JPH01204449A - Copper wiring method for vlsi - Google Patents

Copper wiring method for vlsi

Info

Publication number
JPH01204449A
JPH01204449A JP2754388A JP2754388A JPH01204449A JP H01204449 A JPH01204449 A JP H01204449A JP 2754388 A JP2754388 A JP 2754388A JP 2754388 A JP2754388 A JP 2754388A JP H01204449 A JPH01204449 A JP H01204449A
Authority
JP
Japan
Prior art keywords
wiring
layer
copper
film
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2754388A
Other languages
Japanese (ja)
Inventor
Shinichi Fukada
晋一 深田
Yasushi Kawabuchi
靖 河渕
Hitoshi Onuki
仁 大貫
Kunio Miyazaki
邦夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2754388A priority Critical patent/JPH01204449A/en
Publication of JPH01204449A publication Critical patent/JPH01204449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make it possible to protect a wiring, by coating the entire part surrounding the part of the wire comprising copper or a material whose main component is copper with a conductive film. CONSTITUTION:The entire surrounding part of a Cu wiring 3 is coated with a conductive film in this structure. Namely, a barrier metal layer 10, a Cu wiring layer and an upper oxidation preventing metal layer 4 are formed. Thereafter, a wiring pattern is formed on photoresist 8. The wiring 3 is formed by etching. A transition metal layer 9 is formed on the entire surface by a CVD method. Then, the layer 9 is made to remain only on the side wall of the wiring by anisotropic dry etching. Thereafter, the photoresist 8 is removed, and the wiring 3 is formed. When metal that does not form solid solution with the Cu and does not form intermetal compound is used for the transition metal, Cu atoms are not diffused into the surface of the wiring 3. The Cu is completely covered with a side wall protecting layer 5. Thus, the wiring can be protected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はVLS I用配線の形成法に係り、特に、微細
な配線パターンに大きな電流を通じる素子をもつVLS
I用Cu配線の形成法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming wiring for VLS I, and particularly for VLS I having an element that conducts a large current through a fine wiring pattern.
This invention relates to a method of forming Cu wiring for I.

〔従来の技術〕[Conventional technology]

従来の半導体プロセスにおいて、異方性トライエツチン
グ等により段差側壁部にのみ選択的に堆積物を残す技術
はLS!ハンドブックP、400(1984,電子通信
学会)に記載のL D D (lightlydope
d drain)構造形成の際の5iOzスペーサ形成
等に見られる。しかし、これはデバイス形成のための絶
縁物のパターニング技術であり、この技術を導体に用い
た例はない。
In conventional semiconductor processes, the technology that selectively leaves deposits only on the step sidewalls using anisotropic tri-etching, etc. is LS! LDD (lightlydope) described in Handbook P, 400 (1984, Institute of Electronics and Communication Engineers)
This can be seen in the formation of 5iOz spacers during the formation of the d drain) structure. However, this is a technique for patterning insulators to form devices, and there is no example of this technique being used for conductors.

W(CO)eを用いW膜をCVD法により形成する技術
は、ジャーナル オブ エレクトロケミカル ソサイエ
テイ Vol、117PP、693−700 (197
0)、(j、Electrochem Soc、 11
7 。
The technique of forming a W film using W(CO)e by CVD method is described in Journal of Electrochemical Society Vol. 117PP, 693-700 (197
0), (j, Electrochem Soc, 11
7.

693−700 (1970))、及び、ジャーナル 
オブ バキューム サイエンステクノロジーVol。
693-700 (1970)) and Journal
Of Vacuum Science Technology Vol.

20 、 p p 、 1336−1340(1982
) (J、Vac、Sci、Te−chnol、 20
 、1336−1340(1982))において論じら
れている。
20, pp, 1336-1340 (1982
) (J, Vac, Sci, Te-channel, 20
, 1336-1340 (1982)).

しかし、これらの技術を配線形成に用いた例はなく、微
細配線の側壁部について従来特別な考慮はされていない
。特に、従来COの還元効果に注目した佳IU士ない。
However, there have been no examples of using these techniques for wiring formation, and no special consideration has been given to the sidewall portions of fine wiring. In particular, some researchers have focused on the reduction effect of CO.

〔発明が解決しようとする課題〕 配線幅が1μm以上ある従来のVLSI配線では十分な
幅があるので側壁の保護には特に考慮がされていなかっ
た。特に、配線材料が従来のAQの場合には表面酸化皮
膜が強く、側面保護の必要性は小さかった。しかし、V
LS Iの配線抵抗の低減のためにAQより比抵抗の小
さなCu、あるいは、Cu合金を配線に用いる微細パタ
ーンでは、Cuがち密な酸化皮膜を形成できないため側
面の保護が新たに必要となる。特に、配線幅が0.5μ
m以下と微細化が進むと配線側壁からの腐食による配線
のほそり、あるいは、断線と酸化皮膜を通じたCu配線
の酸化の進行が大きな問題となる。
[Problems to be Solved by the Invention] Conventional VLSI wiring having a wiring width of 1 μm or more has a sufficient width, so no particular consideration has been given to sidewall protection. In particular, when the wiring material is conventional AQ, the surface oxide film is strong and the need for side protection is small. However, V
In order to reduce the wiring resistance of LSI, in fine patterns that use Cu or Cu alloy, which has a specific resistance lower than that of AQ, for wiring, a dense oxide film of Cu cannot be formed, so side protection is newly required. In particular, the wiring width is 0.5μ
As miniaturization progresses to less than m, major problems arise such as thinning of the wiring due to corrosion from the sidewalls of the wiring, or progression of oxidation of the Cu wiring through disconnection and oxide film.

また、微細配線でも配線抵抗を下げるために、配線の厚
さはできるだけ大きくする必要があり、配線のアスペク
ト比は1を超えるまでになる。アスペクト比が1以上と
いうことは配線の側壁の面積が上、下部の面積をうわま
わることを意味しており、この点からもCu配線の保護
のためには上下部の保護だけでは不足であり側壁の保護
が不可欠である。
Furthermore, in order to reduce the wiring resistance even with fine wiring, the thickness of the wiring needs to be as large as possible, and the aspect ratio of the wiring exceeds 1. An aspect ratio of 1 or more means that the area of the sidewall of the wiring exceeds the area of the top and bottom, and from this point of view, it is insufficient to protect the top and bottom of the Cu wiring. Side wall protection is essential.

本発明の目的は、0.5μm以下の微細なCu配線にお
いて、新たに問題となる配線側壁の保護の必要性に対し
、配線の上・下部の保護と同時に、側壁も保護する配線
構造、および、その形成法を提供することにある。
The purpose of the present invention is to provide a wiring structure that protects the upper and lower parts of the wiring as well as the sidewalls, in response to the new problem of the need to protect the wiring sidewalls in fine Cu wiring of 0.5 μm or less. , and to provide a method for its formation.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的はCu配線の周囲が全て導電性の膜でおおわれ
た構造とすることにより達成される。この構造の実現は
バリヤメタル層、Cu配線層、上部配化防止メタル層を
形成後、ホトレジストに配線パターンを形成し、ドライ
エツチング、もしくは、イオンミリングにより配線を形
成し、CVD法により全面に遷移金属、もしくは、その
化合物層を形成し、その後、異方性ドライエツチング、
もしくは、イオンミリングにより配線側壁にのみ選択的
にこの層を残し、その後、ホトレジストを除去し、配線
を形成することにより達成される。
The above object is achieved by forming a structure in which the entire periphery of the Cu wiring is covered with a conductive film. To realize this structure, after forming a barrier metal layer, a Cu wiring layer, and an upper metal layer, a wiring pattern is formed on photoresist, wiring is formed by dry etching or ion milling, and transition metal is etched over the entire surface by CVD. , or form the compound layer and then anisotropic dry etching,
Alternatively, this can be accomplished by selectively leaving this layer only on the wiring sidewalls by ion milling, then removing the photoresist and forming the wiring.

この際、遷移金属もしくはその化合物層のCVD中に一
酸化炭素(CO)、あるいは、水素(H2)が存在する
と、Cu表面の酸化銅が還元され、この酸化銅が原因と
なる配線の腐食や、遷移金属層のはがれを防止すること
ができる。
At this time, if carbon monoxide (CO) or hydrogen (H2) is present during CVD of the transition metal or its compound layer, the copper oxide on the Cu surface will be reduced, and this copper oxide will cause corrosion of the wiring. , peeling of the transition metal layer can be prevented.

また、この遷移金属にCuと固溶せず、また、金属間化
合物も形成しない金属を用いると、配線表面にはCu原
子が拡散してくることがなく、Cuを完全に側壁保護層
でおおいかくずごとができ、その耐酸化性を一層向上さ
せることができる。
In addition, if a metal that does not form a solid solution with Cu or forms an intermetallic compound is used as the transition metal, Cu atoms will not diffuse to the wiring surface and the Cu will be completely covered with a sidewall protective layer. This allows the oxidation resistance to be further improved.

〔作用〕[Effect]

Cu配線の側壁に形成序れた遷移金属、あるいは、その
化合物の保護層と上部保護層によりCuは直接周囲の雰
囲気と触れることがない。そのため、Cuの腐食および
酸化は完全に防ぐことができる。特に、側壁保護層を形
成した場合にはレジスト除去工程以前に側壁保護層がで
きるので、レジスト除去に02プラズマアツシヤ等のC
uを酸化する可能性のある工程を用いることができる。
Due to the protective layer and upper protective layer of a transition metal or its compound formed on the side wall of the Cu wiring, the Cu does not come into direct contact with the surrounding atmosphere. Therefore, corrosion and oxidation of Cu can be completely prevented. In particular, when a sidewall protective layer is formed, the sidewall protective layer can be formed before the resist removal process, so the resist can be removed using C
Any process that may oxidize u can be used.

また、Cu配線の周囲の遷移金属層もCuに比べ耐酸化
性の高い金属、あるいは、化合物が選択されるので、配
線自体の耐酸化性は従来のCu配線に比べて非常に高い
Further, since the transition metal layer surrounding the Cu wiring is also selected from a metal or compound that has higher oxidation resistance than Cu, the oxidation resistance of the wiring itself is much higher than that of conventional Cu wiring.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。3は
Cu配線であり、コンタク1−孔を通じてSi素子2と
接触している。このCu配線3は、TiNより成るバリ
ヤメタル層10と上部酸化防止層4、および、Wより成
る側壁保護層5により囲まれ、Si素子、および、周囲
の雰囲気と直接触れることはない。図中1はSi基板、
6はSiO2゜第2図は、本発明の一実施例を、プロセ
スを追い説明したものである。はじめに、Si素子の形
成されたSiウェハ上に、TiターゲットとN2の反応
性スパッタ法で形成されたTiN膜4,10にはさまれ
たCu膜7をスパッタ法により形成する。7,4.10
の膜厚はそれぞれ8000人。
An embodiment of the present invention will be described below with reference to FIG. 3 is a Cu wiring, which is in contact with the Si element 2 through the contact 1 hole. This Cu wiring 3 is surrounded by a barrier metal layer 10 made of TiN, an upper antioxidation layer 4, and a sidewall protection layer 5 made of W, and does not come into direct contact with the Si element or the surrounding atmosphere. 1 in the figure is a Si substrate,
6 is SiO2. FIG. 2 is a process-by-step explanation of an embodiment of the present invention. First, a Cu film 7 sandwiched between a Ti target and TiN films 4 and 10 formed by reactive sputtering using N2 is formed by sputtering on a Si wafer on which Si elements are formed. 7,4.10
The film thickness of each is 8,000 people.

200人、200人である。次に、ホトリソグラフィ技
術により、レジスト8に配線パターンを形成し、TiN
1lIをCF4によるドライエツチングで、Cu膜をA
rによるイオンミリングで加工し、配線パターンを形成
する。次に、基板全面に、W(Co)cを原料とするプ
ラズマCVD法でWより成る膜9を300人形成する。
200 people, 200 people. Next, a wiring pattern is formed on the resist 8 using photolithography technology, and a TiN
The Cu film was etched by dry etching with CF4.
A wiring pattern is formed by ion milling using r. Next, 300 people form a film 9 made of W on the entire surface of the substrate by plasma CVD using W(Co)c as a raw material.

第3図にプラス7CVD装置を示す。W (G O)e
 11は50℃に加熱しArをキャリヤガスとしてCV
Dチャンバ14内へ導入する。W (CO)e導入管1
3およびCVDチャンバ14は、50℃以上に保つ。基
板15は下部のヒータ16により100℃〜200℃に
加熱されている。CVDチャンバ14内に導入されたW
(Co)eは、高周波コイル17により形成される高周
波プラズマ中で分解され、生成したWが、基板上に腹を
形成する。この際、基板が100℃以下ではCu膜とW
膜との密若性が悪く。
Figure 3 shows a plus 7 CVD apparatus. W (G O)e
11 was heated to 50℃ and CV was performed using Ar as a carrier gas.
Introduce it into the D chamber 14. W (CO)e introduction pipe 1
3 and the CVD chamber 14 are maintained at 50° C. or higher. The substrate 15 is heated to 100° C. to 200° C. by a heater 16 at the bottom. W introduced into the CVD chamber 14
(Co)e is decomposed in the high frequency plasma formed by the high frequency coil 17, and the generated W forms an antinode on the substrate. At this time, if the substrate is below 100°C, the Cu film and W
Poor adhesion to the membrane.

また、ち密なW膜を形成できない。反応の結果発生する
COはCu表面の酸化膜を還元する。図中12はるつぼ
状ヒータ、18はキャリヤガス導入管、19は排気管。
Furthermore, a dense W film cannot be formed. CO generated as a result of the reaction reduces the oxide film on the Cu surface. In the figure, 12 is a crucible-shaped heater, 18 is a carrier gas introduction pipe, and 19 is an exhaust pipe.

第4図に5iOz基板上のCu膜上に本実施例にあるプ
ラズマCVDによりW膜を形成したものについてのSI
MS分析結果を示す。WとCuの界面には少量の酸素し
か検出されない。それに対し、W膜形成前のCu膜表面
の分析結果(第5図)では表面にかなりの酸素が検出さ
れ、W膜の膜形成中に酸素が除かれていることがわかる
。さらに、wB形成時にキャリヤガス導入管18よりキ
ャリヤガスと同時にCOをモル比10%以下導入した場
合にはCu表面の還元効果はより顕著であり、その際の
分析結果を第6図に示す。プラズマCVDによるW囚の
形成後5基板全面をAr+イオン2oによりイオンミリ
ングする。イオンミリングの結果、水平面上に形成され
たW膜は除かれ、Cu配線の側壁部にのみW膜が残り、
側壁保護WJ5となる。その後にレジスト8を除去し、
Cu配線パターンを完成する。
Figure 4 shows the SI of a W film formed on a Cu film on a 5iOz substrate by plasma CVD in this example.
The MS analysis results are shown. Only a small amount of oxygen is detected at the interface between W and Cu. On the other hand, the results of analysis of the surface of the Cu film before the formation of the W film (FIG. 5) show that a considerable amount of oxygen was detected on the surface, indicating that oxygen was removed during the formation of the W film. Further, when CO is introduced at a molar ratio of 10% or less through the carrier gas introduction pipe 18 simultaneously with the formation of wB, the reduction effect on the Cu surface becomes more remarkable, and the analysis results in this case are shown in FIG. After forming W particles by plasma CVD, the entire surface of the five substrates is ion-milled using Ar+ ions 2o. As a result of ion milling, the W film formed on the horizontal plane was removed, and the W film remained only on the side walls of the Cu wiring.
It becomes side wall protection WJ5. After that, remove the resist 8,
Complete the Cu wiring pattern.

VLS I製造プロセスでは配線の形成後にはプラズマ
CVDによる5iOz膜形成等の工程があり、さらに、
加熱が加わるので、配線の熱安定性も重要な要素である
。Si○2基板上のCu膜上に本実施例によるプラズマ
CVDによりW膜を形成し、500℃、六時間の熱処理
を実施後、SIMS分析を行なった結果を第4図に示す
。Cuと固溶せず、また、金属間化合物も形成しないW
の場合にはCuとWとの相互拡散はよく抑制されており
、W膜の表面にCuが現れることはない。それに対し、
Zr、V等に代表されるCuと固溶する金属でCu表面
をおおう場合には、膜形成後にアニール工程があると表
面にCuが現れ、Cuの酸化物が形成される。
In the VLSI manufacturing process, after the wiring is formed, there are steps such as forming a 5iOz film by plasma CVD.
Thermal stability of the wiring is also an important factor since heating is applied. A W film was formed on the Cu film on the Si○2 substrate by plasma CVD according to this example, and after heat treatment at 500° C. for 6 hours, SIMS analysis was performed. The results are shown in FIG. W does not form a solid solution with Cu and does not form intermetallic compounds
In this case, mutual diffusion between Cu and W is well suppressed, and Cu does not appear on the surface of the W film. For it,
When the Cu surface is covered with a metal that dissolves in solid solution with Cu, such as Zr and V, when an annealing step is performed after film formation, Cu appears on the surface and a Cu oxide is formed.

Cu配線の側壁保護層としてCuと固溶しない金属であ
る。W、Mo、Reを用いることができる。また、Cr
+JCuとの固溶量が非常に少なく、用いることができ
る。COを含む化合物でCVDの原料として、Mo(C
O)e、W (Co)6゜Cr(CO)at Rez 
(Co)toを用いることができる。また、[(π−C
5H5) W (CO)3]2゜[(π−C3H6)M
o(CO)3]!、 [(π−C3H6)Cr(Co)
3]z(π−C5H6)Re(Co)3を用いる場合に
は、キャリヤガス中にH2を添加することがπC5Ha
の還元のために必要である。遷移金属化合物WN、MO
2N、CrzNを形成する際は、キャリヤガスにN H
aを添加すれば良い。また、金属ソースの種類にかかわ
らず、キャリヤガスにH2を添加することにより、形成
される金属膜中のOの量を一層減少させることができる
。この効果はcoよりも弱いが、キャリヤガスにCOを
添加した場合には、第6図に示すように、膜中のCの濃
度が高くなるのに対し、H2添加の場合には、第7図に
示すように、Cの濃度を低く保ってOの濃度を下げるこ
とができる。
It is a metal that does not form a solid solution with Cu as a sidewall protective layer for Cu wiring. W, Mo, and Re can be used. Also, Cr
The amount of solid solution with +JCu is very small and it can be used. Mo(C) is a compound containing CO and is used as a raw material for CVD.
O) e, W (Co)6゜Cr(CO) at Rez
(Co)to can be used. Also, [(π-C
5H5) W (CO)3]2゜[(π-C3H6)M
o(CO)3]! , [(π-C3H6)Cr(Co)
3] When using z(π-C5H6)Re(Co)3, adding H2 to the carrier gas
It is necessary for the reduction of Transition metal compounds WN, MO
When forming 2N and CrzN, N H is added to the carrier gas.
Just add a. Furthermore, regardless of the type of metal source, by adding H2 to the carrier gas, the amount of O in the formed metal film can be further reduced. Although this effect is weaker than that of CO, when CO is added to the carrier gas, the concentration of C in the film increases as shown in Figure 6, whereas when H2 is added, the concentration of C in the film increases. As shown in the figure, the O concentration can be lowered while keeping the C concentration low.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Cu表面の酸化物の除去と配線側壁へ
の遷移金属、あるいは、その化合物層の形成を同時に行
なうことができる。
According to the present invention, it is possible to simultaneously remove the oxide on the Cu surface and form the transition metal or its compound layer on the wiring sidewall.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のCu配線の断面図。 第2図は本発明の実施手順を示した図、第3図は本発明
の実施の際、W膜の形成に用いるプラズマCV D装置
の構造を示す図、第4図はSi○2鵡板」二のCu膜上
にW(Go)sをソースとしてW膜を形成し、500℃
6時間の熱処理後SIMS分析を行なった結果を示す図
、第5図が同じ試料のW膜形成前の分析結果を示す図、
第6図はW膜形成の際、キャリヤガスにcoを添加した
場合の分析結果を示す図、第7図はキャリヤガスにH2
を添加した場合の分析結果を示す図である。 1・・・Si基板、2・・・Si素子、3・・・Cu配
線、4・・・上部酸化防止層、5・・・側壁保護層、6
・・・5j−Oz、7・・・Cu膜、8・・・レジスト
、9・・・CVDW膜。 】0・・・バリヤ層、11・・・W(Co)e、12・
・・るっぼ状ヒータ、13・・・W(Co)6導入管、
14・・・CVDチャンバ、15・・・基板、16・・
・基板ヒータ、17・・高周波コイル、18・・・キャ
リヤガス導入管、第1図 第2図 第3図 第4図 第5図 第6図
FIG. 1 is a sectional view of Cu wiring according to an embodiment of the present invention. Fig. 2 is a diagram showing the implementation procedure of the present invention, Fig. 3 is a diagram showing the structure of a plasma CVD apparatus used for forming a W film when implementing the present invention, and Fig. 4 is a diagram showing the structure of a plasma CVD apparatus used for forming a W film in the implementation of the present invention. A W film was formed on the second Cu film using W(Go)s as a source, and heated at 500°C.
Figure 5 shows the results of SIMS analysis after 6 hours of heat treatment, Figure 5 shows the analysis results of the same sample before formation of the W film,
Figure 6 shows the analysis results when Co was added to the carrier gas during W film formation, and Figure 7 shows the analysis results when Co was added to the carrier gas.
It is a figure showing the analysis result when adding. DESCRIPTION OF SYMBOLS 1... Si substrate, 2... Si element, 3... Cu wiring, 4... Upper antioxidation layer, 5... Sidewall protective layer, 6
... 5j-Oz, 7... Cu film, 8... Resist, 9... CVDW film. ]0... Barrier layer, 11... W(Co)e, 12...
...Rubbo-shaped heater, 13...W(Co)6 introduction pipe,
14...CVD chamber, 15...substrate, 16...
・Substrate heater, 17...High frequency coil, 18...Carrier gas introduction pipe, Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】 1、半導体素子上に形成された配線幅0.5μm以下、
アスペクト比が1以上の、銅あるいは銅を主成分とする
VLSI用微細配線において、前記配線の周囲を全て導
電性の膜でおおうことを特徴とするVLSI用銅配線方
法。 2、半導体素子上に、バリヤメタル層、銅配線層、上部
酸化防止メタル層より成る配線層を形成し、ホトレジス
トで配線パターンを形成し、前記配線層をエッチングし
て配線を形成し、レジストを除去する工程からなるVL
SI用銅配線において、 前記配線層のエッチング工程の後にCVD法により遷移
金属、もしくは、その化合物層を全面に形成し、その後
に異方性エッチングにより配線パターンの段差側壁部に
のみ選択的に前記遷移金属もしくはその化合物層を残し
、その後、前記レジストを除去することを特徴とするV
LSI用銅配線方法。 3、特許請求の範囲第2項において、 前記遷移金属が銅と固溶せず、かつ、銅と金属間化合物
を形成しない金属であることを特徴とするVLSI用銅
配線方法。
[Claims] 1. Wiring width 0.5 μm or less formed on a semiconductor element,
1. A copper wiring method for VLSI, which comprises covering the entire periphery of the wiring with a conductive film in fine wiring for VLSI which has an aspect ratio of 1 or more and is copper or whose main component is copper. 2. Form a wiring layer consisting of a barrier metal layer, a copper wiring layer, and an upper anti-oxidation metal layer on the semiconductor element, form a wiring pattern with photoresist, etch the wiring layer to form a wiring, and remove the resist. VL consists of the process of
In copper wiring for SI, after the etching process of the wiring layer, a transition metal or its compound layer is formed on the entire surface by CVD, and then anisotropic etching is performed to selectively remove the transition metal or its compound layer only on the stepped sidewalls of the wiring pattern. V characterized in that the transition metal or its compound layer is left and then the resist is removed.
Copper wiring method for LSI. 3. The copper wiring method for VLSI according to claim 2, wherein the transition metal is a metal that does not form a solid solution with copper and does not form an intermetallic compound with copper.
JP2754388A 1988-02-10 1988-02-10 Copper wiring method for vlsi Pending JPH01204449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2754388A JPH01204449A (en) 1988-02-10 1988-02-10 Copper wiring method for vlsi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2754388A JPH01204449A (en) 1988-02-10 1988-02-10 Copper wiring method for vlsi

Publications (1)

Publication Number Publication Date
JPH01204449A true JPH01204449A (en) 1989-08-17

Family

ID=12224000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2754388A Pending JPH01204449A (en) 1988-02-10 1988-02-10 Copper wiring method for vlsi

Country Status (1)

Country Link
JP (1) JPH01204449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164332A (en) * 1991-03-15 1992-11-17 Microelectronics And Computer Technology Corporation Diffusion barrier for copper features
US5506449A (en) * 1993-03-24 1996-04-09 Kawasaki Steel Corporation Interconnection structure for semiconductor integrated circuit and manufacture of the same
WO2000005773A1 (en) * 1998-07-23 2000-02-03 Applied Materials, Inc. Integrated circuit interconnect lines having sidewall layers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164332A (en) * 1991-03-15 1992-11-17 Microelectronics And Computer Technology Corporation Diffusion barrier for copper features
US5506449A (en) * 1993-03-24 1996-04-09 Kawasaki Steel Corporation Interconnection structure for semiconductor integrated circuit and manufacture of the same
WO2000005773A1 (en) * 1998-07-23 2000-02-03 Applied Materials, Inc. Integrated circuit interconnect lines having sidewall layers
JP2002521826A (en) * 1998-07-23 2002-07-16 アプライド マテリアルズ インコーポレイテッド Interconnect wiring for integrated circuits with sidewall layers

Similar Documents

Publication Publication Date Title
US5236868A (en) Formation of titanium nitride on semiconductor wafer by reaction of titanium with nitrogen-bearing gas in an integrated processing system
JPH01252763A (en) Formation of metal silicide
US20060128159A1 (en) Method of removing etch residues
JP2003504693A (en) Photoresist removal process using forming gas plasma
US5700740A (en) Prevention of corrosion of aluminum interconnects by removing corrosion-inducing species
US5003375A (en) MIS type semiconductor integrated circuit device having a refractory metal gate electrode and refractory metal silicide film covering the gate electrode
JP2002543610A (en) Removal method of SiC
JP2809196B2 (en) Method for manufacturing semiconductor device
JPH0629311A (en) Manufacture of semiconductor device
JPS6064452A (en) Aluminum mutual connector with copper
US6136691A (en) In situ plasma clean for tungsten etching back
EP1401015A1 (en) Selective dry etching of tantalum and tantalum nitride
JPH06232098A (en) Antioxidation and dry etching method
US7125809B1 (en) Method and material for removing etch residue from high aspect ratio contact surfaces
JPH01204449A (en) Copper wiring method for vlsi
JP2002026021A (en) Method of forming metal pattern of semiconductor device
JPH0945688A (en) Interconnection structure and its formation method
JPH0799178A (en) Manufacture of semiconductor device
JP3323264B2 (en) Method for manufacturing semiconductor device
JPH0689883A (en) Method of forming connecting hole
JP3214146B2 (en) Pretreatment method for forming titanium nitride film and method for forming titanium nitride film
JPH07297146A (en) Method for forming contact
JP3592209B2 (en) Method for manufacturing semiconductor device
JPH07263447A (en) Semiconductor device and its manufacture
JPH11186237A (en) Manufacture of semiconductor device