JPH01204427A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01204427A
JPH01204427A JP2752988A JP2752988A JPH01204427A JP H01204427 A JPH01204427 A JP H01204427A JP 2752988 A JP2752988 A JP 2752988A JP 2752988 A JP2752988 A JP 2752988A JP H01204427 A JPH01204427 A JP H01204427A
Authority
JP
Japan
Prior art keywords
gas
semiconductor
substrate
supercritical
supercritical gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2752988A
Other languages
Japanese (ja)
Inventor
Harumi Matsuzaki
松崎 晴美
Isao Okochi
大河内 功
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Takao Hishinuma
孝夫 菱沼
Yasuhiro Mochizuki
康弘 望月
Hideaki Kurokawa
秀昭 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2752988A priority Critical patent/JPH01204427A/en
Publication of JPH01204427A publication Critical patent/JPH01204427A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an excellent semiconductor whose minimum machining size is 0.3mum or less, by manufacturing the semiconductor through steps wherein the semiconductor is in contact with at least supercritical gas. CONSTITUTION:A cleaning bath 1 is composed of a supercritical gas feeding system 2, an exhausting system 3 and a third component feeding system 4. Valves 21 and 41 in the feeding systems are switched in correspondence with purposes. A filter 5 is provided in the feeding system 2 so as to prevent the inflow of foreign material into the cleaning bath 1. A heater 6 serves the role for keeping the temperature of the gas that is supplied into the cleaning bath at a critical temperature or higher. A pressure regulating valve 32 in the exhausting system serves the role for keeping the pressure of the gas at a critical pressure or higher. A substrate 7 that is sent from each step is loaded in the cleaning bath 1. The substrate is brought into contact with the supercritical gas. Thus, the permeability of the supercritical gas into minute parts and the third component are selectively incorporated into the supercritical gas. All conceivable contaminations at preset in the minute parts are removed in this way, and each step is optimized. Thus a semiconductor having excellent quality can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は最小加工寸法が0.3μm以下の半導体、特に
、トレンチ構造を持つ同寸法以下の半導体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor having a minimum processing dimension of 0.3 μm or less, and particularly to a semiconductor having a trench structure and having the same dimension or less.

〔従来の技術〕[Conventional technology]

半導体の集積度は年々増大の一途をたどっている。例え
ば、D RA N (Dyhamic Random 
AccessMemory)は大型コンピュータ、通信
機器から各種OA (Office A+1tomat
ion)機器、端末機器に至るまで、広く使用されてい
る。システムの高性能化、小型化に伴いDRAMの大官
量化は三年に四倍の割合で進んでいる。256KDRA
Mは1983年に量産が開始され、1986年にはIM
DRAMの量産が開始された。4MDRAM以降もこの
トレンドに沿うと予想される。これらの集積度の増大に
伴い、最小加工寸法は、2μm、1.2μm、0.8μ
mと微細化していく。
The degree of integration of semiconductors continues to increase year by year. For example, D RAN (Dynamic Random
AccessMemory) is used for large computers, communication equipment, and various OA (Office A+1tomat)
ion) devices and terminal devices. As systems become more sophisticated and more compact, the size of DRAMs is increasing at a rate of four times every three years. 256KDRA
Mass production of M began in 1983, and IM began in 1986.
Mass production of DRAM has begun. It is expected that 4MDRAM and beyond will also follow this trend. As the degree of integration increases, the minimum processing dimensions are 2μm, 1.2μm, and 0.8μm.
It becomes finer as m.

これらの半導体製造に必要な洗浄は有機溶剤、フッ酸、
超純水等を用いるウェット洗浄が主流である。
The cleaning necessary for manufacturing these semiconductors uses organic solvents, hydrofluoric acid,
Wet cleaning using ultrapure water is the mainstream.

液体は密度が大きく1種々の汚れ成分を溶解し除去する
。また、粘度が大きいため、ウェハ付着微粒子を洗い流
す。さらに、液体同士は良くまじり合い、ウェハに付着
している液体を他の液体で置換することもできる。液体
は上記の性状を持つため、これまでウェット洗浄が主流
であった。
The liquid has a high density and dissolves and removes various dirt components. Also, since the viscosity is high, fine particles adhering to the wafer are washed away. Furthermore, the liquids mix well with each other, and the liquid adhering to the wafer can be replaced with another liquid. Since the liquid has the above-mentioned properties, wet cleaning has been the mainstream until now.

〔発明がM決しようとする課題〕[The problem that the invention attempts to solve]

今後の集積度の増大に伴う微細化(最小加工寸法が0.
3μm以下)ならびにトレンチ構造化に対して、液体の
もつ表面張力により、液体は微細部への侵入が不可能で
あるため、ウェット洗浄では対応できないという問題が
ある。
In the future, miniaturization will occur as the degree of integration increases (minimum processing size is 0.
3 μm or less) and trench structuring, the surface tension of the liquid makes it impossible for the liquid to penetrate into minute parts, so there is a problem that wet cleaning cannot be used.

シリコンウェハが洗浄、酸化、薄膜形成、不純物拡散等
の各工程で幾重にも処理されて、半導体が製造される。
Semiconductors are manufactured by subjecting a silicon wafer to multiple processes such as cleaning, oxidation, thin film formation, and impurity diffusion.

シリコン表面は極めて疎水性で、水溶性液体でぬれない
。従って、シリコン面でおおオ)れた上記寸法のトレン
チ内への水溶性液体(フン酸、超純水等)の侵入は、そ
の表面張力(シリコンとの界面張力)のため不可能であ
る。
The silicone surface is extremely hydrophobic and cannot be wetted by water-soluble liquids. Therefore, it is impossible for a water-soluble liquid (hydric acid, ultrapure water, etc.) to penetrate into a trench of the above dimensions covered with a silicon surface due to its surface tension (interfacial tension with silicon).

すなわち、トレンチ形成後のトレンチ内の洗浄は困難で
ある。
That is, it is difficult to clean the inside of the trench after forming the trench.

発明者らは、ウェット洗浄では対応困難な最小加工寸法
が0.3μm以下の微細部の洗浄に関し、種々検討した
The inventors have conducted various studies regarding the cleaning of minute parts with minimum processing dimensions of 0.3 μm or less, which are difficult to handle with wet cleaning.

気体はどんな微細なところでも浸入可能であるが、洗浄
力はほとんどない。一方、液体は」二連のように洗浄力
をもつが微細なところへの侵入は不可能である。
Although gas can penetrate into even the smallest places, it has almost no cleaning power. On the other hand, liquids have a cleaning power similar to that of ``double'', but cannot penetrate into minute areas.

発明者らは、下記の事実を見出し、本発明に至つた。The inventors discovered the following facts and arrived at the present invention.

(1)超臨界ガスは最もクリーンな溶剤である。(1) Supercritical gas is the cleanest solvent.

(2)超臨界ガスは0.3μm以下の細孔内へ容易に侵
入し、かつ、細孔内に存在するものを溶かし出す。
(2) Supercritical gas easily penetrates into pores of 0.3 μm or less and dissolves what is present in the pores.

本発明の目的は、最小加工寸法が0.3μm以下の半導
体を提供することにある。
An object of the present invention is to provide a semiconductor having a minimum processing dimension of 0.3 μm or less.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、すくなくとも超臨界ガスと接触する工程を経
て製造されたことを特徴とする最小加工寸法が0.3μ
m以下の半導体である。
The present invention is characterized in that it is manufactured through a process of contacting with at least supercritical gas, and has a minimum processing size of 0.3 μm.
It is a semiconductor with a diameter of m or less.

第2図は、超臨界炭酸ガス(圧力150 kg/ ry
τ、温度45℃)の流動特性を示す。縦軸はm位長さ当
りの圧力損失を示す。図中には、水及び炭酸ガスの場合
の特性も併記した。超臨界炭酸ガスの圧力損失は水の場
合の一割、炭酸ガスの場合の約三倍で、炭酸ガスと同様
な取扱いが可能である。すなわち、クリーンルーム内導
入空気と同様にパブフィルタによる超臨界炭酸ガス中に
存在する異物の除去が可能である。クラス10のスーパ
ークリーンルーム内空気中の微粒子濃度は0.1μm以
上の微粒子が0.00036個/ m Qであり、超臨
界ガス中の微粒子も同程度にクリーン化することができ
る。現在、半導体製造分野で使用されている薬品中の微
粒子数を表しく参考文献:超LSIウル1−ラクリーン
テクノロジーシンポジウムNa 6、プロシーディング
、+986.3.P220)に示したが、これらと比較
すると、超臨界ガスは極めてクリーンな1′・容剤であ
る。
Figure 2 shows supercritical carbon dioxide gas (pressure 150 kg/ry
τ, temperature 45°C). The vertical axis shows pressure loss per m length. In the figure, the characteristics for water and carbon dioxide gas are also shown. The pressure loss of supercritical carbon dioxide is 10% of that of water and about three times that of carbon dioxide, so it can be handled in the same way as carbon dioxide. That is, it is possible to remove foreign substances present in the supercritical carbon dioxide gas using a Pub filter in the same way as in the air introduced into a clean room. The concentration of particles in the air inside a class 10 super clean room is 0.00036 particles/mQ of 0.1 μm or more, and particles in supercritical gas can be cleaned to the same degree. References showing the number of fine particles in chemicals currently used in the semiconductor manufacturing field: VLSI Ull 1-La Clean Technology Symposium Na 6, Proceedings, +986.3. As shown in page 220), compared to these, supercritical gas is an extremely clean 1' container.

第3図は、合成樹脂と超臨界炭酸ガスを接触し、樹脂細
孔内に存在する液体を除去した結果を示す。
FIG. 3 shows the result of contacting the synthetic resin with supercritical carbon dioxide gas and removing the liquid present in the resin pores.

縦軸は除去した液量を供試樹脂量で除した値。横軸は樹
脂カラムに供給した超臨界炭酸ガス量(標僧状態換算値
)を示す。供試樹脂はスチレンジビニルベンゼン系で、
各種吸着材料の中で、最も疎水性が太きい。樹脂内部に
無数に存在する細孔の径は80〜2000人に分布する
。図中には、超臨界炭酸ガスの密度が0.41と0.6
8g/、iの場合の除去特性を示した。−点鎖線は供試
樹脂の細孔容積から算出した含液率を示す。除去速度は
超臨界炭酸ガス密度によって異なるが、飽和状態での回
収液量/樹脂量は、いずれの場合でも、樹脂含液率にほ
ぼ一致する。このことは、80〜2000人の径をもつ
細孔内に存在した液がほとんどすべて除去できたことを
示す。すなオ〕ち、超臨界炭酸ガスは0.3μm以下の
細孔内に容易に(迅速に)侵入し、そこに存在するもの
を除去することができる。
The vertical axis is the value obtained by dividing the amount of liquid removed by the amount of test resin. The horizontal axis indicates the amount of supercritical carbon dioxide gas (value converted to standard state) supplied to the resin column. The test resin is styrene divinylbenzene,
Among various adsorption materials, it has the highest hydrophobicity. The diameters of the countless pores that exist inside the resin range from 80 to 2,000. In the figure, the densities of supercritical carbon dioxide are 0.41 and 0.6.
The removal characteristics in the case of 8 g/i are shown. - The dotted chain line indicates the liquid content calculated from the pore volume of the test resin. Although the removal rate varies depending on the supercritical carbon dioxide density, the amount of recovered liquid/the amount of resin in a saturated state almost matches the resin liquid content in any case. This indicates that almost all of the liquid present in the pores having a diameter of 80 to 2,000 pores was removed. In other words, supercritical carbon dioxide gas can easily (quickly) penetrate into pores of 0.3 μm or less and remove what is present there.

なお、活性炭(細孔径は1人〜10μm)も疎水性が高
い材料の一つであるが、活性炭と超臨界炭酸ガスとの接
触実験においても、活性炭含有液をほとんどすべて除去
することができた。
Activated carbon (pore size: 1 to 10 μm) is also a highly hydrophobic material, but in experiments in which activated carbon was brought into contact with supercritical carbon dioxide, almost all of the liquid containing activated carbon could be removed. .

〔実施例〕〔Example〕

半導体の製造工程は、例えば、Siウェハ(基板)の場
合、基板表面に酸化膜(Si02)を形成、レジス1〜
塗布しマスクを介して露光し、現像・エツチング、レジ
ス1−除去して基板にパターン形成、エツチングして、
ホウ素、リン等をイオン注入(拡散)する工程を幾度も
繰返し、必要な回路を基板に刻み込む。そして、最終的
に、AQ、等を蒸着して電極を取付け、ダイシング、パ
ンケージして半導体を得る。これらの工程では、基板表
面、あるいは、上パターン形成に伴うトレンチ構造の内
面に有機質汚染や無機質汚染の存在により欠陥が発生し
、得られる半導体は使用に耐えない。従って、各工程の
前に洗浄作業が必須である。本発明の主眼は、この工程
で、基板と超臨界ガスを接触させて、これら汚染を完全
に除去した半導体を提供することにある。第1図は、こ
の洗浄工程に適用した本発明の一具体例であり1図面に
従って説明する。第1図から、洗浄槽1は、超臨界ガス
供給系2、排出系3、第三成分供給系4から構成し、供
給系中の弁21.41は、それぞれの目的に応じて切換
える。また、供給系2には、フィルター5を設け、洗浄
槽1への異物流入を防止できる。加熱器6は、洗浄槽内
に供給されるガスを臨界温度以上に維持する役[1を担
い、排出系中の圧力調整弁31は、ガスの臨界圧力以上
に維持する役目を担う。そして、各工程から移送される
基板7を洗浄槽1に装填して超臨界ガスと接触させろ。
In the semiconductor manufacturing process, for example, in the case of a Si wafer (substrate), an oxide film (Si02) is formed on the surface of the substrate, resists 1-
Coating, exposing through a mask, developing and etching, removing resist 1 to form a pattern on the substrate, etching,
The process of ion implantation (diffusion) of boron, phosphorus, etc. is repeated many times to carve the necessary circuits into the substrate. Finally, AQ or the like is deposited, electrodes are attached, and a semiconductor is obtained by dicing and pancaging. In these steps, defects occur on the surface of the substrate or on the inner surface of the trench structure accompanying the formation of the upper pattern due to the presence of organic contamination or inorganic contamination, and the resulting semiconductor becomes unusable. Therefore, cleaning work is essential before each process. The main objective of the present invention is to provide a semiconductor from which these contaminants have been completely removed by bringing the substrate into contact with a supercritical gas in this step. FIG. 1 shows a specific example of the present invention applied to this cleaning process, and will be described with reference to one drawing. As shown in FIG. 1, the cleaning tank 1 is composed of a supercritical gas supply system 2, a discharge system 3, and a third component supply system 4, and the valves 21 and 41 in the supply systems are switched depending on the purpose of each. Furthermore, a filter 5 is provided in the supply system 2 to prevent foreign matter from entering the cleaning tank 1. The heater 6 plays the role of maintaining the gas supplied into the cleaning tank above the critical temperature, and the pressure regulating valve 31 in the discharge system plays the role of maintaining the gas above the critical pressure. Then, the substrates 7 transferred from each process are loaded into the cleaning tank 1 and brought into contact with supercritical gas.

超臨界ガスは、CO2(臨界点73atm。The supercritical gas is CO2 (critical point: 73 atm).

31.1°C)、N2(臨界点33.5a jm、−1
47’C)、 CCQ F3(臨界点39atm、28
.8℃)等の不燃で安全性の高いガスが好適であり、特
に、有機物等を良く溶解するから、適度な接触時間を保
って基板に付着する汚染物をガス中に拡散し、系外に排
出することができる。また、超臨界ガスに有機溶媒、例
えば、炭化水素系溶媒(ヘキサン、ベンゼン、トルエン
等)、ハロゲン化炭化水系溶媒(ジクロルメタン、フレ
オン等)、アルコール系溶媒(エタノール等)やケトン
系溶媒(アセトン等)などを第三成分として供給系4か
ら少量添加して、基板と接触することにより、親和力を
高め、多種多様な有機質汚染を除去できる。また、半導
体にとっては、無機質汚染も大きな障害となる。
31.1°C), N2 (critical point 33.5a jm, -1
47'C), CCQ F3 (critical point 39 atm, 28
.. A non-flammable and highly safe gas such as 8℃) is suitable.In particular, it dissolves organic substances well, so by maintaining an appropriate contact time, contaminants adhering to the substrate will be diffused into the gas and removed from the system. Can be discharged. In addition, organic solvents such as hydrocarbon solvents (hexane, benzene, toluene, etc.), halogenated hydrocarbon solvents (dichloromethane, Freon, etc.), alcohol solvents (ethanol, etc.), and ketone solvents (acetone, etc.) can be added to the supercritical gas. ) etc. are added as a third component from the supply system 4 in small quantities and brought into contact with the substrate, thereby increasing the affinity and removing a wide variety of organic contaminants. Inorganic contamination is also a major obstacle for semiconductors.

例えば、Si基板は、空気中でnative S i○
2膜が発生し、そのまま、酸化工程を実施すると密若性
に劣り、不純な酸化膜とな委だけでなく、後続するイオ
ン注入工程におけるホウ素、リン等の基板への拡散が阻
害され、半導体の生命すら喪失することになりかねない
。この場合、上述と同様に、第三成分供給系4から酸/
アルカリ、例えば、HCQ、+ HF + HzO2+
 N Ha等を超臨界ガスに少量混合させて、基板と接
触させて、溶出させ、ガスを排出することによって、そ
れらの汚染を除去できる。前述のように、超臨界ガスの
微細部の浸透性と第三成分を超臨界ガスに選択的に含有
させることによって微細部の現在、考え得る全ての汚染
を除去し、各工程を最適化し、良質な半導体を得ること
ができる。
For example, a Si substrate is exposed to native Si○ in air.
If the oxidation process is performed as it is after a second film is generated, the density will be poor, resulting in an impure oxide film, and the diffusion of boron, phosphorus, etc. into the substrate in the subsequent ion implantation process will be inhibited, and the semiconductor Even the lives of people may be lost. In this case, as described above, acid/
Alkali, e.g. HCQ, + HF + HzO2+
These contaminants can be removed by mixing a small amount of N 2 Ha or the like with supercritical gas, bringing it into contact with the substrate, eluting it, and discharging the gas. As mentioned above, by increasing the permeability of the supercritical gas to the fine parts and selectively including the third component in the supercritical gas, we can remove all possible contamination of the fine parts and optimize each process. High quality semiconductors can be obtained.

次に、超臨界ガスとしてCO2を使った場合の実施例を
列記する。
Next, examples in which CO2 is used as the supercritical gas will be listed.

〈実施例1〉 基板(Si)の表面に超純水を付着させ、圧力150a
tm、温度50℃の超臨界炭酸ガスを接触させたところ
、超純水は、完全に排除でき、超純水中に溶解する有機
物(全有機炭素量TOC=4’6PPb)は、基板上に
残らなかった。
<Example 1> Ultrapure water was attached to the surface of a substrate (Si), and a pressure of 150a was applied.
tm, when brought into contact with supercritical carbon dioxide gas at a temperature of 50°C, ultrapure water can be completely removed, and organic substances dissolved in ultrapure water (total organic carbon content TOC = 4'6PPb) are deposited on the substrate. There was nothing left.

〈実施例2〉 native S j 02の存在する基板を実施例1
の条件下で、超臨界炭酸ガス中にH(1,HFを含有さ
せて接触させ、最終的に超臨界炭酸ガス単独で接触させ
てから後に、基板表面に超純水を滴下したところ、疎水
性を示し、native S 102が除去できたこと
を示した。
<Example 2> A substrate on which native S j 02 exists is used as Example 1.
Under these conditions, H (1, HF) was added to supercritical carbon dioxide gas and brought into contact, and after finally contacting with supercritical carbon dioxide gas alone, ultrapure water was dropped onto the surface of the substrate. This showed that native S 102 could be removed.

〈実施例3〉 実施例1及び2を実施した後に、熱酸化を実施したとこ
ろ、基板表面に5iOz膜を形成できた。
<Example 3> After implementing Examples 1 and 2, thermal oxidation was performed, and a 5iOz film was successfully formed on the substrate surface.

また、超臨界ガス中にN2と02との混合ガスを基板に
接触させたところ、基板表面にSiO2膜(厚み約20
0人)を形成した。破壊電圧の測定の評価によっても良
質な膜であった。このことから、CO2零四気下であっ
てもCO2に影響されず。
In addition, when a mixed gas of N2 and 02 in supercritical gas was brought into contact with the substrate, an SiO2 film (with a thickness of approximately 20 mm) was formed on the surface of the substrate.
0 people) were formed. The film was also of good quality as evaluated by measuring the breakdown voltage. From this, it is unaffected by CO2 even in environments with zero CO2.

酸素原子を持つ物質の含有によって酸化膜を形成できる
ことを証拠づけるものである。
This proves that an oxide film can be formed by containing a substance containing oxygen atoms.

〈実施例4〉 ポジタイプの有機塗膜を施した基板(トレンチ構造)で
あり、約10μのパターンエツチングを終了したものを
供試して、前述と同様の処理を実施したところ、塗膜は
、基板の破損なしに剥離除去された。従って、パターン
形成工程におけるホトレジストの除去と共に、その洗浄
もできることを示す。
<Example 4> A substrate (trench structure) coated with a positive type organic coating film, which had undergone pattern etching of approximately 10 μm, was subjected to the same treatment as described above. Peeling was removed without any damage. This shows that it is possible to remove and clean the photoresist in the pattern forming process.

〈実施例5〉 Sj基板に、0.5,0.3μmのコンタクトホール、
溝を刻み、トレンチ構造体を模擬した基板を同様に処理
した後に、破壊形分析手法により、その内部を調べたと
ころ、Siの他、何ら検知できず、清浄なトレンチ構造
基板を得た。超臨界炭酸ガスの微細構造体への浸透性を
示すものである。
<Example 5> Contact holes of 0.5 and 0.3 μm in Sj substrate,
After cutting a groove and treating a substrate simulating a trench structure in the same manner, the inside of the substrate was examined using a destructive analysis method. As a result, nothing other than Si could be detected, and a clean trench structure substrate was obtained. This shows the permeability of supercritical carbon dioxide gas into microstructures.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、歩留りが良く、欠陥発生が抑止される
良質な半導体が得られる。
According to the present invention, it is possible to obtain a high-quality semiconductor that has a high yield and suppresses the occurrence of defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の半導体鋸板と超臨界ガス
を接触させるための系統図、第2図は、超臨界炭酸ガス
と他の流体の流動性の比較図、第3図は、スチレンジビ
ニルベンゼン系樹脂の細孔を本発明による超臨界炭酸ガ
スとの接触した図である。 1・・・洗浄槽、2・・・超臨界ガス供給系、3・・排
出系、4・・・第三成分供給系、5・・・フィルタ、6
・・・加熱器、・7・・−。 ヲ 第1図 1  2/ 第2図 蛍イ狂シ梨 −2当 −ノ の ′5記@イi、灰第3
図 恨細力゛ス+ (N 47L3)
Fig. 1 is a system diagram for bringing a semiconductor saw plate into contact with supercritical gas according to an embodiment of the present invention, Fig. 2 is a comparison diagram of the fluidity of supercritical carbon dioxide gas and other fluids, and Fig. 3 1 is a diagram showing the pores of a styrene divinylbenzene resin brought into contact with supercritical carbon dioxide gas according to the present invention. DESCRIPTION OF SYMBOLS 1... Cleaning tank, 2... Supercritical gas supply system, 3... Discharge system, 4... Third component supply system, 5... Filter, 6
・・・heater,・7・・−. wo Figure 1 1 2/ Figure 2 Hotaru I Madoshi Pear -2 Tou -No'5 Record @i, Ash No. 3
Grudge power + (N 47L3)

Claims (1)

【特許請求の範囲】 1、すくなくとも超臨界ガスと接触する工程を経て製造
され、最小加工寸法が0.5μmより小さいことを特徴
とする半導体装置。 2、特許請求の範囲第1項において、 前記最小加工寸法が0.1μm以上1.5μm未満であ
ることを特徴とする半導体装置。
[Scope of Claims] 1. A semiconductor device manufactured through at least a step of contacting with supercritical gas, and characterized in that the minimum processing dimension is smaller than 0.5 μm. 2. The semiconductor device according to claim 1, wherein the minimum processing dimension is 0.1 μm or more and less than 1.5 μm.
JP2752988A 1988-02-10 1988-02-10 Semiconductor device Pending JPH01204427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2752988A JPH01204427A (en) 1988-02-10 1988-02-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2752988A JPH01204427A (en) 1988-02-10 1988-02-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01204427A true JPH01204427A (en) 1989-08-17

Family

ID=12223644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2752988A Pending JPH01204427A (en) 1988-02-10 1988-02-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01204427A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383065A (en) * 1989-08-28 1991-04-09 Masaru Nishikawa Method for forming pattern of resist, method for removing resist and method for washing substrate
US5232511A (en) * 1990-05-15 1993-08-03 Semitool, Inc. Dynamic semiconductor wafer processing using homogeneous mixed acid vapors
US5238871A (en) * 1990-11-26 1993-08-24 Seiko Epson Corporation Method of manufacturing a semiconductor device
US5238500A (en) * 1990-05-15 1993-08-24 Semitool, Inc. Aqueous hydrofluoric and hydrochloric acid vapor processing of semiconductor wafers
EP0822583A2 (en) * 1996-08-01 1998-02-04 Texas Instruments Incorporated Improvements in or relating to the cleaning of semiconductor devices
EP0829312A2 (en) * 1996-07-25 1998-03-18 Texas Instruments Incorporated Improvements in or relating to semiconductor devices
US5954911A (en) * 1995-10-12 1999-09-21 Semitool, Inc. Semiconductor processing using vapor mixtures
JP2006508307A (en) * 2002-11-26 2006-03-09 ウーデ・ハイ・プレッシャー・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High pressure device that closes the container in the clean room
US7507297B2 (en) 2002-05-20 2009-03-24 Panasonic Corporation Cleaning method and cleaning apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383065A (en) * 1989-08-28 1991-04-09 Masaru Nishikawa Method for forming pattern of resist, method for removing resist and method for washing substrate
US5232511A (en) * 1990-05-15 1993-08-03 Semitool, Inc. Dynamic semiconductor wafer processing using homogeneous mixed acid vapors
US5238500A (en) * 1990-05-15 1993-08-24 Semitool, Inc. Aqueous hydrofluoric and hydrochloric acid vapor processing of semiconductor wafers
US5238871A (en) * 1990-11-26 1993-08-24 Seiko Epson Corporation Method of manufacturing a semiconductor device
US5954911A (en) * 1995-10-12 1999-09-21 Semitool, Inc. Semiconductor processing using vapor mixtures
EP0829312A2 (en) * 1996-07-25 1998-03-18 Texas Instruments Incorporated Improvements in or relating to semiconductor devices
EP0829312A3 (en) * 1996-07-25 1999-09-15 Texas Instruments Incorporated Improvements in or relating to semiconductor devices
EP0822583A2 (en) * 1996-08-01 1998-02-04 Texas Instruments Incorporated Improvements in or relating to the cleaning of semiconductor devices
EP0822583A3 (en) * 1996-08-01 1998-04-01 Texas Instruments Incorporated Improvements in or relating to the cleaning of semiconductor devices
KR19980018262A (en) * 1996-08-01 1998-06-05 윌리엄 비.켐플러 I / O port and RAM memory addressing technology
US7507297B2 (en) 2002-05-20 2009-03-24 Panasonic Corporation Cleaning method and cleaning apparatus
JP2006508307A (en) * 2002-11-26 2006-03-09 ウーデ・ハイ・プレッシャー・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High pressure device that closes the container in the clean room

Similar Documents

Publication Publication Date Title
JP3409849B2 (en) Manufacturing equipment for cleaning liquid for cleaning electronic components
US5990060A (en) Cleaning liquid and cleaning method
US4711256A (en) Method and apparatus for removal of small particles from a surface
KR101431615B1 (en) Silicon surface preparation
JPH1027771A (en) Cleaning method and device
JPH08264500A (en) Cleaning of substrate
JP2005333015A (en) Method for desiccating microstructure, and microstructure obtained thereby
JP3940742B2 (en) Cleaning method
JP2008541479A (en) A method to remove polar fluid from the surface using supercritical fluid
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
JPH01204427A (en) Semiconductor device
JPH0878372A (en) Organic matter removing method and its apparatus
US6153532A (en) Methods and apparatuses for removing material from discrete areas on a semiconductor wafer
US3966517A (en) Manufacturing semiconductor devices in which silicon slices or germanium slices are etched and semiconductor devices thus manufactured
US6416586B1 (en) Cleaning method
US5439596A (en) Method of producing pure water, system therefor and cleaning method therefor
JP4817887B2 (en) Semiconductor substrate cleaning method
JP3332323B2 (en) Cleaning method and cleaning device for electronic component members
JP2004200653A (en) Method and device for forming adhesive surface of substrate
JP2891578B2 (en) Substrate processing method
JPH10128253A (en) Washing method for electronic members and device therefor
KR100211648B1 (en) Method for generating semiconductor wafer
KR20100049856A (en) Method for cleaning a substrate
JP3324824B2 (en) Cleaning equipment
Vig Contamination control methods-a review of recent progress