JPH01203997A - Power unit for nuclear reactor internal pump - Google Patents

Power unit for nuclear reactor internal pump

Info

Publication number
JPH01203997A
JPH01203997A JP63027669A JP2766988A JPH01203997A JP H01203997 A JPH01203997 A JP H01203997A JP 63027669 A JP63027669 A JP 63027669A JP 2766988 A JP2766988 A JP 2766988A JP H01203997 A JPH01203997 A JP H01203997A
Authority
JP
Japan
Prior art keywords
breakers
internal pump
vvvf
vary
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63027669A
Other languages
Japanese (ja)
Other versions
JP2677581B2 (en
Inventor
Naoki Asano
直樹 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63027669A priority Critical patent/JP2677581B2/en
Publication of JPH01203997A publication Critical patent/JPH01203997A/en
Application granted granted Critical
Publication of JP2677581B2 publication Critical patent/JP2677581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inverter Devices (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To suppress variation in reactor core flow rate in case of an instantaneous stop by interposing a MG set which insulates and separates an in-office power system and a stationary type variable voltage and variable frequency converting device (VVVF) as a higher harmonic generation source on the upstream side of the VVVF. CONSTITUTION:Breakers 3a and 3b provided by internal pumps are branched and connected to a high voltage bus 2 fed by an input-side cable run 1, and the MG sets consisting of electric motors 10a and 10b and electric generators 11a and 11b which are coupled mechanically with the breakers and driven are connected to the breakers. Then internal pump motors 7a and 7b are connected through breakers 12a and 12b, voltage boosting input transformers 4a and 4b, VVVFs 5a and 5b, and voltage boosting output transformers 6a and 6b. Even if an instantaneous stop is caused and the voltages of the electric motors 10a and 10b drop temporarily, the rotating speeds of the MG sets are maintained by the rotation of the electric motors 10a and 10b and generators 11a and 11b, so the rotations do not vary with inertial force. The outputs of the generator 11a and 11b do not vary, so there is no influence upon the VVVFs 5a and 5b provided on the downstream side and a reactor core flow rate does not vary.

Description

【発明の詳細な説明】 [発明の目的]   − (産業上の利用分野) 本発明は、沸騰水型原子炉の炉心内の冷却材を循環させ
るインターナルポンプ用の電源装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] - (Industrial Application Field) The present invention relates to a power supply device for an internal pump that circulates coolant in the core of a boiling water nuclear reactor.

(従来の技術) 沸騰水型原子力発電所では、原子炉内の冷却材を強制循
環させることにより、炉心部の熱除去及び蒸気発生を行
い、かつ冷却材の流量を変化させることによって炉心の
核反応度を調整して原子炉の出力を制御している。この
冷却材を強制的に循環させる手段として、炉心を収納し
た原子炉圧力容器内にポンプとモータを一体に結合した
インターナルポンプを10乃至12基設置したインター
ナルポンプ方式の循環装置がある。この従来の循環装置
の電源装置の構成を第5図にて説明する。入力側電路1
から高圧母線2に供給された電源より、電力を各インタ
ーナルポンプ毎に設けたしゃ断器3a、3b・・・によ
り分岐し、夫々入力変圧器4a、4b・・・にて降圧し
て静止型可変電圧可変周波数変換装置(以下VVVFと
略称する)5a、5 b−=−に供給する。このVVV
F5a、5b・・・によって変換した交流電力を次に出
力変圧器6a、6b・・・で昇圧して、インターナルポ
ンプモータ7a、7b・・・に供給して駆動する構成と
なっている。この構成において、原子炉出力を制御する
べくインターナルポンプモータ7a、7b・・・に加え
る可変電圧、可変周波数電力は、VVVF5a、5b・
・・を制御することによって得ることができる。しかし
ながらVVVF5a、5b・・・は半導体による電子回
路のため応答性が極めて速く、かつインターナルポンプ
についても構造的に慣性が小さいことから、運転制御に
際しては制御性が良好である反面、供給電源の一時的な
喪失(以下瞬停と略称する)に際しては、インターナル
ポンプの回転も一時的に降下し、このため炉心流量が急
激に低下する現象を呈する。またVVVF5a、5b・
・・は動作中に高調波が発生するという特性を有してい
る。
(Prior art) In a boiling water nuclear power plant, heat is removed from the reactor core and steam is generated by forced circulation of coolant within the reactor, and the core of the reactor is removed by changing the flow rate of the coolant. The output of the reactor is controlled by adjusting the reactivity. As a means for forcibly circulating this coolant, there is an internal pump type circulation system in which 10 to 12 internal pumps each having a pump and a motor integrally connected are installed in a reactor pressure vessel housing a reactor core. The configuration of the power supply device of this conventional circulation device will be explained with reference to FIG. Input side circuit 1
From the power source supplied to the high-voltage bus 2 from The voltage is supplied to variable voltage variable frequency converters (hereinafter abbreviated as VVVF) 5a, 5b-=-. This VVV
The AC power converted by F5a, 5b... is then boosted by output transformers 6a, 6b..., and is supplied to and driven by internal pump motors 7a, 7b.... In this configuration, the variable voltage and variable frequency power applied to the internal pump motors 7a, 7b... to control the reactor output are VVVFs 5a, 5b...
can be obtained by controlling... However, VVVF5a, 5b... have extremely fast response due to their semiconductor electronic circuits, and their internal pumps have low structural inertia. In the event of a temporary loss (hereinafter abbreviated as instantaneous power failure), the rotation of the internal pump also temporarily drops, resulting in a phenomenon in which the core flow rate rapidly decreases. Also VVVF5a, 5b・
... has the characteristic that harmonics are generated during operation.

(発明が解決しようとする課題) しかしながら瞬停に際して、インターナルポンプの回転
が一時的に降下し炉心流量が急激に低下すると、炉心に
おける熱除去能力を悪化させ、核燃料の熱的余裕を失う
可能性があり、最悪の場合炉心を損傷することとなる。
(Problem to be solved by the invention) However, in the event of a momentary power outage, if the rotation of the internal pump temporarily drops and the core flow rate drops sharply, the heat removal ability in the core may deteriorate and the thermal margin of the nuclear fuel may be lost. In the worst case scenario, this could damage the reactor core.

またVVV F5a、5b・・・から発生した高調波成
分はノイズとして、入力変圧器4a、4b・・・及びし
ゃ断器3a、3b・・・を潤性して高圧母線2を経て入
力側電路1に至り、さらに所内電源系統に伝播して行く
ので、所内の多くの電気設備にこの高調波成分によるノ
イズが加わることとなり、各電気機器の誤動作や不動作
を惹き起し、原子カプラントの運転に悪影響を及ぼすお
それがあった。
In addition, the harmonic components generated from the VVV F5a, 5b, etc. act as noise and lubricate the input transformers 4a, 4b,... and the circuit breakers 3a, 3b, etc., and pass through the high voltage bus 2 to the input side electric line 1. As the noise is further propagated to the station's power supply system, noise due to this harmonic component is added to many electrical equipment within the station, causing malfunctions or non-operations of various electrical equipment, and disrupting the operation of the nuclear coupler. There was a risk of adverse effects.

本発明の目的は、所内電源系統とVVVFの間にMGセ
ットを挿置して電気的に絶縁を施し、VVVFの諸特性
を失することなく、かつ瞬停に対しても変動しない電力
を供給し、併せてVVVFから発する高調波成分が所内
電源系統へ流入することを防止して、原子炉の安定した
運転と、所内電気設備の健全性を保つことのできる原子
炉インターナルポンプ用電源装置を提供することにある
The purpose of the present invention is to provide electrical insulation by inserting an MG set between the station power supply system and the VVVF, and to supply power that does not change even in the event of a momentary power outage without losing the various characteristics of the VVVF. At the same time, this is a power supply system for reactor internal pumps that prevents harmonic components emitted from the VVVF from flowing into the on-site power supply system, thereby maintaining stable operation of the reactor and the integrity of on-site electrical equipment. Our goal is to provide the following.

(課題を解決するための手段) インターナルポンプモータの駆動電源で、高調波Ω発生
源であるVVVFの上流側に、慣性を有すると共に所内
電源系統とVVVFを電気的に絶縁分離するMGセット
を介設する。
(Means for solving the problem) Install an MG set that has inertia and electrically isolates the in-house power supply system and VVVF on the upstream side of the VVVF, which is the source of harmonic Ω generation in the internal pump motor drive power supply. intervene.

(作用) 所内電源系統で発生した瞬停に対して、MGセットをそ
の運転により保有している回転の慣性力を放出して回転
数を変動させず、VVVFの電源として慣性を持つので
、VVVFに加わる電圧、周波数に変動がなく、インタ
ーナルポンプの回転低下は起きない。このため炉心の健
全性が確保できる。またMGセットを電動機と発電機は
機械的な結合となっていることから電気的に絶縁されて
いるので、VVVFより発生した高調波は所内電源系統
に潤性伝播しないので、所内電気設備の作動に悪影響を
与えない。
(Function) In response to a momentary power failure that occurs in the on-site power supply system, the MG set releases the rotational inertia it possesses through its operation, and the rotational speed does not fluctuate. There are no fluctuations in the voltage or frequency applied to the internal pump, and no reduction in internal pump rotation occurs. Therefore, the integrity of the reactor core can be ensured. In addition, since the motor and generator of the MG set are mechanically connected, they are electrically insulated, so the harmonics generated by the VVVF do not propagate to the station power supply system, which prevents the operation of the station electrical equipment. does not have a negative effect on

(実施例) 本発明の実施例を構成図を参照して説明する。(Example) Embodiments of the present invention will be described with reference to configuration diagrams.

第1図は第1の実施例を示し、入力側電路1より給電さ
れた高圧母線2に、各インターナルポンプ毎に設けたし
ゃ断器3a、3b・・・を分岐接続し、夫々に電動機1
0a、10b・・・と、これと機械的に結合して駆動さ
れる発電機11a、llb・・・よりなるMGセットを
接続する。次にしゃ断器12a、12b・・・、降圧用
の入力変圧器4a、4b・・・と、VVVF5a、5b
・・・及び昇圧用の出力変圧器6a、6b・・・を介し
てインターナルポンプモータ7a、7b・・・を接続し
て構成する。この構成によると、原子炉運転中に入力側
電路1及び高圧母線2の所内電源系統において瞬停が発
生すると、−時的に電圧が低下して電動機10a、10
b・・・に加わる電圧も低下するが、MGセットを回転
数はその電動機10a、10b・・・及び発電機11a
、llb・・・が回転により保有する慣性力により変動
しない。したがって発電機11a、11b・・・の出力
にも変動は生じないので、この下流に設けてあり発電機
11a、llb・・・を電源とするVVVF5a、5b
・・・にも同等影響がなく、インターナルポンプモータ
7a、7b・・・の回転数が一時的に低下することがな
いので、炉心流量の変化もなく、炉心流量の急激な減少
時に伴う炉心損傷が防止できる。 またMGセットを電
動機10a、10 b−・・と発電機11a、llb・
・・どの間を機械的に結合していて、このため電気的に
絶縁隔離されているので、VVVF5a、5b・・・で
発生した高調波成分は、発電機11a、llb・・・か
ら電動機10a、10b・・・へ伝播されないので、高
圧母線2や入力側電路1の所内電源系統への流入がなく
、所内の他の電気設備を誤動作、不動作させる心配がな
い。
FIG. 1 shows a first embodiment, in which circuit breakers 3a, 3b, .
0a, 10b, . . . and a generator 11a, llb, . . . that are mechanically coupled and driven. Next, the circuit breakers 12a, 12b..., the step-down input transformers 4a, 4b..., and the VVVFs 5a, 5b.
. . and internal pump motors 7a, 7b, . . . are connected via step-up output transformers 6a, 6b, . According to this configuration, when an instantaneous power outage occurs in the in-house power supply system of the input side electric circuit 1 and the high voltage bus 2 during reactor operation, the voltage temporarily decreases and the electric motors 10a, 10
The voltage applied to b... also decreases, but the rotation speed of the MG set is lower than that of the motors 10a, 10b... and generator 11a.
, llb... do not fluctuate due to the inertial force possessed by rotation. Therefore, since no fluctuation occurs in the output of the generators 11a, llb...
There is no similar effect on the internal pump motors 7a, 7b, etc., and the rotational speed of the internal pump motors 7a, 7b, etc. does not temporarily decrease, so there is no change in the core flow rate, and the core flow rate does not change due to a sudden decrease in the core flow rate. Damage can be prevented. In addition, the MG set includes electric motors 10a, 10b-... and generators 11a, llb-...
Since they are mechanically coupled and electrically isolated, the harmonic components generated in VVVFs 5a, 5b, etc. are transmitted from the generators 11a, llb... to the electric motor 10a. , 10b, . . . , the high-voltage bus 2 and the input-side electric circuit 1 do not flow into the station power supply system, and there is no fear that other electrical equipment in the station will malfunction or malfunction.

第2図は第2の実施例で、電源側を2系統に集約したも
ので、VVVF以下を5a、5b・・・と5c、5d・
・・の2群に分割し、夫々にしゃ断器3aと3b、MG
セットを電動機10aと10b、発電機11aとllb
さらにしゃ断器12aと12b、入力変圧器4aと4b
を設けていて、作用と効果は第1の実施例と同様である
がMGセットを含む電源側機器の点数が少なく、保守を
容易としている。
Figure 2 shows the second embodiment, in which the power supply side is integrated into two systems, with VVVF and below being 5a, 5b... and 5c, 5d...
Divided into two groups, each with circuit breaker 3a and 3b, MG
The set includes electric motors 10a and 10b, generators 11a and llb
Furthermore, circuit breakers 12a and 12b, input transformers 4a and 4b
The operation and effect are similar to those of the first embodiment, but the number of power supply side devices including the MG set is small, making maintenance easier.

第3図は第3の実施例で、電源側機器のしゃ断器3と1
2、及び電動機10、発電機11と入力変圧器4を1系
統に集約し、MGセットを単機となるためその保有する
慣性力を大きくして電源変動に対する安定度を良好にし
たものである。
Figure 3 shows the third embodiment, in which circuit breakers 3 and 1 of the power supply side equipment
2, electric motor 10, generator 11, and input transformer 4 are integrated into one system, and since the MG set is a single unit, its inertia is increased and stability against power fluctuations is improved.

第4図は第4の実施例を示し、第3の実施例のMGセッ
トを、はずみ車13を追加装備すると共に発電機11の
出力電圧をVVVF5a、5b・・・に見合った低電圧
に選定して、入力変圧器4を省いたもので、電源の慣性
を更に大として瞬停時における電源変動を極めて少なく
し、安定度を向上させ、かつ入力変圧器を不要にした。
FIG. 4 shows a fourth embodiment, in which the MG set of the third embodiment is additionally equipped with a flywheel 13, and the output voltage of the generator 11 is selected to be a low voltage commensurate with the VVVFs 5a, 5b, etc. In this case, the input transformer 4 is omitted, and the inertia of the power supply is further increased to extremely reduce power fluctuations during instantaneous power outages, improving stability and eliminating the need for an input transformer.

[発明の効果] 以上本発明によれば、夫々の構成上慣性の小さいインタ
ーナルポンプやVVVFを採用した原子炉において、そ
の電源に慣性を付与したので、所内電源系統の瞬停に対
して炉心流量の変動が抑制され、炉心損傷を防止できる
。更に所内電源系統とVVVFを電気的に隔離したので
、VVVFより発生する高調波が所内各所の電気設備に
伝播することが防止され、安定したプラントの運転が行
なえて信頼性が向上する効果がある。
[Effects of the Invention] According to the present invention, inertia is imparted to the power supply in a nuclear reactor that employs an internal pump or VVVF, each of which has a small inertia due to its configuration, so that the reactor core is protected against momentary power failures in the on-site power supply system. Fluctuations in flow rate are suppressed and core damage can be prevented. Furthermore, since the in-house power supply system and the VVVF are electrically isolated, harmonics generated by the VVVF are prevented from propagating to electrical equipment in various parts of the in-house facility, resulting in stable plant operation and improved reliability. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す原子炉インターナ
ルポンプ用電源装置の概略構成図、第2図は第2の実施
例の概略構成図、第3図は第3の実施例の概略構成図、
第4図は第4の実施例を示す概略構成図、第5図は従来
の原子炉インターナルポンプモータ用電源装置の概略構
成図である。 1・・・入力側電路  2・・・高圧母線4.4a、4
b・・・入力変圧器 5a、5b、5c、5d・−VVVF 7a、7b、7c、7d・・・インターナルポンプモー
タ 10.10a、10 b −・・電動機11、lla、
1lb−・・発電機 13・・・はずみ車
FIG. 1 is a schematic diagram of a power supply device for a nuclear reactor internal pump showing a first embodiment of the present invention, FIG. 2 is a schematic diagram of a second embodiment, and FIG. 3 is a diagram of a third embodiment. A schematic configuration diagram of
FIG. 4 is a schematic configuration diagram showing a fourth embodiment, and FIG. 5 is a schematic configuration diagram of a conventional power supply device for a nuclear reactor internal pump motor. 1... Input side electric circuit 2... High voltage bus bar 4.4a, 4
b...Input transformer 5a, 5b, 5c, 5d...-VVVF 7a, 7b, 7c, 7d...Internal pump motor 10.10a, 10b...Electric motor 11, lla,
1lb-... Generator 13... Flywheel

Claims (1)

【特許請求の範囲】[Claims] 原子炉圧力容器内に設置した冷却材循環用インターナル
ポンプのモータ駆動用として所内電源より電力を供給さ
れる可変電圧、周波数変換装置において、電圧と周波数
の変換に静止型可変電圧可変周波数変換装置を設けると
共にこの入力側で電源との間に電気的に隔離されかつ慣
性を有するMGセットを介設したことを特徴とする原子
炉インターナルポンプ用電源装置。
A stationary variable voltage variable frequency converter is used to convert voltage and frequency in a variable voltage and frequency converter that is supplied with power from an on-site power source to drive the motor of an internal pump for coolant circulation installed in a reactor pressure vessel. What is claimed is: 1. A power supply device for a nuclear reactor internal pump, characterized in that an MG set electrically isolated from the power source and having inertia is interposed on the input side of the MG set.
JP63027669A 1988-02-10 1988-02-10 Power supply unit for reactor internal pump Expired - Lifetime JP2677581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027669A JP2677581B2 (en) 1988-02-10 1988-02-10 Power supply unit for reactor internal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027669A JP2677581B2 (en) 1988-02-10 1988-02-10 Power supply unit for reactor internal pump

Publications (2)

Publication Number Publication Date
JPH01203997A true JPH01203997A (en) 1989-08-16
JP2677581B2 JP2677581B2 (en) 1997-11-17

Family

ID=12227356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027669A Expired - Lifetime JP2677581B2 (en) 1988-02-10 1988-02-10 Power supply unit for reactor internal pump

Country Status (1)

Country Link
JP (1) JP2677581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692333B2 (en) 2005-04-11 2010-04-06 Hitachi-Ge Nuclear Energy, Ltd. Adjustable speed drive system for primary loop recirculation pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171488A (en) * 1984-02-17 1985-09-04 株式会社日立製作所 Power supply device for driving internal pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171488A (en) * 1984-02-17 1985-09-04 株式会社日立製作所 Power supply device for driving internal pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692333B2 (en) 2005-04-11 2010-04-06 Hitachi-Ge Nuclear Energy, Ltd. Adjustable speed drive system for primary loop recirculation pump

Also Published As

Publication number Publication date
JP2677581B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
Alsmadi et al. Detailed investigation and performance improvement of the dynamic behavior of grid-connected DFIG-based wind turbines under LVRT conditions
Xiang et al. Coordinated control of an HVDC link and doubly fed induction generators in a large offshore wind farm
US7939959B2 (en) Wind turbine with parallel converters utilizing a plurality of isolated transformer windings
EP2400655A2 (en) Power conversion system and method for a rotary power generation system
EP2256893A1 (en) Series voltage compensator and method for series voltage compensation in electrical generators
JP2009185816A (en) High frequency electrically driven device with multipolar motor for gas pipeline and storage compression use
US9276457B2 (en) Electric drivetrain of a device, and gas compression equipment including such a drivetrain
US5896434A (en) Power supply system for driving reactor coolant recirculation pumps
JPH01203997A (en) Power unit for nuclear reactor internal pump
US9300131B2 (en) Internal electrification scheme for power generation plants
Gjerde et al. Fault tolerance of a 10 MW, 100 kV transformerless offshore wind turbine concept with a modular converter system
Yazdi et al. Adaptation of VSC-HVDC Connected DFIG Based Offshore Wind Farm to Grid Codes: A Comparative Analysis.
Valikhani et al. An overview of DFIG ride through strategies under grid faults
EP2438668A2 (en) Improved internal electrification scheme for power generation plants
Abbas et al. Power system transient stability case study: a power sub-station plant in Sudan
CN214380293U (en) Generating set for supplying power to main pump of nuclear power plant
CN216959340U (en) Electric generating set system of nuclear power plant's main pump power supply
Kairous et al. Advanced Control Strategy based on second order sliding mode of DFIG for Power System Fault Ride Through
SU1259415A1 (en) Method of faultless power supply to critical consumer
CN207664637U (en) Vapour, electric hybrid subsidiary engine can adjust energy saving, electricity generation system
JP3816198B2 (en) Power supply system for reactor coolant recirculation pump drive
Azmy et al. Assessment of fault-ride through capability of grid-connected brushless DFIG wind turbines
JP6967995B2 (en) Engine generator system and its control method as well as cogeneration system
Grund et al. AC/DC system dynamic performance-transient stability augmentation with dynamic reactive power compensation
Li et al. An improved frequency modulation method for fault ride through of MMC-HVDC systems connected DFIG wind farms

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11