JPH01204644A - Device for treating blood flowing sound in cranium - Google Patents

Device for treating blood flowing sound in cranium

Info

Publication number
JPH01204644A
JPH01204644A JP63026475A JP2647588A JPH01204644A JP H01204644 A JPH01204644 A JP H01204644A JP 63026475 A JP63026475 A JP 63026475A JP 2647588 A JP2647588 A JP 2647588A JP H01204644 A JPH01204644 A JP H01204644A
Authority
JP
Japan
Prior art keywords
blood flow
blood flowing
flow sound
flowing sound
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63026475A
Other languages
Japanese (ja)
Other versions
JP2672546B2 (en
Inventor
Hitoshi Yamagata
仁 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63026475A priority Critical patent/JP2672546B2/en
Publication of JPH01204644A publication Critical patent/JPH01204644A/en
Application granted granted Critical
Publication of JP2672546B2 publication Critical patent/JP2672546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PURPOSE:To estimate the existence and position of a morbidly changed site in a cranium with high accuracy by detecting a blood flowing sound and obtaining a coherence function between channels and removing asynchronous noise components based on the changing pattern in time of the peak value thereof and extracting a blood flowing sound component. CONSTITUTION:Blood flowing sound detecting means 6a, 6b detect a blood flowing sound generated from an morbidly changed site in the cranium of an examined body P and the result is taken into an A/D converter 9 via preamplifiers 8a, 8b. Electrodes 10a, 10b, 10c detect the heart beat of the examined body P and the result is taken into the A/D converter 9 via an electrocardiograph 11. These are converted into digital signals by the A/D converter 9 and taken into a wave-form data analyzing portion 13 via a buffer memory 12. In the analyzing portion 13, a first means 13a obtains a coherence function indicating the degree of relation between each channel from the detected result of the blood flowing sound and, based on the changing pattern in time of the peak value thereof, a second means 13b removes asynchronous noise components such as respiratory sound to extract a blood flowing sound component.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、脳動脈瘤や動静脈奇形などの頭蓋的病変部位
により生じる異常血流音を頭蓋外より非侵襲で検出し、
これを解析処理することにより前記病変部位の有無及び
位置推定を可能とする頭蓋内血流音処理装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Field of Industrial Application) The present invention is a non-invasive method for detecting abnormal blood flow sounds caused by cranial lesions such as cerebral aneurysms and arteriovenous malformations from outside the cranium. death,
The present invention relates to an intracranial blood flow sound processing device that makes it possible to estimate the presence or absence and position of the lesion site by analyzing this.

(従来の技術) クモ膜下出血の主因である頭蓋内勤腫瘤や動静脈奇形が
異常血流音を発していることは周知のことであり、この
異常血流音の検出により頭蓋内勤腫瘤や動静脈奇形の位
置推定を頭蓋外より非侵襲で行う手法が報告されている
(たとえばCLINI−CAL  NEURO3CHI
NCE  Vol、3  No、8(1985)  P
、P  86B−867)。この手法は、頭蓋外に配置
された血流音検出手段(ディテクタ)で異常血流音を検
出し、この検出信号を解析処理するようにしたもので、
血流音検出手段としては、第7図に示すもの等が使用さ
れる。即ち、この血流音検出手段6は、有底筒状に形成
されたケース体2内に加速度検出器1を配置し、この加
速度検出器1をスタビライザ5で支持し、加速度検出器
1とケース体2の底部との間にバネ3を取り付けること
により構成され、このバネ3の付勢力に抗して加速度検
出器1を被検体(通常は患者)の頭部4に当接すること
で、血流音を検出しようとするものである。
(Prior art) It is well known that intracranial masses and arteriovenous malformations, which are the main causes of subarachnoid hemorrhage, emit abnormal blood flow sounds. Methods for non-invasively estimating the location of venous malformations from outside the skull have been reported (e.g. CLINI-CAL NEURO3CHI).
NCE Vol. 3 No. 8 (1985) P
, P 86B-867). This method detects abnormal blood flow sounds using a blood flow sound detection means (detector) placed outside the skull, and analyzes this detection signal.
As the blood flow sound detecting means, one shown in FIG. 7 or the like is used. That is, this blood flow sound detection means 6 has an acceleration detector 1 disposed inside a case body 2 formed in a cylindrical shape with a bottom, supports this acceleration detector 1 with a stabilizer 5, and connects the acceleration detector 1 and the case. It is constructed by attaching a spring 3 between the body 2 and the bottom of the body 2, and by abutting the acceleration detector 1 against the head 4 of the subject (usually a patient) against the biasing force of the spring 3, blood is removed. It attempts to detect flowing sound.

このような血流音検出手段6を被検体の頭部4に複数個
取り付け、それらの検出結果を処理して分析することで
、頭蓋的病変部位の有無及び位置推定を行っている。
By attaching a plurality of such blood flow sound detection means 6 to the subject's head 4 and processing and analyzing the detection results, presence or absence and position of a cranial lesion site are estimated.

(発明が解決しようとする課題) しかしながら、血流音は非常に小さく、異常血流音を検
出する血流音検出手段には血流音のみでなく他の雑音例
えば呼吸音や唾を吸込む音などが侵入してしまい、この
ため血流音検出手段の検出信号を解析しても頭蓋的病変
部位の有無及び位置推定が容易に行えないという問題が
生じていた。
(Problem to be Solved by the Invention) However, blood flow sounds are very small, and the blood flow sound detection means for detecting abnormal blood flow sounds requires not only blood flow sounds but also other noises such as breathing sounds and saliva inhalation sounds. This has caused a problem in that even if the detection signal of the blood flow sound detection means is analyzed, the presence or absence and position of a cranial lesion cannot be easily estimated.

そこで本発明は、異常血流音に基づく頭蓋的病変部位の
有無及び位置推定を高精度で行うことができる頭蓋内血
流音処理装置の提供を目的としている。
SUMMARY OF THE INVENTION Therefore, the present invention aims to provide an intracranial blood flow sound processing device that can estimate the presence or absence and position of a cranial lesion site with high accuracy based on abnormal blood flow sounds.

[発明の構成] (課題を解決するための手段) 本発明は、被検体の頭蓋内血流音を検出する複数の血流
音検出手段を有し、この血流音検出手段の検出結果に基
づいて頭蓋内血流音の解析を行う頭蓋内血流音処理装置
において、前記血流音検出手段の検出結果より、各チャ
ネル間の関連度を示すコヒーレンス関数を求める第1の
手段と、求められたコヒーレンス関数のピーク値の時間
的変化パターンに基づいて非同期雑音成分を除去するこ
とで血流音成分の抽出を行う第2の手段とを有するもの
でおる。
[Structure of the Invention] (Means for Solving the Problems) The present invention has a plurality of blood flow sound detection means for detecting intracranial blood flow sounds of a subject, and the detection results of the blood flow sound detection means are In the intracranial blood flow sound processing device that analyzes intracranial blood flow sound based on the detection result of the blood flow sound detection means, a first means for calculating a coherence function indicating the degree of association between each channel from the detection result of the blood flow sound detection means; and second means for extracting the blood flow sound component by removing the asynchronous noise component based on the temporal change pattern of the peak value of the coherence function.

(作 用) 本発明では、複数の血流音検出手段の検出結果より、各
チャネル間の関連度を示すコヒーレンス関数を求め、求
められたコヒーレンス関数のピーク値の時間的変化パタ
ーンに基づいて非同期雑音成分を除去することで血流音
成分の抽出を行うようにしており、このようにすること
で頭蓋的病変部位の有無及び位置推定の高精度化を図っ
ている。
(Function) In the present invention, a coherence function indicating the degree of association between each channel is obtained from the detection results of a plurality of blood flow sound detection means, and asynchronous detection is performed based on the temporal change pattern of the peak value of the obtained coherence function. The blood flow sound component is extracted by removing the noise component, and by doing so, the presence or absence of a cranial lesion site and the position estimation are improved with high accuracy.

(実施例) 以下、本発明を図面に示す実施例に基づき詳細に説明す
る。
(Example) Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図は本発明の一実施例である頭蓋内血流音処理装置
を被検体(通常は患者)Pに取付けた状態を示している
FIG. 1 shows a state in which an intracranial blood flow sound processing device according to an embodiment of the present invention is attached to a subject (usually a patient) P.

同図に示すようにこの頭蓋内血流音処理装置は、血流音
検出手段5a、6b、プリアンプ8a。
As shown in the figure, this intracranial blood flow sound processing device includes blood flow sound detection means 5a, 6b, and a preamplifier 8a.

8b、A/D変換器9、電極10a、10b。8b, A/D converter 9, electrodes 10a, 10b.

10c、心電計11、バッファメモリ12、波形データ
解析部13を有する。
10c, an electrocardiograph 11, a buffer memory 12, and a waveform data analysis section 13.

血流音検出手段6a、5bは、被検体Pの頭蓋的病変部
位より生ずる血流音を検出するもので、例えば第7図に
示すのと同様に加速度検出器1を有して成るものが適用
される。この血流音検出手段は実際には被検体Pの頭部
に多数配置されるが、第1図では2個のみ示している。
The blood flow sound detecting means 6a, 5b are for detecting the blood flow sound generated from the cranial lesion site of the subject P, and are equipped with an acceleration detector 1 as shown in FIG. 7, for example. Applicable. Although a large number of blood flow sound detection means are actually arranged on the head of the subject P, only two are shown in FIG.

血流音検出手段6a、6bの検出結果はプリアンプ8a
、8bをそれぞれ介してA/D変換器9に取込まれるよ
うになっている。又、電極10a、10b、10cは被
検体Pの心拍を検出するもので、この検出結果は心電計
11を介してA/D変換器9に取込まれるようになって
いる。
The detection results of the blood flow sound detection means 6a and 6b are detected by the preamplifier 8a.
, 8b, respectively, to the A/D converter 9. Further, the electrodes 10a, 10b, and 10c are used to detect the heartbeat of the subject P, and the detection results are taken into the A/D converter 9 via the electrocardiograph 11.

プリアンプ(3a、 8bの出力はA/D変換器9によ
りディジタル信号に変換された後にバッフ7メモリ12
を介して波形データ解析部13に取込まれるようになっ
ている。
The outputs of the preamplifiers (3a, 8b are converted into digital signals by the A/D converter 9 and then sent to the buffer 7 memory 12.
The waveform data analysis unit 13 receives the data via the waveform data analysis section 13.

この波形データ解析部13は、波形データの解析を行う
もので、機能的に第1の手段13aと第2の手段13’
bとを有する。第1の手段13aは、前記血流音検出手
段6a、6bの検出結果より、各チャネル間の関連度を
示すコヒーレンス関数を求めるものであり、第2の手段
13bは、このコヒーレンス関数のピーク値の時間的変
化パターンに基づいて呼吸音などの非同期雑音成分を除
去することで血流音成分の抽出を行うものでおる。
This waveform data analysis section 13 analyzes waveform data, and functionally includes a first means 13a and a second means 13'.
It has b. The first means 13a determines a coherence function indicating the degree of association between each channel from the detection results of the blood flow sound detection means 6a and 6b, and the second means 13b determines the peak value of this coherence function. The blood flow sound component is extracted by removing asynchronous noise components such as breathing sounds based on the temporal change pattern of the noise.

以下、第1図に示す頭蓋内血流音処理装置の動作を詳細
に説明する。
Hereinafter, the operation of the intracranial blood flow sound processing apparatus shown in FIG. 1 will be explained in detail.

第2図に示すように頭蓋内の血流速度V、特に脳動脈瘤
などの血管病変の好発部位である唱11is輪近辺、た
とえば中火脳動脈の起始部ではその速度Vは一様ではな
く変動しており、心電波形(ECG)R波が生じている
A時点は非常に遅く、これからtd時間経過後のB時点
では非常に速い。
As shown in Figure 2, the intracranial blood flow velocity V is uniform, especially near the 11is ring, which is a frequent site of vascular lesions such as cerebral aneurysms, for example, at the origin of the middle cerebral artery. The electrocardiographic waveform (ECG) R wave occurs at time A, which is very slow, and after time td has elapsed, at time B, it is very fast.

一方、頭蓋内の異常血流音は、脳動脈瘤ではそこに流れ
る血流のうず流音、動脈硬化など血管内の局所的狭窄部
では乱流音が原因となって生じている。これらうず流音
、乱流音は頭蓋内の血流速度■が遅いA時点付近では発
生し難いが、血流速度Vが速いB時点付近では発生し易
く異常血流音のパワーが増大する。しかし血流音以外の
不必要な雑音は頭蓋内の血流速度Vの遅いA時点及び速
いB時点に関係なくあるレベルで一様に発生し、それが
血流音検出手段6a、5bに混入する。
On the other hand, abnormal blood flow noise in the skull is caused by the eddy sound of blood flowing through a cerebral aneurysm, and the turbulent sound at localized narrowings in blood vessels such as arteriosclerosis. These eddy flow sounds and turbulence sounds are difficult to generate around time A where the intracranial blood flow velocity (2) is slow, but they tend to occur around time B where the blood flow velocity V is high, and the power of the abnormal blood flow sound increases. However, unnecessary noises other than blood flow sounds are uniformly generated at a certain level regardless of whether the intracranial blood flow velocity V is slow at time A or fast, and is mixed into the blood flow sound detection means 6a and 5b. do.

ここで、異常血流音が発生しない時相では有意な信号は
なく雑音成分がほとんどでおるため、複数チャネル間の
相関は弱くなり、任意の2チャネル間のコヒーレンス関
数の値は小ざい。一方、異常血流音が発生する時相では
上記とは逆に有意な信号が増加するためコヒーレンス関
数の値は1に近くなる。従って、このようなコヒーレン
ス関数の時間的変化のパターンを利用して異常血流音を
抽出することができる。
Here, in a time phase in which abnormal blood flow sound does not occur, there is no significant signal and most of the noise components are present, so the correlation between multiple channels becomes weak and the value of the coherence function between any two channels is small. On the other hand, in the phase in which abnormal blood flow sounds occur, contrary to the above, significant signals increase, so the value of the coherence function becomes close to 1. Therefore, abnormal blood flow sounds can be extracted using the pattern of temporal changes in the coherence function.

第3図に示す心電波形(ECG)は第1図に示す心電計
11より得られたものである。チャネル1乃至チャネル
nの波形は被検体Pの頭部に配置されたn個の血流音検
出手段から検出された血流音でおる。チャネル1乃至チ
ャネルnの血流雑音はA/D変換器9によりデジタルデ
ータに変換されるが頭蓋内の血流速度■が遅く異常血流
雑音が非常に少ないA時点から時間td1経過後の時間
t1におけるデジタルデータとしてバッフ7メモリ12
に記憶され、血流速度■が速く異常血流雑音が多く含ま
れるA時点から時間td2経過後の時間t2におけるデ
ジタルデータもバッフ7メモリ12に記憶される。
The electrocardiographic waveform (ECG) shown in FIG. 3 was obtained from the electrocardiograph 11 shown in FIG. The waveforms of channels 1 to n are blood flow sounds detected by n blood flow sound detection means placed on the head of the subject P. The blood flow noise of channels 1 to channel n is converted into digital data by the A/D converter 9, but the time td1 has elapsed from point A when the intracranial blood flow velocity is slow and there is very little abnormal blood flow noise. Buffer 7 memory 12 as digital data at t1
The digital data at time t2 after time td2 has elapsed from time point A, where the blood flow velocity is high and a lot of abnormal blood flow noise is included, is also stored in the buffer 7 memory 12.

第4図に心電図のQRSトリが時点からの任意の2チヤ
ネル(ここでは、チャネル1と2)の頭蓋内血流音波形
を示す。QRSトリガ時点からの時相として遅れ時間が
Q、td2 、td3 、・・・から時間間隔tl、t
2.t3.・・・の2チヤネルデータのコヒーレンス関
数は例えば第5図のようになり、そのピーク値a、b、
6.dは各時相によって増減する。
FIG. 4 shows the intracranial blood flow waveforms of two arbitrary channels (channels 1 and 2 in this case) from the time point of the QRS triage of the electrocardiogram. As the time phase from the QRS trigger time, the delay time is Q, td2, td3, ... to the time interval tl, t.
2. t3. For example, the coherence function of two-channel data of ... is as shown in Fig. 5, and its peak values a, b,
6. d increases or decreases depending on each time phase.

この場合、呼吸音などの非同期雑音が混入していない時
に、正常人では血流速度の速いfd2からt3間の血流
音には有意な信号はなく、第6図において1点破線で示
すようにコヒーレンス関数(Coh)の各時相での値は
小ざく大きな変動はない。
In this case, when asynchronous noise such as breathing sounds is not mixed, there is no significant signal in the blood flow sound between fd2 and t3 when the blood flow velocity is high in a normal person, as shown by the dotted line in Figure 6. The values of the coherence function (Coh) at each time phase are small and do not vary greatly.

しかし、異常血流音がある場合には、血流速度の速い部
分での有意な信号のため同図において実線で示すように
td2からt3間及びその近辺でコヒーレンス関数は1
に近い値となる。また、呼吸音などの非同期雑音は各チ
ャネルに一様に混入するため、頭蓋内の血流速度のパタ
ーンに無関係に、第6図において破線で示すようなパタ
ーンとなる。
However, when there is abnormal blood flow sound, the coherence function becomes 1 between and around td2 to t3, as shown by the solid line in the same figure, because the signal is significant in areas where the blood flow velocity is high.
The value is close to . Furthermore, since asynchronous noise such as breathing sounds is uniformly mixed into each channel, a pattern as shown by the broken line in FIG. 6 is obtained, regardless of the intracranial blood flow velocity pattern.

波形データ解析部13において、先ず第1の手段13a
により、心電波形の同期パルスから順次時相をずらしな
がら各チャネル間(例えば任意の2チャネル間)のコヒ
ーレンス関数が求められ、次に第2の手段13bにより
、コヒーレンス関数のピーク値の時間的変換パターンに
基づいて呼吸音等の非同期雑音成分が除去され、血流音
成分の抽出が行われる。そしてこの血流音成分に基づい
て乱流、うす流音の特徴抽出が行われることになる。
In the waveform data analysis section 13, first, the first means 13a
The coherence function between each channel (for example, between two arbitrary channels) is determined by sequentially shifting the time phase from the synchronized pulse of the electrocardiogram waveform, and then the second means 13b calculates the temporal peak value of the coherence function. Based on the conversion pattern, asynchronous noise components such as breathing sounds are removed, and blood flow sound components are extracted. Based on this blood flow sound component, features of turbulent flow and thin flow sound are extracted.

尚、本発明は上記実施例に限定されるものではなく、種
々の変形実施が可能でおるのは言うまでもない。
It goes without saying that the present invention is not limited to the above-mentioned embodiments, and that various modifications can be made.

[発明の効果] 以上詳述したように本発明によれば、複数の血流音検出
手段の検出結果より、各チャネル間の関連度を示すコヒ
ーレンス関数を求め、このコヒーレンス関数のピーク値
の時間的変化パターンに基づいて呼吸音などの非同期雑
音成分を除去するようにしているので、血流音成分を適
確に抽出することができ、頭蓋的病変部位の有無及び位
置推定を高精度で行うことができるという優れた効果を
奏する。
[Effects of the Invention] As detailed above, according to the present invention, a coherence function indicating the degree of association between each channel is obtained from the detection results of a plurality of blood flow sound detection means, and the time of the peak value of this coherence function is calculated. Since asynchronous noise components such as breathing sounds are removed based on the physical change pattern, blood flow sound components can be accurately extracted, and the presence and location of cranial lesions can be estimated with high accuracy. It has the excellent effect of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置のブロック図、第2図は
血流速度の特性図、第3図は心電波形と血流速度の関係
を示した図、第4図乃至第6図は本実施例装置の作用説
明のための波形図、第7図は血流音検出手段の構成説明
図である。 6a、6b・・・血流音検出手段、7・・・被検体、1
3・・・波形データ処理部、 13a・・・第1の手段、13b・・・第2の手段。 代理人 弁理士 則  近  憲  缶周     近
  藤      猛 第  3  図
Fig. 1 is a block diagram of an apparatus according to an embodiment of the present invention, Fig. 2 is a characteristic diagram of blood flow velocity, Fig. 3 is a diagram showing the relationship between electrocardiographic waveforms and blood flow velocity, and Figs. The figure is a waveform diagram for explaining the operation of the apparatus of this embodiment, and FIG. 7 is a diagram illustrating the configuration of the blood flow sound detecting means. 6a, 6b... Blood flow sound detection means, 7... Subject, 1
3... Waveform data processing section, 13a... First means, 13b... Second means. Agent Patent Attorney Nori Ken Chika Ken Shu Kondo Takeshi Figure 3

Claims (1)

【特許請求の範囲】[Claims] 被検体の頭蓋内血流音を検出する複数の血流音検出手段
を有し、この血流音検出手段の検出結果に基づいて頭蓋
内血流音の解析を行う頭蓋内血流音処理装置において、
前記血流音検出手段の検出結果より、各チャネル間の関
連度を示すコヒーレンス関数を求める第1の手段と、求
められたコヒーレンス関数のピーク値の時間的変化パタ
ーンに基づいて非同期雑音成分を除去することで血流音
成分の抽出を行う第2の手段とを有することを特徴とす
る頭蓋内血流音処理装置。
An intracranial blood flow sound processing device that includes a plurality of blood flow sound detection means for detecting intracranial blood flow sounds of a subject and analyzes the intracranial blood flow sounds based on the detection results of the blood flow sound detection means. In,
A first means for determining a coherence function indicating the degree of association between each channel from the detection result of the blood flow sound detection means, and removing an asynchronous noise component based on a temporal change pattern of the peak value of the determined coherence function. and second means for extracting blood flow sound components by extracting blood flow sound components.
JP63026475A 1988-02-09 1988-02-09 Intracranial blood flow sound processor Expired - Fee Related JP2672546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026475A JP2672546B2 (en) 1988-02-09 1988-02-09 Intracranial blood flow sound processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026475A JP2672546B2 (en) 1988-02-09 1988-02-09 Intracranial blood flow sound processor

Publications (2)

Publication Number Publication Date
JPH01204644A true JPH01204644A (en) 1989-08-17
JP2672546B2 JP2672546B2 (en) 1997-11-05

Family

ID=12194533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026475A Expired - Fee Related JP2672546B2 (en) 1988-02-09 1988-02-09 Intracranial blood flow sound processor

Country Status (1)

Country Link
JP (1) JP2672546B2 (en)

Also Published As

Publication number Publication date
JP2672546B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
US20030220577A1 (en) Methods and systems for distal recording of phonocardiographic signals
Semmlow et al. Coronary artery disease-correlates between diastolic auditory characteristics and coronary artery stenoses
Yang et al. Pulse transit time measurement using seismocardiogram, photoplethysmogram, and acoustic recordings: Evaluation and comparison
US7909772B2 (en) Non-invasive measurement of second heart sound components
US6048319A (en) Non-invasive acoustic screening device for coronary stenosis
US6626842B2 (en) Heart-sound analyzing apparatus
US5109863A (en) Noninvasive diagnostic system for coronary artery disease
FI82366B (en) MAETNING AV BLODETS SAMMANSAETTNING.
Allen et al. Variability of photoplethysmography peripheral pulse measurements at the ears, thumbs and toes
Kotas et al. Towards noise immune detection of fetal QRS complexes
EP1999639B1 (en) Respiration-gated cardiography
EP2395908A2 (en) Detection of parameters in cardiac output related waveforms
WO1995007651A1 (en) Method and device for assessing the state of blood vessels
Carvalho et al. Robust characteristic points for ICG-definition and comparative analysis
JP6129166B2 (en) Method and apparatus for detecting arterial occlusion / resumption and system for measuring systolic blood pressure
JP2019517332A (en) System for measuring the pulse wave velocity of coronary arteries
US6616608B2 (en) Periodic-physical-information measuring apparatus
WO2018155384A1 (en) Detection device
JP4415466B2 (en) Biological signal detection device and non-invasive blood pressure monitor
JPH01204644A (en) Device for treating blood flowing sound in cranium
Ahmaniemi et al. Estimation of beat-to-beat interval and systolic time intervals using phono-and seismocardiograms
Kolarik et al. Examination and Optimization of the Fetal Heart Rate Monitor: Evaluation of the effect influencing the measuring system of the Fetal Heart Rate Monitor
WO2019188768A1 (en) Device and method for analyzing shunt murmur, and computer program and storage medium
JPH01204655A (en) Device for treating blood flowing sound in cranium
Jung et al. Changes of pulse wave velocity in arm according to characteristic points of pulse wave

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees