperature of 100°C. Thereafter, tension heat treatment is performed at 170 to 230° C. with a constant tenter width, and cooling is performed to obtain a polyester film. This polyester film is slit to a predetermined width and wound up, if necessary. Note that after the tension heat treatment, lateral relaxation may be performed for the purpose of improving lateral thermal shrinkage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようにして得られたポリエステルフィルムには、端
部の温度膨張係数の等方性が悪いという問題があった。
The polyester film obtained in this way had a problem in that the thermal expansion coefficient at the end portions had poor isotropy.

すなわち、前記ポリエステルフィルムの温度膨張係数に
は、方向によって異なるが、端部においてその最大値と
最小値の差Δα、が大きいという問題が生じるのである
。これは、ポリエステルフィルムの幅が広いほど顕著で
あった発明者らが調べたところによると、ポリエステル
フィルム端部のΔα、を小さ(するには、緊張熱処理温
度を下げることが有効であるが、その効果は充分でない
上に、緊張熱処理温度を下げると、ポリエステルフィル
ムの縦方向の熱収縮率が上昇して実用に適さなくなる。
That is, although the temperature expansion coefficient of the polyester film differs depending on the direction, a problem arises in that the difference Δα between the maximum value and the minimum value is large at the end portions. This was more pronounced as the width of the polyester film increased.According to the inventors' investigation, it is effective to reduce the tension heat treatment temperature to reduce Δα at the edges of the polyester film. In addition, the effect is not sufficient, and when the tension heat treatment temperature is lowered, the longitudinal heat shrinkage rate of the polyester film increases, making it unsuitable for practical use.

熱収縮率を下げるには、緊張熱処理温度を高くするのが
よいが、このようにすると、フィルム端部のΔα、が大
きくなってしまう。
In order to reduce the thermal shrinkage rate, it is better to increase the tension heat treatment temperature, but if this is done, Δα at the film edges becomes large.

この発明は、このような事情に鑑みてなされたものであ
って、ポリエステルフィルム端部の温度膨張係数の等方
性を向上させることができ、しかも、必要に応じて、熱
収縮率を小さくすることもできるポリエステルフィルム
の製法を提供することを課題としている。
This invention was made in view of the above circumstances, and it is possible to improve the isotropy of the coefficient of thermal expansion at the edge of a polyester film, and also to reduce the coefficient of thermal contraction, if necessary. The objective of the present invention is to provide a method for producing polyester film that can also be used.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、この発明は、延伸工程におけ
る横方向の延伸を90℃以上の温度から始めて以後10
℃/秒以下の速度で昇温しながら行うようにするととも
に、緊張熱処理工程も横延伸終了時の温度から始めて必
要最高温度となるまで10℃/秒以下の速度で昇温しな
がら行うようにする。また、この熱処理工程ののちに、
80℃〜120℃で縦方向に0.1〜1.0%リラック
スさせるリラックス工程をも経るようにするか、まず、
緊張熱処理工程の最高温度以下の温度で横方向に0.5
〜6%リラックスさせ、その後、80℃〜120℃で縦
方向に0.1〜1.0%リラックスさせるリラックス工
程をも経るようにする。
In order to solve the above-mentioned problems, the present invention starts the lateral stretching in the stretching process at a temperature of 90°C or higher and then continues the stretching at 10°C.
The temperature should be increased at a rate of 10°C/second or less, and the tension heat treatment process should be performed at a rate of 10°C/second or less starting from the temperature at the end of transverse stretching until the required maximum temperature is reached. do. Also, after this heat treatment process,
Either go through a relaxation process of relaxing 0.1 to 1.0% in the longitudinal direction at 80°C to 120°C, or first,
0.5 in the transverse direction at a temperature below the maximum temperature of the tension heat treatment process
It is made to relax by ~6%, and then undergo a relaxing process in which it is relaxed by 0.1 to 1.0% in the longitudinal direction at 80°C to 120°C.

〔作 用〕[For production]

横延伸工程を、90℃以上の温度から始めて以後10℃
/秒以下の速度で必要最高温度まで昇温しながら行うよ
うにするとともに、緊張熱処理工程も、横延伸終了時の
温度から始めて必要最高温度となるまで10℃/秒以下
の速度で昇温しながら行うようにすると、得られたポリ
エステルフィルムは、端部のΔα、が小さくなり、温度
膨張係数の等方性が優れたものとなる。前記緊張熱処理
工程ののちに、80℃〜120℃で縦方向0.1〜13
0%のリラックスを行うようにすると、得られたポリエ
ステルフィルムは、温度膨張係数の等方性が優れるとと
もに、縦方向の熱収縮率が低いものとなる。前記縦方向
のリラックス工程に先立ち、緊張熱処理工程の最高温度
以下の温度で横方向0.5〜6%のリラックスを行うよ
うにすると、得られたポリエステルフィルムは、横方向
の熱収縮率も縦方向の熱収縮率も低いフィルムとなる。
Start the lateral stretching process at a temperature of 90°C or higher and then increase the temperature to 10°C.
The temperature should be increased to the required maximum temperature at a rate of 10°C/second or less, and the tension heat treatment step should be performed at a rate of 10°C/second or less starting from the temperature at the end of transverse stretching until the required maximum temperature is reached. When this is done, the resulting polyester film will have a small Δα at the edges and will have excellent isotropy in its thermal expansion coefficient. After the tension heat treatment step, the longitudinal direction is 0.1-13 at 80°C-120°C.
When 0% relaxation is performed, the obtained polyester film has excellent isotropy in the coefficient of thermal expansion and has a low thermal shrinkage rate in the longitudinal direction. Prior to the longitudinal relaxing step, by performing 0.5 to 6% relaxation in the transverse direction at a temperature below the maximum temperature of the tension heat treatment step, the obtained polyester film has a thermal shrinkage rate in the transverse direction as well as in the longitudinal direction. The resulting film also has a low heat shrinkage rate in the direction.

〔実 施 例〕〔Example〕

この発明にかかるポリエステルフィルムの製法は、たと
えば、つぎのようにして実施される。まず、従来と同様
、ポリエステル樹脂を押出機に供給して溶融押し出しし
、口金でシート状に成形する。これを冷却ドラムに巻き
つけて冷却固化することにより、未延伸シートをつくる
。この未延伸シートに対してつぎの延伸工程を行う。ま
ず、縦方向に延伸する。このときの温度は90〜120
℃とするのが好ましく、延伸倍率は3.2倍以上とする
のが好ましい。つぎに、−旦、冷却を行う。
The method for producing a polyester film according to the present invention is carried out, for example, as follows. First, as in the past, polyester resin is supplied to an extruder, melted and extruded, and formed into a sheet using a die. This is wound around a cooling drum and cooled and solidified to produce an unstretched sheet. The following stretching process is performed on this unstretched sheet. First, it is stretched in the longitudinal direction. The temperature at this time is 90-120
℃, and the stretching ratio is preferably 3.2 times or more. Next, cooling is performed.

この冷却は25℃程度までとするのが好ましい。This cooling is preferably to about 25°C.

こののち、90℃以上の温度に加熱し、第1図に示され
ているように、この温度から始めて以後10℃/秒以下
の速度で昇温しながら横方向に延伸する。このときの昇
温速度は、5℃/秒以下とするのが好ましい。そののち
、横延伸終了時の温度から必要最高温度になるまで10
℃/秒以下の昇゛温速度、かつ、テンター幅一定として
緊張熱処理工程を行う。前記必要最高温度は、普通、1
70℃以上とされる。このときの昇温速度は、5℃/秒
以下とするのが好ましい。上記二つの昇温速度は、必ず
しも一定である必要はなく、平均昇温か前記の値を越え
なければ、段階的な昇温でも良い。平均昇温速度は、た
とえば、ポリエステルフィルム製造工程のテンター内に
縦方向長さ5mあたり1ケ所以上の温度測定点を設けて
、製造中のフィルム自体またはフィルム近傍の雰囲気温
度を測定し、各測定点間の温度差をその区間のフィルム
通過時間で除した値をその区間の平均昇温速度とする方
法で測定される。このあと、必要に応じてリラックス工
程を行う。このリラックス工程としては、まず、前記必
要最高温度以下で横方向0.5〜6%のリラックスを行
う。つぎに、冷却を行ったのち、80℃〜120℃で縦
方向に0.1〜1.0%のリラックスを行うようにする
。前記横方向リラックスを行わずに、直ちに冷却し80
℃〜120℃として縦方向リラックスを行うようにして
もよい。このようにして、ポリエステルフィルムを得る
。このポリエステルフィルムは、従来と同様、必要に応
じて、所定の幅にスリ・ノドされて巻き取られる。
Thereafter, it is heated to a temperature of 90° C. or higher, and as shown in FIG. 1, starting from this temperature, the film is stretched in the transverse direction while increasing the temperature at a rate of 10° C./second or lower. The temperature increase rate at this time is preferably 5° C./second or less. After that, the temperature was increased from the temperature at the end of the horizontal stretching to the required maximum temperature for 10 days.
The tension heat treatment step is carried out at a heating rate of ℃/second or less and with a constant tenter width. The required maximum temperature is usually 1
It is considered to be 70℃ or higher. The temperature increase rate at this time is preferably 5° C./second or less. The above two temperature increase rates do not necessarily have to be constant, and may be a stepwise temperature increase as long as the average temperature increase does not exceed the above-mentioned value. The average temperature increase rate can be determined, for example, by setting up one or more temperature measurement points per 5 m in the longitudinal direction in a tenter during the polyester film manufacturing process, and measuring the temperature of the film itself or the atmosphere near the film during the manufacturing process. It is measured by a method in which the value obtained by dividing the temperature difference between points by the film passing time in that section is the average temperature increase rate in that section. After this, a relaxing step is performed as necessary. In this relaxing step, first, relaxation is performed by 0.5 to 6% in the lateral direction at a temperature below the required maximum temperature. Next, after cooling, relaxation is performed by 0.1 to 1.0% in the longitudinal direction at 80° C. to 120° C. Cool immediately without performing the lateral relaxation 80
It is also possible to perform longitudinal relaxation at a temperature of 120°C to 120°C. In this way, a polyester film is obtained. This polyester film is wound to a predetermined width and wound up as necessary, as in the past.

つぎに、より具体的な実施例を比較例と併せて説明する
Next, more specific examples will be described together with comparative examples.

(実施例1) ポリエステル樹脂を押出機に供給して溶融押し出しし、
口金でシート状に成形した。これを冷却ドラムに巻きつ
けて冷却固化することにより、未延伸シートをつくった
。この未延伸シートを90℃で縦方向に延伸した。この
ときの延伸倍率は3゜3倍とした。つぎに、−旦、25
℃に冷却した。
(Example 1) Polyester resin was supplied to an extruder and melted and extruded,
It was formed into a sheet using a die. This was wound around a cooling drum and cooled and solidified to produce an unstretched sheet. This unstretched sheet was stretched in the longitudinal direction at 90°C. The stretching ratio at this time was 3.3 times. Next, -dan, 25
Cooled to ℃.

こののち、100℃に加熱し、第1図に示すように、こ
の温度より始めて平均1.6℃/秒の速度で昇温しなが
ら横方向に延伸した。このときの延伸倍率は3.7倍と
した。横延伸終了時の温度は120℃であった。このの
ち、200℃になるまで、平均4.1℃/秒の昇温速度
、かつ、テンター幅一定として緊張熱処理を行った。こ
のあと、熱処理最高温度以下の温度で横方向6%のリラ
・ノクスを行った。100℃まで冷却したのち、縦方向
0.2%のリラックスを行った。このようにして、幅4
mのポリエステルフィルムを得た。
Thereafter, the film was heated to 100°C, and as shown in FIG. 1, starting from this temperature, the film was stretched in the transverse direction while increasing the temperature at an average rate of 1.6°C/sec. The stretching ratio at this time was 3.7 times. The temperature at the end of the lateral stretching was 120°C. Thereafter, tension heat treatment was performed until the temperature reached 200°C at an average heating rate of 4.1°C/sec and with a constant tenter width. After this, 6% Lila Nox in the lateral direction was performed at a temperature below the maximum heat treatment temperature. After cooling to 100°C, relaxation was performed by 0.2% in the longitudinal direction. In this way, width 4
A polyester film of m was obtained.

(実施例2) 縦方向のリラックスを行わないほかは、実施例1と同様
にして、幅4mのポリエステルフィルムを得た。
(Example 2) A polyester film with a width of 4 m was obtained in the same manner as in Example 1, except that relaxation in the longitudinal direction was not performed.

(実施例3) 緊張熱処理の際、昇温速度を平均3.1℃/秒、最高温
度を180℃としたほかは、実施例1と同様にして、幅
4mのポリエステルフィルムを得た(比較例1) 実施例1と同様にして未延伸シートをつくった。この未
延伸シートを90℃で縦方向に延伸した。このときの延
伸倍率は3.3倍とした。つぎに、25℃に冷却した。
(Example 3) A polyester film with a width of 4 m was obtained in the same manner as in Example 1, except that during the tension heat treatment, the heating rate was 3.1°C/sec on average and the maximum temperature was 180°C (comparison Example 1) An unstretched sheet was produced in the same manner as in Example 1. This unstretched sheet was stretched in the longitudinal direction at 90°C. The stretching ratio at this time was 3.3 times. Next, it was cooled to 25°C.

こののち、100℃に加熱し、第2図に示すように、こ
の温度で、横方向に延伸した。このときの延伸倍率は3
.7倍とした。つぎに、220℃に昇温し、この温度で
テンター幅一定として緊張熱処理を行った。この昇温の
際の昇温速度は、24℃/秒であった。さらに、緊張熱
処理の最高温度以下で横方向6%のリラックスを行い、
幅4mのポリエステルフィルムを得た。
Thereafter, it was heated to 100° C. and stretched in the transverse direction at this temperature, as shown in FIG. The stretching ratio at this time is 3
.. It was made 7 times. Next, the temperature was raised to 220° C., and tension heat treatment was performed at this temperature with a constant tenter width. The temperature increase rate during this temperature increase was 24° C./sec. Furthermore, we perform 6% relaxation in the lateral direction below the maximum temperature of tension heat treatment,
A polyester film with a width of 4 m was obtained.

(比較例2) 熱処理を200℃で行うようにした。この昇温の際の昇
温速度は20℃/秒であった。このほかは、比較例1と
同様にして、幅4mのポリエステルフィルムを得た。
(Comparative Example 2) Heat treatment was performed at 200°C. The temperature increase rate during this temperature increase was 20° C./sec. Other than this, a polyester film having a width of 4 m was obtained in the same manner as in Comparative Example 1.

(比較例3) 横方向リラックスののち、100℃まで冷却して縦方向
0.2%のリラックスを行うようにしたほかは、比較例
1と同様にして、幅4mのポリエステルフィルムを得た
(Comparative Example 3) A polyester film with a width of 4 m was obtained in the same manner as in Comparative Example 1, except that after relaxing in the horizontal direction, the film was cooled to 100° C. and relaxed by 0.2% in the vertical direction.

(比較例4) 横方向のりラックスののち、100 ’Cまで冷却し、
縦方向0.2%のりラックスを行うようにしたほかは、
比較例2と同様にして、幅4mのポリエステルフィルム
を得り。
(Comparative Example 4) After lateral glue lux, cooled to 100'C,
In addition to applying 0.2% glue lax in the vertical direction,
A polyester film with a width of 4 m was obtained in the same manner as in Comparative Example 2.

実施例1〜3および比較例1〜4で得られたポリエステ
ルフィルムにつき、端部のΔα、および熱収縮率を測定
した。その結果を第1表に示す。
For the polyester films obtained in Examples 1 to 3 and Comparative Examples 1 to 4, the Δα and heat shrinkage rate of the edges were measured. The results are shown in Table 1.

温度膨張係数の差Δα、および熱収縮率は、つぎのよう
にして測定した。
The difference Δα in thermal expansion coefficient and the thermal contraction rate were measured as follows.

一′!&庁・′ 1のΔα、の徂I 法あらかじめ偏光
顕微鏡によって求めた光学的配向方向く長軸)とその直
行方向(短軸)に沿って長さ150+u、幅10mmの
試験片を1本ずつ採取し、恒温恒湿槽内のTMA装置に
セットしてエージングした後、20℃〜30℃における
寸法変化を測定し、以下の式によって各方向の温度膨張
係数を求める。
one'! &Agency・'1 Δα, 1 method One test piece with a length of 150+u and a width of 10 mm was prepared along the optical orientation direction (major axis) and the orthogonal direction (minor axis) determined in advance using a polarizing microscope. After sampling and aging by setting in a TMA device in a constant temperature and humidity chamber, dimensional changes at 20° C. to 30° C. are measured, and the coefficient of thermal expansion in each direction is determined using the following formula.

(単位: 10−6/”C) 温度膨張係数は、方向によって異なるが、長袖方向でほ
ぼ最小、短軸方向でほぼ最大となることが知られている
(Unit: 10-6/''C) Although the coefficient of thermal expansion varies depending on the direction, it is known that it is approximately minimum in the long sleeve direction and approximately maximum in the short axis direction.

Δα、は、以下の式によって求められる。Δα is determined by the following formula.

試験片は、中IQam、長さ300111の大きさのも
のを縦横各方向から採取する。測定間隔の標線を試験片
に入れ、カセドメーターを用いるか、あるいは、これに
準する方法で原長を測定する。
A test piece with a medium IQam and a length of 300111 is taken from each direction in the vertical and horizontal directions. Insert the measurement interval marks into the test piece and measure the original length using a cathedometer or a similar method.

原長測定後80±1℃に保持された熱風循環式オーブン
に試験片をいれ、30分後に取り出し、約10分間放冷
する。この試験片を再びカセドメーターを用いるか、あ
るいはこれに準する方法で測定する。各試験片の平均値
を求め次式で熱収縮率を求める。
After measuring the original length, the test piece is placed in a hot air circulation oven maintained at 80±1°C, taken out after 30 minutes, and left to cool for about 10 minutes. Measure this test piece again using a cathedometer or a similar method. Find the average value of each test piece and calculate the heat shrinkage rate using the following formula.

原長(1會)−熱処理後の長さ(龍) 熱収縮率=                   X
 100原長く1箇) 第1表 第1表より、実施例1,2.3で得られたポリエステル
フィルムは、端部の温度膨張係数の等方性が優れている
とともに熱収縮率も小さいのに対し、比較例1,2で得
られたものは、端部の温度膨張係数の等方性が悪くて熱
収縮率も太き(、比較例3.4で得られたものは、熱収
縮率は小さいが、端部の温度膨張係数の等方性が悪いこ
とがわかる。
Original length (1 meeting) - Length after heat treatment (dragon) Heat shrinkage rate = X
From Table 1, it can be seen that the polyester films obtained in Examples 1 and 2.3 have excellent isotropy in the coefficient of thermal expansion at the edges and a small coefficient of thermal contraction. On the other hand, the ones obtained in Comparative Examples 1 and 2 have poor isotropy of the thermal expansion coefficient at the end and have a large thermal contraction coefficient (the ones obtained in Comparative Example 3.4 have a high thermal contraction coefficient). Although the coefficient is small, it can be seen that the isotropy of the thermal expansion coefficient at the end is poor.

〔発明の効果〕〔Effect of the invention〕

ポリエステル未延伸シートを縦方向に延伸したのち横方
向に延伸する延伸工程と、この延伸工程ののちテンター
幅一定の緊張熱処理を行う熱処理工程とを含むポリエス
テルフィルムの製法において、請求項1〜3記載の発明
は、前記延伸工程における横方向の延伸を90℃以上の
温度から始めて以後10℃/秒以下の速度で昇温しなが
ら行うようにするとともに、前記緊張熱処理工程も横延
伸終了時の温度から始めて必要最高温度となるまで10
℃/秒以下の速度で昇温しながら行うようにしているの
で、ポリエステルフィルム端部の温度膨張係数の等方性
を向上させることができる。
A method for producing a polyester film comprising a stretching step of stretching an unstretched polyester sheet in the longitudinal direction and then stretching it in the transverse direction, and a heat treatment step of performing tension heat treatment with a constant tenter width after this stretching step, according to claims 1 to 3. In the invention, the stretching in the lateral direction in the stretching step is started at a temperature of 90° C. or higher and thereafter carried out while increasing the temperature at a rate of 10° C./sec or less, and the tension heat treatment step is also carried out at a temperature at the end of the lateral stretching. Starting from 10 until the required maximum temperature is reached.
Since the heating is carried out while increasing the temperature at a rate of .degree. C./second or less, it is possible to improve the isotropy of the thermal expansion coefficient at the edges of the polyester film.

請求項2記載の発明は、同緊張熱処理工程ののち、80
℃〜120℃で縦方向に0.1〜1.0%リラックスさ
せるリラックス工程をも経るようにしているので、ポリ
エステルフィルムの縦方向の熱収縮率をも低下させるこ
とができる。請求項3記載の発明は、同緊張熱処理工程
ののち、まず、緊張熱処理工程の最高温度以下の温度で
横方向に0.5〜6%リラックスさせ、その後、80℃
〜120℃で縦方向に0.1〜1.0%リラックスさせ
るリラックス工程をも経るようにしているので、ポリエ
ステルフィルムの縦方向の熱収縮率も横方向の熱収縮率
も低下させることができる。
The invention according to claim 2 provides that after the same tension heat treatment step, the
Since the polyester film is also subjected to a relaxing step of relaxing by 0.1 to 1.0% in the longitudinal direction at a temperature of 120°C to 120°C, the heat shrinkage rate of the polyester film in the longitudinal direction can also be reduced. In the invention according to claim 3, after the tension heat treatment step, the tension heat treatment step is first relaxed by 0.5 to 6% in the lateral direction at a temperature lower than the maximum temperature of the tension heat treatment step, and then 80°C.
Since the film also undergoes a relaxation process in which it is relaxed by 0.1 to 1.0% in the longitudinal direction at ~120°C, both the longitudinal and transverse heat shrinkage rates of the polyester film can be reduced. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかるポリエステルフィルムの製法
の1実施例におけるフィルム幅と温度変化をあられすグ
ラフ、第2図は従来のポリエステルフィルムの製法にお
けるフィルム幅と温度変化をあられすグラフである。 代理人 弁理士  松 本 武 彦
FIG. 1 is a graph showing film width and temperature changes in one embodiment of the polyester film manufacturing method according to the present invention, and FIG. 2 is a graph showing film width and temperature changes in a conventional polyester film manufacturing method. Agent Patent Attorney Takehiko Matsumoto

Claims (1)

【特許請求の範囲】 1 ポリエステル未延伸シートを縦方向に延伸したのち
横方向に延伸する延伸工程と、この延伸工程ののちテン
ター幅一定の緊張熱処理を行う熱処理工程とを含むポリ
エステルフィルムの製法であって、前記延伸工程におけ
る横方向の延伸を90℃以上の温度から始めて以後10
℃/秒以下の速度で昇温しながら行うようにするととも
に、前記緊張熱処理工程も横延伸終了時の温度から始め
て必要最高温度となるまで10℃/秒以下の速度で昇温
しながら行うようにすることを特徴とするポリエステル
フィルムの製法。 2 ポリエステル未延伸シートを縦方向に延伸したのち
横方向に延伸する延伸工程と、この延伸工程ののちテン
ター幅一定の緊張熱処理を行う熱処理工程とを含むポリ
エステルフィルムの製法であって、前記延伸工程におけ
る横方向の延伸を90℃以上の温度から始めて以後10
℃/秒以下の速度で昇温しながら行うようにするととも
に、前記緊張熱処理工程も横延伸終了時の温度から始め
て必要最高温度となるまで10℃/秒以下の速度で昇温
しながら行うようにし、かつ、同緊張熱処理工程ののち
、80℃〜120℃で縦方向に0.1〜1.0%リラッ
クスさせるリラックス工程をも経るようにすることを特
徴とするポリエステルフィルムの製法。 3 ポリエステル未延伸シートを縦方向に延伸したのち
横方向に延伸する延伸工程と、この延伸工程ののちテン
ター幅一定の緊張熱処理を行う熱処理工程とを含むポリ
エステルフィルムの製法であって、前記延伸工程におけ
る横方向の延伸を90℃以上の温度から始めて以後10
℃/秒以下の速度で昇温しながら行うようにするととも
に、前記緊張熱処理工程も横延伸終了時の温度から始め
て必要最高温度となるまで10℃/秒以下の速度で昇温
しながら行うようにし、かつ、同緊張熱処理工程ののち
、まず、緊張熱処理工程の最高温度以下の温度で横方向
に0.5〜6%リラックスさせ、その後、80℃〜12
0℃で縦方向に0.1〜1.0%リラックスさせるリラ
ックス工程をも経るようにすることを特徴とするポリエ
ステルフィルムの製法。
[Claims] 1. A method for producing a polyester film comprising a stretching step of stretching an unstretched polyester sheet in the longitudinal direction and then stretching it in the transverse direction, and a heat treatment step of performing tension heat treatment with a constant tenter width after this stretching step. Therefore, the stretching in the lateral direction in the stretching step was started at a temperature of 90° C. or higher, and then 10
The temperature should be increased at a rate of 10°C/second or less, and the tension heat treatment step should also be performed while increasing the temperature at a rate of 10°C/second or less, starting from the temperature at the end of transverse stretching until the required maximum temperature is reached. A method for producing a polyester film characterized by: 2. A method for producing a polyester film comprising a stretching step of stretching an unstretched polyester sheet in the longitudinal direction and then stretching it in the transverse direction, and a heat treatment step of performing tension heat treatment with a constant tenter width after this stretching step, the stretching step 10 after starting the transverse stretching at a temperature of 90°C or higher.
The temperature should be increased at a rate of 10°C/second or less, and the tension heat treatment step should also be performed while increasing the temperature at a rate of 10°C/second or less, starting from the temperature at the end of transverse stretching until the required maximum temperature is reached. A method for producing a polyester film, which is characterized in that, after the same tension heat treatment step, a relaxation step is performed in which the film is relaxed by 0.1 to 1.0% in the longitudinal direction at 80° C. to 120° C. 3. A method for producing a polyester film comprising a stretching step of stretching an unstretched polyester sheet in the longitudinal direction and then stretching it in the transverse direction, and a heat treatment step of performing tension heat treatment with a constant tenter width after this stretching step, the stretching step 10 after starting the transverse stretching at a temperature of 90°C or higher.
The temperature should be increased at a rate of 10°C/second or less, and the tension heat treatment step should also be performed while increasing the temperature at a rate of 10°C/second or less, starting from the temperature at the end of transverse stretching until the required maximum temperature is reached. and after the same tension heat treatment step, it is first relaxed by 0.5 to 6% in the lateral direction at a temperature below the maximum temperature of the tension heat treatment step, and then 80 to 12
A method for producing a polyester film, characterized in that it also undergoes a relaxing step of relaxing 0.1 to 1.0% in the longitudinal direction at 0°C.
JP2976888A 1988-02-10 1988-02-10 Manufacture polyester film Granted JPH01204722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2976888A JPH01204722A (en) 1988-02-10 1988-02-10 Manufacture polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2976888A JPH01204722A (en) 1988-02-10 1988-02-10 Manufacture polyester film

Publications (2)

Publication Number Publication Date
JPH01204722A true JPH01204722A (en) 1989-08-17
JPH0445335B2 JPH0445335B2 (en) 1992-07-24

Family

ID=12285219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2976888A Granted JPH01204722A (en) 1988-02-10 1988-02-10 Manufacture polyester film

Country Status (1)

Country Link
JP (1) JPH01204722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130030195A (en) * 2011-09-16 2013-03-26 후지필름 가부시키가이샤 Biaxial stretched thermoplastic resin film and method for producing same, backsheet for solar cell, and solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130030195A (en) * 2011-09-16 2013-03-26 후지필름 가부시키가이샤 Biaxial stretched thermoplastic resin film and method for producing same, backsheet for solar cell, and solar cell module
JP2013075512A (en) * 2011-09-16 2013-04-25 Fujifilm Corp Biaxially stretched thermoplastic resin film, method of manufacturing the same, back sheet for solar cell, and solar cell module

Also Published As

Publication number Publication date
JPH0445335B2 (en) 1992-07-24

Similar Documents

Publication Publication Date Title
JPH1177822A (en) Production of thermoplastic resin film
US4110395A (en) Process for producing polymeric films from crystallizable polyesters
JPH01204723A (en) Manufacture of polyester film
JPH01204722A (en) Manufacture polyester film
JPH0617065B2 (en) Heat treatment method for biaxially stretched polyester film
JPS6321603B2 (en)
JPH0455377B2 (en)
US3547748A (en) Manufacture of improved polyester films
JPS6243857B2 (en)
JP2841755B2 (en) Polyamide film and method for producing the same
JPH03161319A (en) Manufacture of biaxially-oriented polyester film
JP3654769B2 (en) Production method of retardation plate
JPH09216279A (en) Manufacture of biaxially oriented polyamide film
JP2002018948A (en) Method for manufacturing stretched film
KR950005727B1 (en) Manufactuirng process for polyester film
JP2001021718A (en) Manufacture of phase difference compensation film
JPH0379177B2 (en)
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JPH0245976B2 (en) NIJIKUENSHINHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JP2825727B2 (en) Method for producing biaxially oriented polyester film
JP2000038463A (en) Polyester film and its production
JPS61179723A (en) Manufacture of biaxially oriented polyester film
KR0140300B1 (en) Process for preparing biaxially oriented polyester film
JPS61242824A (en) Manufacturing method for biaxially oriented polyethylene terephthalate film
KR900006301B1 (en) Process for the stretching of a polyester film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees