JPH01203994A - Control rod for nuclear reactor - Google Patents
Control rod for nuclear reactorInfo
- Publication number
- JPH01203994A JPH01203994A JP63027634A JP2763488A JPH01203994A JP H01203994 A JPH01203994 A JP H01203994A JP 63027634 A JP63027634 A JP 63027634A JP 2763488 A JP2763488 A JP 2763488A JP H01203994 A JPH01203994 A JP H01203994A
- Authority
- JP
- Japan
- Prior art keywords
- region
- long
- neutron
- life
- absorbing material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003780 insertion Methods 0.000 claims abstract description 93
- 230000037431 insertion Effects 0.000 claims abstract description 93
- 239000000956 alloy Substances 0.000 claims abstract description 81
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 80
- 239000006096 absorbing agent Substances 0.000 claims abstract description 60
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052580 B4C Inorganic materials 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 30
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000007865 diluting Methods 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 12
- 239000011358 absorbing material Substances 0.000 claims description 81
- 230000009257 reactivity Effects 0.000 claims description 73
- 239000003085 diluting agent Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 230000004323 axial length Effects 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 abstract description 36
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 abstract description 35
- 238000003860 storage Methods 0.000 abstract description 8
- 229910001203 Alloy 20 Inorganic materials 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000010521 absorption reaction Methods 0.000 description 39
- 239000000843 powder Substances 0.000 description 18
- 230000005484 gravity Effects 0.000 description 12
- 230000004308 accommodation Effects 0.000 description 10
- 239000011295 pitch Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000012856 packing Methods 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000003758 nuclear fuel Substances 0.000 description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-BJUDXGSMSA-N Boron-10 Chemical compound [10B] ZOXJGFHDIHLPTG-BJUDXGSMSA-N 0.000 description 2
- BCEYEWXLSNZEFA-UHFFFAOYSA-N [Ag].[Cd].[In] Chemical compound [Ag].[Cd].[In] BCEYEWXLSNZEFA-UHFFFAOYSA-N 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229910003440 dysprosium oxide Inorganic materials 0.000 description 2
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(iii) oxide Chemical compound O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 description 2
- 229910001940 europium oxide Inorganic materials 0.000 description 2
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- -1 natural boron (B) Chemical class 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001029 Hf alloy Inorganic materials 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- OANFWJQPUHQWDL-UHFFFAOYSA-N copper iron manganese nickel Chemical compound [Mn].[Fe].[Ni].[Cu] OANFWJQPUHQWDL-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 1
- 229940075613 gadolinium oxide Drugs 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000002362 hafnium Chemical class 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910001954 samarium oxide Inorganic materials 0.000 description 1
- 229940075630 samarium oxide Drugs 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Particle Accelerators (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、沸騰水型原子炉等の軽水炉の炉出力を制御す
る原子炉用制御棒に係り、特に原子炉停止余裕を高め、
長寿命化を図った高反応度長寿命型原子炉用制御棒に関
する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a control rod for a nuclear reactor that controls the reactor power of a light water reactor such as a boiling water reactor, and particularly relates to a control rod for a nuclear reactor that controls the reactor power of a light water reactor such as a boiling water reactor. increase,
This article relates to control rods for high-reactivity, long-life nuclear reactors that have a long service life.
(従来の技術)
従来の沸騰水型原子炉用制御棒1は、第9図および第1
0図に示すように中央タイロッド2に細長いU字状シー
ス3を固着して形成した複数個のウィング4内に多数の
中性子吸収棒5を装填して構成される。中性子吸収棒5
は例えばステンレス鋼製被覆管内に中性子吸収材として
ボロンカーバイド(84C)粉末を充填して調製される
。(Prior art) A conventional control rod 1 for a boiling water reactor is shown in FIGS. 9 and 1.
As shown in FIG. 0, a large number of neutron absorbing rods 5 are loaded into a plurality of wings 4 formed by fixing an elongated U-shaped sheath 3 to a central tie rod 2. Neutron absorption rod 5
is prepared, for example, by filling a stainless steel cladding tube with boron carbide (84C) powder as a neutron absorbing material.
この原子炉用制御棒1を沸騰水型原子炉等の炉心部に挿
入すると、シース3内に充填した中性子吸収材は中性子
の照射を受け、中性子吸収能力を次第に失うため、原子
炉用制御棒1は所定期間の運転に供した後に定期的に交
換される。When this nuclear reactor control rod 1 is inserted into the reactor core of a boiling water reactor, etc., the neutron absorbing material filled in the sheath 3 is irradiated with neutrons and gradually loses its neutron absorption ability. 1 is periodically replaced after being operated for a predetermined period of time.
ところで、原子炉の炉心部において使用されるt、IJ
III棒は、各ウィングの全面に亘って一様に中性子
照射を受けるものではなく、例えば各ウィングの挿入先
端領域および外側縁領域は、強度の中性子照射を受ける
。そのため、その領域に充填された中性子吸収材は多量
の中性子を吸収して他領域より早く消耗し、早期に核的
寿命に達する。したがって、他領域に充填された中性子
吸収材がまだ十分核的寿命を残しているにも拘らず、原
子炉用制御棒全体を放射性廃棄物として廃棄しなければ
ならない不経済性があった。一方、原子炉用11J御棒
の交換頻度が高いと交換作業に長時間を要するため、原
子炉の稼動率が低下し、大きな経済的デメリットの原因
となる。その他作末日の被曝線最も増大するおそれも考
えられる。By the way, t, IJ used in the core of a nuclear reactor
The III rod is not uniformly irradiated with neutrons over the entire surface of each wing; for example, the insertion tip region and the outer edge region of each wing are subjected to intense neutron irradiation. Therefore, the neutron absorbing material filled in that region absorbs a large amount of neutrons and is consumed faster than other regions, reaching the end of its nuclear lifetime earlier. Therefore, even though the neutron absorbing material filled in other areas still has sufficient nuclear life left, it is uneconomical to discard the entire reactor control rod as radioactive waste. On the other hand, if the 11J control rod for the nuclear reactor is replaced frequently, the replacement work takes a long time, which reduces the operating rate of the reactor and causes a major economic disadvantage. There is also a risk that radiation exposure will increase the most on the last day of the crop.
そのようなおそれを解決するために強汝の中性子照射を
受ける制御棒の領域に核的寿命が長い、例えばハフニウ
ムのような長寿命型中性子吸収材を部分的に配置した原
子炉用制御棒を本発明者は開発した。In order to resolve such concerns, nuclear reactor control rods have been developed in which a long-life neutron absorbing material such as hafnium, which has a long nuclear life, is partially placed in the area of the control rod that is subject to intense neutron irradiation. The inventor has developed this.
この原子炉用ff1lJ m棒は、特開rfr453−
74697号公報に開示されている通り、ウィングの先
端部および兎端部に長寿命型中性子吸収材を配置したハ
イブリッド構造を有する。このハイブリッド型の原子炉
用制御棒は通常型制御棒の2倍程度の寿命を得るに至っ
た。This nuclear reactor ff1lJ m rod is JP-A RFR453-
As disclosed in Japanese Patent No. 74697, it has a hybrid structure in which long-life neutron absorbers are placed at the tip and rabbit ends of the wings. This hybrid type nuclear reactor control rod has achieved a lifespan approximately twice that of a conventional control rod.
一方、従来の原子炉用a11tll棒は、ウィングの全
領域に亘って中性子吸収材を均一な密度で充填しており
、軸方向の各領域における中性子吸収能力すなわち反応
度が等しく調製されているが、前記のように中性子照射
量の不均一によって経時的に反応度にばらつきが生じ、
原子炉の運転サイクル末朋においては部分的に原子炉停
止余裕が低下する可能性がある。On the other hand, in conventional A11TLL rods for nuclear reactors, the entire wing area is filled with neutron absorbing material at a uniform density, and the neutron absorption capacity, or reactivity, in each area in the axial direction is adjusted to be equal. As mentioned above, the reactivity varies over time due to non-uniform neutron irradiation,
At the end of a nuclear reactor's operating cycle, there is a possibility that the reactor shutdown margin will partially decrease.
すなわち、上記の原子炉用制御棒を使用して原子炉を所
定期間運転した場合における原子炉停止余裕(未臨界痕
)の炉心軸方向分布は、燃料集合体の設計仕様または原
子炉の運転方法によって若干の相違を生じるが、基本的
には第5図(A>に示す分布となる。すなわち、原子炉
停止余裕は炉心の上端および下端において大きくなる一
方、上端より若干下った位置において最小の値をとる。In other words, when the reactor is operated for a predetermined period using the above-mentioned reactor control rods, the distribution of the reactor shutdown margin (subcritical trace) in the reactor core axis direction is determined by the design specifications of the fuel assembly or the reactor operating method. Although there will be slight differences depending on the situation, the distribution will basically be as shown in Figure 5 (A>. In other words, the reactor shutdown margin will be large at the upper and lower ends of the core, while it will be minimum at a position slightly below the upper end. Takes a value.
この原因としては、次のことが考えられる。Possible causes of this are as follows.
原子炉炉心の軸方向有効長さをLとした場合、特に炉心
下端から3/4・Lの位置ないし上端にかけての炉心上
端領域近傍においては、運転時の気泡率(ボイド串)が
高く、炉の出力密度が相対的に低下するため、核分裂性
物質である質ffi&235のウラン(LJ−235>
の残存aが比較的多い。また発生する気泡(ボイド)に
よって中性子スベクI・ルの硬化現象を生じる。その結
果、プルトニウム生成反応(中性子吸収反応)が促進さ
れる。このため、原子炉の運転後において炉心上部の核
分裂性物質の濃度が高くなり、その領域の原子炉停止余
裕が相対的に低下する原因となっている。When the effective length of the reactor core in the axial direction is L, the bubble rate (void skewer) during operation is high, especially in the vicinity of the upper end region of the reactor core from the position 3/4 L from the lower end of the reactor core to the upper end. Since the power density of uranium (LJ-235>
There is a relatively large amount of residual a. Further, the generated air bubbles (voids) cause a hardening phenomenon of neutron radiation. As a result, the plutonium production reaction (neutron absorption reaction) is promoted. For this reason, after the reactor has been operated, the concentration of fissile material in the upper part of the reactor core increases, causing a relative reduction in the reactor shutdown margin in that area.
一方、今後の原子炉は運転経済性の向上に対する要請か
ら核燃料の高燃焼度化および運転サイクルの長期化への
移行は必至の情勢である。その具体的な対応として濃縮
度の高い核燃料の採用が進み、それに伴って核的寿命が
長く、かつ原子炉停止余裕が大きな原子炉用制御棒が強
く求められる。On the other hand, it is inevitable that future nuclear reactors will shift to higher burn-up of nuclear fuel and longer operating cycles due to the demand for improved operating economy. As a concrete response to this, the adoption of highly enriched nuclear fuel is progressing, and along with this, there is a strong demand for control rods for nuclear reactors that have a long nuclear life and a large margin for reactor shutdown.
(発明が解決しようとする課題)
従来の原子炉用制御棒を高濃縮度の核燃料を装荷した原
子炉に採用すると原子炉停止余裕が相対的に低下し、短
い運転サイクル毎に原子炉用制御棒を頻繁に交換しなけ
ればならない。ところが原子炉用制御棒の交換作業にあ
たっては、原子炉を停止し、さらに交換すべき制御棒の
周囲に配設された多数の燃料集合体を炉心から予め排除
する煩雑な作業が必要となる。したがって、制御棒の交
換のための原子炉停止が頻発し、また停止111]間が
長期化することにより原子炉の運転効率、経済性が著し
く低下する。さらに、管理労力が著しく増大する可能性
がある。(Problem to be solved by the invention) When conventional nuclear reactor control rods are used in a nuclear reactor loaded with highly enriched nuclear fuel, the reactor shutdown margin is relatively reduced, and the reactor control rods are required to be used for each short operation cycle. Rods must be replaced frequently. However, replacing control rods for a nuclear reactor requires the complicated work of shutting down the reactor and removing from the reactor core a large number of fuel assemblies arranged around the control rods to be replaced. Therefore, reactor shutdowns for control rod replacement occur frequently, and the shutdown periods (111) are prolonged, resulting in a significant drop in the operational efficiency and economic efficiency of the nuclear reactor. Additionally, administrative effort can be significantly increased.
本発明は上述した事情を考慮してなされたもので、原子
炉停止中の未臨界度が浅くなる部分の反応度を高めて原
子炉停止余裕を効果的に増大させるとともに核的寿命の
長期化を図った高反応度長寿命型原子炉用制御棒を提供
することを目的とする。The present invention has been made in consideration of the above-mentioned circumstances, and it increases the reactivity of the portion where subcriticality becomes shallow during reactor shutdown, effectively increasing the reactor shutdown margin and prolonging the nuclear life. The purpose of this research is to provide a control rod for a nuclear reactor with high reactivity and long life.
(課題を解決するための手段)
本発明に係る原子炉用制御棒は先端構造材と末端構造材
とをタイロッドで結合し、上記タイ0ツドに金属製シー
スを固着してウィングを構成した原子炉用制御棒におい
て、前記ウィング内に形成される中性子吸収材充填空間
を、挿入先端側の第1領域とこの第1領域に隣接する挿
入末端側のiT2領域とに区画し、前記第1領域には長
寿命型中性子吸収材を希釈材にて希釈した長寿命型中性
子吸収材希釈合金を収容した高反応度領域を有し、前記
希釈合金に複数の孔を列状に穿設し、上記孔内に前記長
寿命型中性子吸収材以外の中性子吸収材を充填したもの
である。(Means for Solving the Problems) A control rod for a nuclear reactor according to the present invention has an atom structure in which a tip structure member and a terminal structure member are connected by a tie rod, and a metal sheath is fixed to the tie rod to form a wing. In the reactor control rod, the neutron absorbing material filling space formed in the wing is divided into a first region on the insertion tip side and an iT2 region on the insertion end side adjacent to the first region, and the first region has a high reactivity region containing a long-life neutron absorber diluted alloy obtained by diluting a long-life neutron absorber with a diluent, and a plurality of holes are bored in a row in the diluted alloy, and the above-mentioned The hole is filled with a neutron absorbing material other than the long-life neutron absorbing material.
また、本発明に係る原子炉用制御棒は第1領域に形成さ
れる高反応度領域は中性子吸収材充填空間の軸方向長さ
の少なくともほぼ1/4の長さ空間であり、この高反応
度領域は挿入先端側の高反応度長寿命部と挿入末端側の
高反応度部に区画され、第1領域に収容される希釈合金
は挿入先端側から挿入末端側に向って含有長寿命型中性
子吸収材の11度が減少する方向に変化させるとともに
希釈材はジルコニウムあるいはチタンを主成分とする物
質であるようにしたものである。Further, in the control rod for a nuclear reactor according to the present invention, the high reactivity region formed in the first region is a space with a length of at least approximately 1/4 of the axial length of the neutron absorbing material filling space; The high-reactivity region is divided into a high-reactivity, long-life region on the insertion tip side and a high-reactivity, long-life region on the insertion end side. The 11 degrees of the neutron absorbing material is changed in the direction of decreasing, and the diluent is made of a substance containing zirconium or titanium as a main component.
さらに、本発明の原子炉用Ill W棒は金TA ¥J
シース内の中性子吸収材充填空間には挿入先端から挿入
末端に向って上記充填空間全長の少なくとも1/4以上
の長さを第1領域に形成し、この第1領域に長寿命型中
性子吸収材希釈合金を収容し、上記希釈合金にウィング
幅方向に延びる横孔を列状に形成するとともに、前記希
釈合金の挿入先端付近の横孔はガスブレナムを形成し、
この横孔に続く挿入末端側の少なくとも1個の横孔に長
寿命型中性子吸収材を充填し、この長寿命型中性子吸収
材を充填した横孔に続く挿入末端側の原子炉停止時未臨
界度が浅くなる領域の各横孔は長孔あるいは孔間ピッチ
を密にしてボロンカーバイドなどの中性子吸収材を充填
し、さらに、これらの横孔に続く第1領域の挿入末端側
の横孔に中性子吸収材を配置し、第1領域の挿入末端側
の第2領域には、ボロンカーバイドなどの中性子吸収材
を充填したものである。Furthermore, the Ill W rod for nuclear reactors of the present invention is made of gold TA ¥J
The neutron absorbing material filling space in the sheath is formed with a first region having a length of at least 1/4 or more of the total length of the filling space from the insertion tip to the insertion end, and a long-life neutron absorbing material is formed in this first region. accommodating a diluted alloy and forming a row of horizontal holes extending in the wing width direction in the diluted alloy, and the horizontal hole near the insertion tip of the diluted alloy forming a gas blennium;
At least one horizontal hole on the insertion end side following this horizontal hole is filled with a long-life neutron absorbing material, and the insertion end side next to the horizontal hole filled with this long-life neutron absorbing material is subcritical when the reactor is shut down. Each horizontal hole in the region where the depth becomes shallow is filled with a neutron absorbing material such as boron carbide with long holes or a dense pitch between the holes, and furthermore, the horizontal hole on the insertion end side of the first region following these horizontal holes is filled with a neutron absorbing material such as boron carbide. A neutron absorbing material is arranged, and a second region on the insertion end side of the first region is filled with a neutron absorbing material such as boron carbide.
さらにまた、本発明に係る原子炉用制御棒は上述した目
的を達成するために先端構造材と末端構造材とをタイロ
ッドで結合し、上記タイロッドに金属製シースを固着し
てウィングを構成した原子炉用制御棒において、前記ウ
ィング内に形成される中性子吸収材充填空間に、挿入先
端側から挿入末端側のほぼ全長にわたり長寿命型中性子
吸収材希釈合金を収容し、上記希釈合金に形成される収
容孔にボロンカーバイド等の中性子吸収材が充填された
ものである。Furthermore, in order to achieve the above-mentioned object, the control rod for a nuclear reactor according to the present invention has an atom structure in which a tip structure member and a terminal structure member are connected by a tie rod, and a metal sheath is fixed to the tie rod to form a wing. In the reactor control rod, a long-life neutron absorber diluted alloy is housed in the neutron absorber filling space formed in the wing over almost the entire length from the insertion tip side to the insertion end side, and the long-life neutron absorber diluted alloy is formed in the diluted alloy. The accommodation hole is filled with a neutron absorbing material such as boron carbide.
(作用)
この原子炉用制御棒は、挿入先端側の第1領域と挿入末
端側の第2領域とに区画し、第1領域には原子炉停止余
裕が低下する軸方向範囲において、ウィングの金属製シ
ース内に収容される希釈材に希釈されたハフニウム合金
等の長寿命型中性子吸収材希釈合金に複数の孔を列状に
穿設し、8孔にハフニウム以外のベレット状あるいは粉
末状中中性子吸収材を充填させて高反応度領域とし、前
記第2領域にはボロンカーバイド等の中性子吸収物質を
充填した中性子吸収棒を配列し、高反応r!IT4域で
は希釈合金に含有される長寿命型中性子吸収材と粉末状
またはベレット状中性子材とにより、この部分の反応度
を高め、原子炉停止余裕を効果的に増大させるとともに
、長寿命型中性子吸収材と中性子吸収材とで中性子の吸
収を分担するので長寿命化を図ることができる。(Function) This control rod for a nuclear reactor is divided into a first region on the insertion tip side and a second region on the insertion end side. A long-life neutron absorber diluted alloy, such as a hafnium alloy, is diluted with a diluent contained in a metal sheath, and multiple holes are drilled in a row, and 8 holes are filled with pellet-shaped or powdered medium other than hafnium. A neutron absorbing material is filled to form a high reactivity region, and neutron absorbing rods filled with a neutron absorbing substance such as boron carbide are arranged in the second region to provide a high reactivity r! In the IT4 region, the long-life neutron absorbing material and powdered or pellet-like neutron material contained in the diluted alloy increase the reactivity of this part, effectively increasing the reactor shutdown margin, and increasing the long-life neutron absorption material. Since the absorbing material and the neutron absorbing material share the absorption of neutrons, a longer life can be achieved.
また、中性子照射量が特に多くなる各ウィングの挿入先
端領域に長寿命型中性子吸収材が充填されているため、
中性子吸収能力が長期間衰えず核的寿命が長い。したが
って原子炉用制御棒全体としての寿命を大幅に延ばすこ
とができる。In addition, the insertion tip region of each wing, where the amount of neutron irradiation is especially high, is filled with long-life neutron absorbing material.
Its neutron absorption ability does not decline over a long period of time and its nuclear lifespan is long. Therefore, the life of the reactor control rod as a whole can be significantly extended.
さらに長寿命を有する高価かつ比重の大きい長寿命型中
性子吸収材を比重の小さな希釈材に希釈し、かつ空間的
にも限定的にあるいは中性子吸収材充填空間のほぼ全長
にわたり、必要量だけl’l[!置しているため、原子
炉用制御棒全体の製作費を低減かつ軽量化し、既存プラ
ントにバックフィツトすることができる。Furthermore, the long-life neutron absorber, which has a long life and is expensive and has a high specific gravity, is diluted with a diluent that has a low specific gravity, and the required amount is l' l [! This reduces the manufacturing cost and weight of the entire reactor control rod, making it possible to backfit it into existing plants.
さらに、母材としての希釈合金に含まれるハフニウム等
の長寿命型中性子吸収材と、収容孔に充填された中性子
吸収材との相補協調的中性子吸収効宋により反応度価値
が高く、しかも長寿命である。さらに、比重の大きい(
13,3)ハフニウム等の長寿命型中性子吸収材を必要
量だけ、全率固容体合金をつくり、しかも比重の小ざい
ジルコニウムあるいはチタニウム等の希釈材で希釈した
希釈合金を使用することにより、物理化学的に安定かつ
軽量化され、既存の原子炉へも容易にバツクフィッI・
することができる。Furthermore, due to the complementary and cooperative neutron absorption effect of the long-life neutron absorber such as hafnium contained in the diluted alloy as the base material and the neutron absorber filled in the accommodation hole, the reactivity value is high and the life is long. It is. In addition, it has a large specific gravity (
13,3) By creating a solid-state alloy with the necessary amount of long-life neutron absorbing material such as hafnium, and using a diluted alloy diluted with a diluent such as zirconium or titanium, which has a low specific gravity, physical Chemically stable and lightweight, it can be easily backfitted into existing nuclear reactors.
can do.
この原子炉用制御棒では、原子炉停止中に未臨界度が浅
くなる部分にはより多くの中性子吸収材が配置され、中
性子照射量が著しく高い部分には長寿命型中性子吸収材
を配置し、さらに両者を除く部分では可能な限りガスプ
レナムを好適に配置したので、中性子吸収材が中性子と
反応して放出したヘリウムなどのガスを収納し、ガス圧
の1胃を抑制したので機械的寿命も向上している。In this reactor control rod, more neutron absorbers are placed in areas where subcriticality becomes shallow during reactor shutdown, and long-life neutron absorbers are placed in areas where neutron irradiation is extremely high. In addition, the gas plenum was arranged as optimally as possible in areas other than these two, so the neutron absorbing material contained gas such as helium released when it reacted with neutrons, suppressing the gas pressure and reducing the mechanical life. It's improving.
(実施例)
以下、本発明に係る原子炉用制御棒の一実施例について
添付図面を参照して説明する。(Example) Hereinafter, an example of a control rod for a nuclear reactor according to the present invention will be described with reference to the accompanying drawings.
本発明の原子炉用制御棒の全体外観は第9図に示す従来
の制御棒と実質的に同一である。この原子炉用制御棒1
0は、第1図に示すように先端構造材11と末端構造材
12とを横断面十字状の中央タイロッド13で結合し、
上記タイロッド13の各突出部に深い0字状の金属製シ
ース14が固着されてウィング15が形成される。ウィ
ング15の金属製シース14内は偏平で細長い中性子吸
収材充填空間として形成される。ウィング15の挿入先
端側および挿入末端側は先端構造材11および末端構造
材12にそれぞれ固着され、機械的強度が補強される。The overall appearance of the nuclear reactor control rod of the present invention is substantially the same as the conventional control rod shown in FIG. This reactor control rod 1
0, as shown in FIG.
A deep O-shaped metal sheath 14 is fixed to each protrusion of the tie rod 13 to form a wing 15. The inside of the metal sheath 14 of the wing 15 is formed as a flat and elongated space filled with a neutron absorbing material. The insertion tip side and the insertion end side of the wing 15 are fixed to the tip structure member 11 and the end structure member 12, respectively, thereby reinforcing the mechanical strength.
先端構造材11には操作用のハンドル16が一体に設け
られるとともに、制御棒10の原子炉炉心部への出し入
れを案内するガイドローラ17が備えられている。The tip structure member 11 is integrally provided with a handle 16 for operation, and is also provided with guide rollers 17 that guide the control rod 10 in and out of the reactor core.
また、タイロッド13に固着されるシース14にはその
長手方向に亘って通水孔(図示せず)が多数穿設されて
おり、この通水孔によりシース14内に減速材が自由に
流通するようになっている。Further, the sheath 14 fixed to the tie rod 13 is provided with a large number of water holes (not shown) in its longitudinal direction, and the moderator can freely flow through the sheath 14 through these water holes. It looks like this.
各シース14内には、各種の中性子吸収特性を有する中
性子吸収体が原子炉の特性に応じて収容される。Each sheath 14 accommodates neutron absorbers having various neutron absorption characteristics depending on the characteristics of the nuclear reactor.
この原子炉用制御棒10は原子炉炉心部の軸方向高さに
相当する有効長しく中性子吸収材充填空間の軸方向長さ
に相当)を有し、各ウィング15の挿入先端側から例え
ばほぼ1/2・Lの長手方向長さ11が第1領域Xとし
て形成される。この第1領域Xの長手方向長さJlはほ
ぼ1/4・し以上の長さを有すればよい。ウィング15
の挿入先端側の第1領域Xに隣接する挿入末端側に通常
の中性子吸収領域としての第2領域が形成される。This reactor control rod 10 has an effective length corresponding to the axial height of the reactor core (corresponding to the axial length of the neutron absorbing material filling space), and has an effective length corresponding to the axial height of the neutron absorbing material filling space. The first region X is formed to have a longitudinal length 11 of 1/2·L. The length Jl of the first region X in the longitudinal direction may be approximately 1/4 or more. wing 15
A second region as a normal neutron absorption region is formed on the insertion end side adjacent to the first region X on the insertion end side.
ウィング15の第1領域Xは強い中性子照射を受ける挿
入先端領域X1と、この挿入先端領域×1に隣接する高
反応度領域X2と挿入末端領域×3とを有する。挿入先
端領域×1は、中性子吸収材充填空間の挿入先端から挿
入末端側に例えば約51以上で32α以下の長さであり
、原子炉用$す御棒10の使用条件によって決定される
。この挿入先端領域X1にはハフニウム等からなるプレ
ート状長寿命型中性子吸収材を充填させても、あるいは
第1図に示すように長寿命型中性子吸収材をジルコニウ
ム(比g16.5)やチタン(比IF4゜5)等の希釈
材にて希釈した長寿命型中性子材吸収希釈合金20を充
填させてもよく、この挿入先端領域×1は先端長寿命部
を構成している。The first region X of the wing 15 has an insertion tip region X1 that receives strong neutron irradiation, a high reactivity region X2 adjacent to this insertion tip region x1, and an insertion end region x3. The insertion tip region x 1 has a length of, for example, about 51 or more and 32α or less from the insertion tip of the neutron absorbing material filling space to the insertion end side, and is determined by the usage conditions of the nuclear reactor control rod 10. This insertion tip region It may be filled with a long-life neutron material absorbing and diluting alloy 20 diluted with a diluent such as IF4.5), and this insertion tip region x 1 constitutes a tip long-life section.
一方、原子炉用制御棒10において、挿入先端から約5
aRまでの範囲は原子炉炉心部から常時中性子照射を受
け、中性子束が著しく変化するので、少なくともこの範
囲では第1図および第3図(A)、(B)に示すように
ウィング幅方向に形成される少なくとも1つの収容孔2
1は空洞のブレナム部にされ、この収容孔21内に中性
子高照射でスエリングが生じるボロンカーバイド(84
G)の充填を避けている。84Cの充填によりスエリン
グが生じると、収容孔21に大きな応力が発生し、母材
にクラックを生じさせるなど、制御棒10の健全性が損
われる場合が予想されるためである。On the other hand, in the reactor control rod 10, approximately 5
The range up to aR is constantly irradiated with neutrons from the reactor core, and the neutron flux changes significantly. At least one receiving hole 2 formed
1 is made into the blenheim part of the cavity, and boron carbide (84
G) is avoided. This is because if swelling occurs due to filling with 84C, a large stress will be generated in the accommodation hole 21, causing cracks in the base material, and the integrity of the control rod 10 is expected to be impaired.
第1図においては、挿入先端領域×1の挿入光f!a(
IIIIのX、1部の少なくとも1個の収容孔21はガ
スプレナム部に、そのX12部の収容孔には例えば中性
子吸収材を実質的に希釈していないハフニウム材22が
挿入される。In FIG. 1, the insertion light f! of the insertion tip region×1 is shown. a(
At least one accommodation hole 21 in the X1 part of III is inserted into the gas plenum part, and a hafnium material 22 in which the neutron absorbing material is not substantially diluted, for example, is inserted into the accommodation hole in the X12 part.
この収容孔(横孔)には、酸化ユーロピウムあるいは酸
化ディスプロシウム等の希土類酸化物を 7主な中性子
吸収材とする長寿命型中性子吸収材を充填しても、ある
いは銀−インジウム−カドミウム(AQ−I n−Cd
)合金材を充填させてもよい。挿入先端領域×1の母材
として、ハフニウムを用いた長寿命型中性子吸収材希釈
合金2oを使用した場合、ハフニウムを含むので中性子
吸収効果が大きいが、上記希釈合金20は希釈材(例え
ば比重6.5のジルコニウムや比重4.5のチタンを主
成分とする物質)で希釈されているので、希釈材で希釈
しない長寿命型中性子吸収材に比べると中性子吸収寿命
が減少しており、この寿命を向上させるために、X12
部の収容孔に長、!型中検子吸収材としてハフニウム材
22を充填するのが好ましい。挿入先端領域×1の母材
に長寿命型゛中性子吸収材、例えばハフニウム材を使用
した場合、X12部の収容孔への充填材は不要である。This accommodation hole (horizontal hole) may be filled with a long-life neutron absorbing material whose main neutron absorbing material is a rare earth oxide such as europium oxide or dysprosium oxide, or with silver-indium-cadmium (silver-indium-cadmium). AQ-I n-Cd
) May be filled with an alloy material. When a long-life neutron absorber dilution alloy 2o using hafnium is used as the base material for the insertion tip region x 1, the neutron absorption effect is large because it contains hafnium. Since the material is diluted with zirconium with a specific gravity of .5 and titanium with a specific gravity of 4.5), its neutron absorption life is reduced compared to long-life neutron absorbers that are not diluted with a diluent. In order to improve
Long in the accommodation hole of the section! It is preferable to fill the mold with hafnium material 22 as a sample absorbing material. When a long-life neutron absorbing material, such as a hafnium material, is used as the base material of the insertion tip region x 1, there is no need to fill the accommodation hole in the X12 portion.
一方、原子炉の燃焼管理において燃料集合体と制御棒と
の相対位置の調整は、炉心の有効長りを24等分した単
位長さ15〜16α毎に実施されているので、挿入先端
領域X の長さ12はその単位長さ15〜161または
長くて単位長さの2倍である30〜32αに設定すると
よい。この挿入先端領域× 1特にX11部は原子炉停
止余裕への寄与が通常小さいので、ハフニウム合金板等
の長寿命型中性子吸収材の中にボロンカーバイド<84
0)のように他の中性子吸収物質を入れる必要がない。On the other hand, in the combustion management of a nuclear reactor, adjustment of the relative position between the fuel assembly and the control rod is carried out every 15 to 16 α, which is the effective length of the reactor core divided into 24 equal parts. The length 12 is preferably set to a unit length of 15 to 161 or 30 to 32α, which is twice the unit length. This insertion tip region × 1, especially the X11 part, usually has a small contribution to the reactor shutdown margin, so boron carbide <84
There is no need to add other neutron absorbing substances as in 0).
また、第1領域Xの高反応度領域x2は挿入先端側の高
反応度長寿命部×21とこの高反応度長寿命部×21に
隣接する挿入末端側の高反応度部×22とに大きく区画
され、高反応度部×22の挿入末端側にウィング幅方向
に延びる挿入末端領域x3が形成される。In addition, the high reactivity region x2 of the first region An insertion end region x3 that is broadly divided and extends in the wing width direction is formed on the insertion end side of the high reactivity section x22.
第1領域Xの高反応度領域×2に形成される高反応度長
寿命部X と高反応度部×22とはほぼ同じ長手方向長
さを有するが、この第1領域Xの長手方向長さは(挿入
先端領域×1+高反応痕長寿命部×21)と(高反応度
部×22)とがほぼ同じになるように設定しても、ある
いは他の長さ割合であってもよい。The high reactivity long-life region X formed in the high reactivity region x 2 of the first region X and the high reactivity region x 22 have approximately the same longitudinal length, but The length may be set so that (insertion tip area x 1 + high reaction scar long life area x 21) and (high reaction area x 22) are approximately the same, or may be set to other length ratios. .
いずれにしても、第1領域Xの高反応度領域×2には、
ハフニウム等の長寿命型中性子吸収材を希釈材にて希釈
したプレート状の長寿命型中性子吸収材希釈合金24.
25が収容される。このうち、高反応度長寿命部×21
に収容される希釈合金24は第1図に示す例では、挿入
先端領域×1に配置される希釈合金20と一体に成形さ
れ、希釈合金20.24に含まれるハフニウム(Hf)
は例えば50重計量−セント(wt%)である。In any case, in the high reactivity region x 2 of the first region
24. Plate-shaped long-life neutron absorber diluted alloy made by diluting a long-life neutron absorber such as hafnium with a diluent.
25 is accommodated. Of these, high reactivity long life part x 21
In the example shown in FIG. 1, the diluted alloy 24 accommodated in the diluted alloy 20 is molded integrally with the diluted alloy 20 disposed in the insertion tip region x 1, and contains hafnium (Hf) contained in the diluted alloy 20.24.
is, for example, 50 cents by weight (wt%).
この希釈合金20.24は長寿命型中性子吸収材として
のハフニウムを希釈材であるジルコニウム(Zr)で希
釈した比重9.9の合金である。また、高反応度部×2
2に収容される長寿命型中性子吸収希釈合金25は、例
えば20重計量−セントのハフニウムを有し、このハフ
ニウムを希釈材としてのジルコニウムで希釈した比重7
.9の合金である。各希釈合金24.25にはウィング
15の幅方向に延びる複数の横孔26が、制御棒10の
長手方向に等径かつ等ピッチで列状に配設される。各横
孔26内には挿入先端領域×1を除いて前記希釈合金2
4.25に含有される長寿命型中性子吸収材と異なる中
性子吸収材28が充填される。この中性子吸収材28は
、天然ボロン(B)やボロン−10(”B)を濃縮した
ボロンカーバイド(B4C)やチツ化ボロン(BN>等
のボロン化合物あるいは酸化ユーロピウム、酸化ディス
プロシウム、酸化ガドリニウム、酸化サマリウム等の希
土類酸化物、または希土類酸化物と酸化ハフニウムとの
混合物あるいはボロンと希土類元素との化合物を主要中
性子吸収物質とする粉末状あるいはペレット状物質であ
る。This diluted alloy 20.24 is an alloy with a specific gravity of 9.9, which is obtained by diluting hafnium as a long-life neutron absorbing material with zirconium (Zr) as a diluent. Also, high reactivity section x 2
The long-life neutron-absorbing diluent alloy 25 housed in 2 has, for example, 20 cents of hafnium, and has a specific gravity of 7, which is obtained by diluting this hafnium with zirconium as a diluent.
.. 9 alloy. A plurality of horizontal holes 26 extending in the width direction of the wing 15 are arranged in each diluent alloy 24, 25 in a row with equal diameter and equal pitch in the longitudinal direction of the control rod 10. Inside each horizontal hole 26, except for the insertion tip region x 1, the diluted alloy 2
A neutron absorbing material 28 different from the long-life neutron absorbing material contained in 4.25 is filled. This neutron absorbing material 28 is made of boron compounds such as natural boron (B), boron carbide (B4C) which is concentrated boron-10 (''B), boron titanide (BN>), europium oxide, dysprosium oxide, gadolinium oxide, etc. It is a powder or pellet material whose main neutron absorbing substance is a rare earth oxide such as samarium oxide, a mixture of a rare earth oxide and hafnium oxide, or a compound of boron and a rare earth element.
また、高反応度部域×2に配置される長寿命型中性子吸
収材希釈合金24.25に含まれるハフニウム等の長寿
命型中性子吸収材の含有濃度は、第1図には高反応度長
寿命部X21と高反応度部X22とで段階的に変化し、
中性子照射量が高い高反応度長寿命部×21において高
く、比較的低イ高反応度部X22において低くした例を
示したが、この長寿命型中性子吸収材の含有濃度は挿入
末端側に向って連続的に変化させるようにしてもい。In addition, the concentration of long-life neutron absorbers such as hafnium contained in the long-life neutron absorber diluted alloy 24.25 placed in the high-reactivity area x 2 is shown in Figure 1. It changes stepwise in the life part X21 and the high reactivity part X22,
An example was shown in which the concentration of neutron irradiation was high in the high-reactivity long-life section x21, and lower in the relatively low-reactivity high-reactivity section x22, but the content concentration of this long-life neutron absorbing material was It is also possible to change it continuously.
さらに、第1領域X部分のウィング15の翼端は挿入先
端領域×1とともに強い中性子照射を受ける。このため
、挿入先端領域x1および高反応度領域×2に形成され
る横孔21.26の開放端側(ウィング贋端側)には細
長い平板状のハフニウム材等の長寿命型中性子吸収棒3
0が介装され、横孔21.26の開口部が閉塞される。Furthermore, the blade tip of the wing 15 in the first region X portion is subjected to intense neutron irradiation along with the insertion tip region x1. For this reason, a long-life neutron absorbing rod 3 such as an elongated flat hafnium material is provided on the open end side (wing false end side) of the horizontal hole 21.26 formed in the insertion tip region x1 and the high reactivity region x2.
0 is inserted, and the opening of the horizontal hole 21.26 is closed.
各横孔21.26は長寿命型中性子吸収棒30との間の
隙間26により互いに連通され、各横孔21.26内の
ガス圧が均一化される一方、長寿命型中性子吸収材希釈
合金20,24.25は横孔21,26の開口端部に中
性子吸収棒30を介装した後、この中性子吸収棒30を
包み込むように湾曲させ、第4図(A)、(B)および
(C)に示すように溶接にて密封される。Each horizontal hole 21.26 is communicated with each other by a gap 26 between the long-life neutron absorbing rod 30, and the gas pressure in each horizontal hole 21.26 is equalized, while the long-life neutron absorbing material diluted alloy 20, 24, and 25 are curved to wrap around the neutron absorbing rod 30 after inserting the neutron absorbing rod 30 into the open ends of the horizontal holes 21, 26. It is sealed by welding as shown in C).
高反応度長寿命部X21の挿入末端側に隣接した高反応
度部X の母材もX21部とほぼ同様に長寿傘型中性子
吸収希釈合金25で構成されているが、この位置の中性
子吸収材は高反応度長寿命部X21のそれに比べて一般
に小さいので、長寿命化に高い濃度Hfが必要な挿入先
端領域×1や高反応度長寿命部×21と異なり、より低
濃度のハフニウム領域となっている。反応度価値は領域
×1やX21部に比べて極く僅か劣るのみである。すな
わち、高反応度部×22は高反応度領域となっている。The base material of the high-reactivity part X adjacent to the insertion end side of the high-reactivity long-life part is generally smaller than that of the high-reactivity long-life section It has become. The reactivity value is only slightly inferior to area x1 and x21 parts. That is, the high reactivity portion x22 is a high reactivity region.
第1領域Xの未臨界度が浅い高反応度部TaX2に隣接
する挿入末端側に挿入末端領域×3が形成され、この領
域×3はその挿入末端より挿入先端側に長さ13 (2
〜31程度)の隣接境S9 aI X 31を除いてウ
ィング幅方向に延びる間隙31が形成され、この間隙3
1内にハフニウム等からなる金属ウールが充填される。An insertion end region x 3 is formed on the insertion end side adjacent to the high reactivity region TaX2 where the subcriticality of the first region X is shallow, and this region x 3 has a length of 13 (2
A gap 31 extending in the wing width direction is formed except for the adjacent border S9 aI
1 is filled with metal wool made of hafnium or the like.
この間隙31はウィング15の長手方向に例えば0.5
〜1.51ff程度の長さl を有する。14部は第1
および第2領域X、Yの熱サイクルによる伸縮あるいは
中性子照射等による伸縮を吸収し、かつX31部の長寿
命型中性子吸収材32を第2領域Y側へ密着させ、中性
子吸収材非存在間隙を極力縮小させている。This gap 31 is, for example, 0.5 in the longitudinal direction of the wing 15.
It has a length l of about ~1.51ff. Part 14 is the first
Then, it absorbs the expansion and contraction of the second regions X and Y due to thermal cycles or neutron irradiation, and the long-life neutron absorbing material 32 of the X31 section is brought into close contact with the second region Y side, thereby reducing the gap where the neutron absorbing material does not exist. It has been reduced as much as possible.
ところで、原子炉用&IJ III棒10はウィング1
5の第1領域Xに隣接する挿入末端側に第2領域Yが形
成される。この第2領域Yはウィング15の第1領域X
からその挿入末端側に向って延びており、第2領域Yの
金属製シース14内にはウィング長手方向に配設された
中性子吸収棒33がウィング幅方向に列状に配列される
。この中性子吸収棒33は円形あるいは矩形断面のステ
ンレスt!4製被覆管内に84C等の粉末状あるいはペ
レット状中性子吸収物質が充填される。By the way, &IJ III rod 10 for nuclear reactor is wing 1
A second region Y is formed on the insertion end side adjacent to the first region X of No. 5. This second area Y is the first area X of the wing 15.
The neutron absorbing rods 33 are arranged in the metal sheath 14 in the second region Y in the wing longitudinal direction, and are arranged in rows in the wing width direction. This neutron absorption rod 33 is made of stainless steel with a circular or rectangular cross section. A powdered or pelleted neutron absorbing material such as 84C is filled into the cladding tube made of No. 4.
第2領域Yに配列される各中性子吸収棒33のうちウィ
ング15の外側縁部に配置される1ないし3本捏度の中
性子吸収棒を必要に応じてハフニウム捧と買換させても
よい。Among the neutron absorption rods 33 arranged in the second region Y, one to three neutron absorption rods arranged at the outer edge of the wing 15 may be replaced with hafnium rods as necessary.
さらに、84C等の中性子吸収物質を充填した中性子吸
収棒33をウィング15の第2領域Yに配設したとき、
中性子吸収棒33の頂部に中性子非吸収材であるプラグ
を付けるので、構造的に非吸収材領域が必然的に形成さ
れ、隣接境界部×31が存在しないと、第1および第2
領域x、Yの間の中性子吸収材非存在空間が拡大され、
反応度損失の原因となる。すなわち、中性子吸収物質が
存在しない空間が長くなると、中性子吸収棒33の健全
性が損われ、核的寿命に影響が出るので空間をできるだ
け短くする必要がある。この関係から、第1領域Xの挿
入末端領域×3に長寿命型中性子吸収材32aを中性子
吸収棒33の頂部に載置して固定し、空間等による隙間
が大きくならないようにしている。Furthermore, when the neutron absorption rod 33 filled with a neutron absorption material such as 84C is arranged in the second region Y of the wing 15,
Since a plug which is a neutron non-absorbing material is attached to the top of the neutron absorbing rod 33, a non-neutron absorbing material region is inevitably formed structurally, and if the adjacent boundary part x 31 does not exist, the first and second
The neutron absorber-free space between regions x and Y is expanded,
Causes reactivity loss. That is, if the space in which no neutron-absorbing substance exists becomes long, the integrity of the neutron-absorbing rod 33 will be impaired and the nuclear lifetime will be affected, so it is necessary to make the space as short as possible. In view of this relationship, the long-life neutron absorbing material 32a is placed and fixed on the top of the neutron absorbing rod 33 in the insertion end region x 3 of the first region X, so that the gap due to space etc. does not become large.
次に、第1図において、−例として第1領域Xの挿入先
端領IIi×1および高反応度長寿命部×2゜の母材に
用いられる長寿命型中性子吸収材希釈合金20.24と
して50重石パーセント(wt%)ハフニウムをジルコ
ニウムで希釈した比重9.9の希釈合金を用いまた、高
反応度領域X2の高反応度部X22の母材として20重
量パーセント(wt%)のハフニウムをジルコニウムで
希釈した比重7.9の長寿命型中性子吸収材希釈合金2
5を用い、さらに高反応度領域x2の等ピッチに配列さ
れた各横孔26にB4Cを充填し、挿入先端領域X、の
X12部の各横孔21にハフニウム22を充填させた場
合、この原子炉用制御棒10に含まれるハフニウム(H
f)ffiやB4Cff1の軸方向分布は第2図(A)
および(B)に示すように表わされる。Next, in FIG. 1, as an example, a long-life neutron absorber diluted alloy 20.24 used for the base material of the insertion tip region IIi x 1 of the first region X and the high reactivity long-life section x 2° Using a diluted alloy with a specific gravity of 9.9 in which 50 weight percent (wt%) hafnium is diluted with zirconium, 20 weight percent (wt%) hafnium is used as the base material of the high reactivity part X22 of the high reactivity region X2. Long-life neutron absorber diluted alloy 2 with a specific gravity of 7.9 diluted with
5, and each horizontal hole 26 arranged at an equal pitch in the high reactivity region x2 is filled with B4C, and each horizontal hole 21 in the X12 portion of the insertion tip region X is filled with hafnium 22. Hafnium (H) contained in the reactor control rod 10
f) The axial distribution of ffi and B4Cff1 is shown in Figure 2 (A).
and (B).
ハフニウムは長寿命型中性子吸収元素であり、B4Cは
寿命は比較的短いが、反応度価値の大きな中性子吸収物
質である。第1領域Xの挿入先端側(挿入矢#i領域×
1および高反応領域×2の高反応度長寿命部×21)で
は中性子照射rが高いので長寿命型中性子吸収元素であ
るHfの含有rtiが高く、第1領域Xの挿入末端側(
高反応度部×22)では含有濃度を低く抑えてHfによ
る重量増加やコストアップを抑制している。Hafnium is a long-lived neutron-absorbing element, and B4C is a neutron-absorbing substance with a relatively short lifetime but a high reactivity value. Insertion tip side of first region X (insertion arrow #i region
Since the neutron irradiation r is high in the high reactivity long life part x 21) of the first region
In the high-reactivity section x 22), the content concentration is kept low to suppress weight increase and cost increase due to Hf.
第1領域Xに配設されるHfの濃度は制御棒の使用方法
や計画寿命により変化するが、第1領域Xの挿入先端側
ではハフニウムは50wt%以上、その挿入末端側で2
0wt%以上であることが望ましい。The concentration of Hf disposed in the first region
It is desirable that the content is 0 wt% or more.
第1領域Xの挿入末端側でHfの濃度が20wt%以下
では、Hff11度の低下に伴う制御棒反応度価値の低
下が無視できなくなり、大反応度ルリ御棒としてやや不
満足なものとなる。第1領域Xの挿入先端(X 、X
、、、)側rHfllflJ50wt%以下になると、
長寿命の点で問題が生ずるおそれがある。t−1fff
1度の低下は、第6図(B)に示すように84Gの中性
子吸収率が相対的に増加することを示し、B4Cは長寿
命型中性子吸収材でないため、中性子吸収寿命が短かく
なる。If the concentration of Hf is 20 wt% or less on the insertion end side of the first region The insertion tip of the first region
,,,) side rHflflJ becomes less than 50wt%,
Problems may arise in terms of long life. t-1fff
A decrease of 1 degree indicates a relative increase in the neutron absorption rate of 84G as shown in FIG. 6(B), and since B4C is not a long-life neutron absorber, the neutron absorption lifetime becomes short.
なお、第1図において、84Cが充填される各横孔は等
寸法かつ等ピッチに配列されているため、B4Cff1
は第1領域Xの高反応度領域×2でほぼ等しくなってい
る。In addition, in FIG. 1, since the horizontal holes filled with 84C are arranged at equal dimensions and at equal pitches, B4Cff1
are almost equal in the high reactivity region x 2 of the first region X.
次に、原子炉用ai制御棒の作用を説明する。Next, the operation of the AI control rod for a nuclear reactor will be explained.
この原子炉用制御棒10は、ウィング15を挿入先端側
の第1領域Xとこの第1領域Xに隣接する挿入末端側の
第2領域Yとに区画し、第1領域Xは中性子!!’l射
を常時受ける挿入先端領域×1に+]f濃度を高めた長
寿命型中性子吸収材20を配置して長寿命領域とし、こ
の挿入先端領域X1に続く挿入末端側を高反応度領域×
2の高反応度長寿命部X21に形成し、このX21部に
収容される長寿命型中性子吸収材希釈合金24に多数の
横孔26をウィング長手方向に列状に配設し、この横孔
26内に天然ボロンやボロン−10を濃縮したボロンカ
ーバイド等の粉末状あるいはペレット状中性子吸収材2
8を充填させたので、原子炉停止中の未臨界度が浅くな
るX21部の反応度を高めて、原子炉停止余裕の増大化
を図ることができる。This reactor control rod 10 divides the wing 15 into a first region X on the insertion end side and a second region Y on the insertion end side adjacent to the first region X, and the first region X is neutron! ! A long-life neutron absorbing material 20 with increased f concentration is placed in the insertion tip region x 1 that constantly receives radiation, creating a long-life region, and the insertion end side following this insertion tip region X1 is a high reactivity region. ×
A large number of horizontal holes 26 are arranged in rows in the longitudinal direction of the wing in the long-life neutron absorbing material diluted alloy 24 housed in this X21 section. Powdered or pelleted neutron absorbing material 2 such as boron carbide with concentrated natural boron or boron-10 in 26
8, it is possible to increase the reactivity of the X21 part, where the degree of subcriticality becomes shallow during reactor shutdown, and increase the reactor shutdown margin.
また、この高反応度長寿命部×21にはハフニウム板等
の長寿命型中性子吸収材希釈合金24とB4C%の中性
子吸収材28を配置して多重ハイブリッド化し、中性子
吸収物質量の増大を図ったので第5図(B)および(C
)に示1ように高反応度が得られ、また、中性子の吸収
を異なる中性子吸収材24.28で分担することができ
、しかも長寿命型中性子吸収材希釈合金24の中性子吸
収分担が大きく、他の中性子吸収材28の中性子吸収率
が減るので、長期間の使用が可能となり、長寿命化を図
ることができる。これにより、従来の原子炉用制御棒よ
り5〜10%アップの高反応度が1qられ、2.5〜3
.0倍程度の長寿命化を図ることができる。In addition, a long-life neutron absorbing material diluted alloy 24 such as a hafnium plate and a B4C% neutron absorbing material 28 are placed in this high-reactivity long-life section x 21 to create a multiple hybrid and increase the amount of neutron absorbing material. Therefore, Figure 5 (B) and (C
) As shown in 1, a high reactivity can be obtained, and the absorption of neutrons can be shared between different neutron absorbers 24 and 28, and the long-life neutron absorber diluted alloy 24 has a large share of neutron absorption. Since the neutron absorption rate of the other neutron absorbing material 28 is reduced, it can be used for a long period of time, and its life can be extended. As a result, the high reactivity of 1q is increased by 5 to 10% compared to conventional reactor control rods, and the reactivity is increased by 2.5 to 3
.. It is possible to extend the service life by about 0 times.
この原子炉用制御棒10においては、第1領域Xの^反
応度領域×2は、金属製シース14内に収容される母材
してHf −Z r 、あるいはHf−Tiの長寿命型
中性子吸収材希釈合金24.25が用いられ、この希釈
合金24.25の各孔26内にB4C28が一様に充填
された例を第6図(A)に示すが、この場合の中性子吸
収率(反応度価値とほぼ等しい。)は希釈合金の板厚t
、孔ピッチp、孔径dによって変化するが、沸騰水型原
子炉(BWR)の好適寸法の制御棒では、例えばHf−
Zr希釈合金を使用すると第6図(B)に表わされる。In this reactor control rod 10, the reactivity region x 2 of the first region An example in which absorbent diluted alloy 24.25 is used and each hole 26 of this diluted alloy 24.25 is uniformly filled with B4C28 is shown in FIG. 6(A). In this case, the neutron absorption rate ( ) is the plate thickness t of the diluted alloy.
, the hole pitch p, and the hole diameter d, but in a control rod of suitable dimensions for a boiling water reactor (BWR), for example, Hf-
When a Zr diluted alloy is used, this is shown in FIG. 6(B).
Hfを母材に含まないときはB4Cのみで中性子吸収が
行なわれる。Hf濃度が上昇り“るとB4Cの中性子吸
収率が急に減少し、Hfの中性子吸収率が増加し、全体
として(84C+Hf)の中性子吸収率は上昇する。When Hf is not included in the base material, neutron absorption is performed only by B4C. When the Hf concentration increases, the neutron absorption rate of B4C suddenly decreases, the neutron absorption rate of Hf increases, and the neutron absorption rate of (84C+Hf) increases as a whole.
Hfの含有率が20wt%付近から(84C十11f)
の中性子吸収率は緩かに上昇し、飽和特性を示す。この
ため、中性子吸収材があまり大きくなく、反応度価値の
みを上昇させればよい部分では、Hf’ −Z r希釈
合金のHf含含有を高くする必要性はあまりない。Hf content is from around 20wt% (84C111f)
The neutron absorption rate of increases slowly and shows saturation characteristics. Therefore, in areas where the neutron absorber is not very large and only the reactivity value needs to be increased, there is not much need to increase the Hf content of the Hf'-Zr diluted alloy.
一方、第1領域Xの挿入先端側(X1領域やX21部)
のように、長寿命化が必要な領域では、(Hf+84G
)の中性子吸収率を大きくする必要があるので、Hf
111度は高い方が良いが、Hf濃度を例えば9qwt
%以上のi!’(715度としても、中性子吸収率に顕
著な効果が表われないので、現実的には5qwt%以上
、例えば7qwt%稈度でよい。On the other hand, the insertion tip side of the first region X (X1 region and X21 section)
In areas where long life is required, such as (Hf+84G
), it is necessary to increase the neutron absorption rate of Hf
The higher the temperature is, the better the Hf concentration is, for example, 9qwt.
i more than %! (Even if the temperature is 715 degrees, there is no significant effect on the neutron absorption rate, so realistically, a culm degree of 5 qwt% or more, for example, 7 qwt% is sufficient.
また、長寿命型中性子吸収材希釈合金に含有されるHf
c4度の比重の関係は第6図(C)に示すようにほぼ直
線的に変化し、第6図の(A)および(B)から原子炉
用制御棒の使用条件に見合うHf’濃度が決定される。In addition, Hf contained in the long-life neutron absorber diluted alloy
The relationship between the specific gravity of c4 degrees changes almost linearly as shown in Figure 6 (C), and from Figure 6 (A) and (B), the Hf' concentration that meets the operating conditions of the reactor control rods is determined. It is determined.
次に、この原子炉用制御棒の第2実施例を第7図(A)
、(B)および第8図を参照して説明する。Next, a second embodiment of this nuclear reactor control rod is shown in FIG. 7(A).
, (B) and FIG. 8.
この原子炉用制御棒10Aの全体の構成はウィング15
の第1領域Xを除いて第1図に示した原子炉用制御棒1
0と異ならないので説明を省略する。第2実施例に示さ
れた原子炉用υ制御棒10Aはウィング15を第7図(
A)および(B)に示すように構成したものである。第
1実施例との差異は第1領域Xの構成にある。The overall configuration of this nuclear reactor control rod 10A is wing 15.
The reactor control rod 1 shown in FIG. 1 except for the first region X of
Since it is not different from 0, the explanation will be omitted. The reactor υ control rod 10A shown in the second embodiment has wings 15 as shown in FIG.
The structure is as shown in A) and (B). The difference from the first embodiment lies in the configuration of the first region X.
第1実施例では、第1領域Xの(Hf+Zr)等の長寿
命型中性子吸収材希釈合金を収容した高反応度領域×2
をX21部とX22部とに分割しく溶接等により固着し
てもよい。)、HfF4度を×21部側で高く、X22
部側で低いものとし、各希釈合金24.25に形成され
る各横孔は一様(同一形状、同一寸法、同一ピッチ)と
していた。すなわち1]f 11度が高い第1領域Xの
挿入先端側は長寿命、低い挿入末端側は大反応麿を意図
した例である。In the first example, the first region
It may be divided into an X21 part and an X22 part and fixed by welding or the like. ), HfF 4 degrees higher on the ×21 side, X22
The horizontal holes formed in each diluted alloy 24 and 25 were uniform (same shape, same size, and same pitch). That is, the insertion end side of the first region
一方、第2実施例では、第1領域Xに収容される母材の
長寿命型中性子吸収材希釈合金40は1」t”f1度−
様のものを用い、この希釈合金40に形成される収納孔
(横孔)の形状および隣接収納孔間ピッチを変えて軸方
向に長寿命領域と大反応度領域を形成している。第1領
域Xの挿入先端領域X および挿入末端領域×3は第1
実施例と同一である。挿入先端領域×1は挿入先端から
×11部と×12部に第1実施例と同じ考えで区画され
ている。On the other hand, in the second embodiment, the base material long-life neutron absorber diluted alloy 40 accommodated in the first region
A long life region and a high reactivity region are formed in the axial direction by changing the shape of the storage holes (horizontal holes) formed in the diluted alloy 40 and the pitch between adjacent storage holes. The insertion tip region X and the insertion end region x3 of the first region
Same as the example. The insertion tip region x1 is divided into x11 and x12 parts from the insertion tip in the same manner as in the first embodiment.
この第2実施例では第1領域Xの高反応度領域X は、
挿入先端側の大反応度長寿命部X′21と、中間の特大
反応度部x′22と挿入末端側の高反応度部X′ とに
区画される。X′21部の反応度はX122部の反応度
はど大きくなくてもよい。In this second embodiment, the high reactivity region X of the first region X is
It is divided into a large reactivity long life section X'21 on the insertion tip side, an extra large reactivity section x'22 in the middle, and a high reactivity section X' on the insertion end side. The reactivity of the 21 parts of X' and the reactivity of the 122 parts of X' do not need to be very high.
しかして、高反応度領域X のX122部は、各横孔(
収納孔)間ピッチをやや大きくして金属製シース内に収
容される長寿命型中性子吸収材希釈合金(母材)に充分
な機械的強度をもたせ、各横孔内に収納される中性子吸
収材としての反応度価値の高いB4Cが多聞の中性子照
射を受けてスエリングしても、一定の耐力を発揮できる
ように設計される。この部分は、Hf対84Cの比を大
きくとることにより、84Cの中性子吸収率の分担が減
少するので長寿命化を図ることができる。反応度価値は
Hf対B4Cの比が少し低下しても殆ど減少しない、ま
た、この部分にB4C粉末を充填させる場合は、充填密
度を通常密度よりやや低下さ往、例えば60%TDとし
てよい。この程度の充填密度であると、中性子照射を受
けたとき、各孔内にスエリング空間が確保されるので、
各孔内の発生応力を緩和させたり、応力発生時期を遅ら
せることができ、長寿命化に好適である。Therefore, the X122 portion of the high reactivity region
A long-life neutron absorber housed in a metal sheath with a slightly larger pitch between storage holes to provide sufficient mechanical strength to the diluted alloy (base material), and a neutron absorber housed in each horizontal hole. Even if B4C, which has a high reactivity value as a steel, swells when exposed to a large number of neutron irradiations, it is designed to exhibit a certain level of proof strength. In this part, by increasing the ratio of Hf to 84C, the share of the neutron absorption rate of 84C is reduced, so that a longer life can be achieved. The reactivity value hardly decreases even if the ratio of Hf to B4C decreases a little, and when this part is filled with B4C powder, the packing density may be slightly lower than the normal density, for example, 60% TD. With this level of packing density, a swelling space is secured within each hole when irradiated with neutrons, so
It is possible to alleviate the stress generated in each hole and to delay the timing of stress generation, which is suitable for extending the life.
ざらに、84C粉末の充填密度を理論密度の70%程瓜
とするためには、複数種の粒度の異なる中性子吸収材(
B4C粉末など)を混合して充填する必要があるが、6
0%TD程度の場合、掻く微細または特に大きな粒度の
場合を除き、混合のための配慮は必要がない。また、母
材には水平方向に孔があけであるため、粉末沈積による
反応度低下問題も発生しない。母材には長寿命型中性子
吸収材1−1 fが含まれているため、万一沈積が発生
する構成であっても、沈積して84Cなどの中性子吸収
材が存在しない空間が生じても母材のHfが中性子吸収
をかた代りするため、反応度損失や中性子束ピーキング
の発生は先ず問題とならない。Roughly speaking, in order to make the packing density of 84C powder approximately 70% of the theoretical density, multiple types of neutron absorbing materials with different particle sizes (
B4C powder, etc.) must be mixed and filled, but 6
At about 0% TD, no consideration is needed for mixing unless the particle size is very fine or particularly large. Furthermore, since the base material is perforated in the horizontal direction, the problem of reduced reactivity due to powder deposition does not occur. Since the base material contains long-life neutron absorbing material 1-1 f, even if the structure is such that deposition occurs, even if a space is created where no neutron absorbing material such as 84C exists due to deposition. Since Hf in the base material takes over neutron absorption, reactivity loss and neutron flux peaking do not pose a problem.
高反応度領域×2の特大高反応度部x′22は幾つかの
孔を連ねて長孔とされており、長孔の中にB4C粉末が
充填されている。長孔には色々な形状が考えられ、幾つ
かの例が第8図に示されている。The extra-large high-reactivity region x'22 with two high-reactivity regions is formed into a long hole by connecting several holes, and the long hole is filled with B4C powder. Various shapes can be considered for the elongated hole, and some examples are shown in FIG.
長孔に84C粉末を充填すれば、より多くの中性子吸収
材として84Cを充填できるので^反応度価値が得られ
る。長孔化により母材中のHf111度が実質的に低下
し、Hfの中性子吸収に対する寄与率は低下するが、B
4Cによる中性子吸収の寄与率が大幅に増大するため、
高反応度が達成できるものである。Hfの実質的淵瓜が
低下すれば長寿命化には好適とはいえないが、X122
部では一般に中性子照射量は挿入先端領域×1や大反応
度長寿命部X′21に比べて小さいので、ト1「濃度を
実質的に低下させても差支えなく軽量化とコスト低減に
寄与するごときができる。If the elongated hole is filled with 84C powder, more 84C can be filled as a neutron absorbing material, so a reactivity value can be obtained. By making the holes elongated, the Hf111 degree in the base metal substantially decreases, and the contribution rate of Hf to neutron absorption decreases, but B
Since the contribution rate of neutron absorption by 4C increases significantly,
High reactivity can be achieved. If the actual depth of Hf decreases, it is not suitable for extending the lifespan, but X122
In general, the neutron irradiation dose in the section is smaller than that in the insertion tip region x 1 or the high reactivity long-life section You can do something like this.
高反応度領域X の高反応度部x′23は中性子照射室
も特大高反応度部X122に比べて低く、かつ反応度価
値をX122部はど大きくする必要はないので、長孔方
式はとらず、隣接孔向ピッチをやや小さくして、B4C
充填口を従来よりやや増大させている程度である。炉心
によっては従来と同様としても差支えない。なお、符号
43は支持用突起である。The neutron irradiation chamber of the high reactivity section x'23 in the high reactivity region First, the pitch in the direction of adjacent holes is made slightly smaller, and B4C
The filling port is only slightly larger than before. Depending on the core, it may be the same as the conventional one. In addition, the code|symbol 43 is a protrusion for support.
この場合、第1領域Xは大反応度長寿命領域を形成し、
中でも、挿入先端領域×1および高反応度領域X の挿
入先端領域×21は長寿命領域を形成している。In this case, the first region X forms a high reactivity and long life region,
Among them, the insertion tip region x 1 and the insertion tip region x 21 of the high reactivity region X form long-life regions.
第8図(A)ないしくG)はウィング15の第1領域X
に収容される長寿命型中性子吸収希釈合金40の各変形
例をそれぞれ示すもので、第8図(A>の希釈合金40
Δは第7図(B)に示すものと同様であり、第8図(8
)の希釈合金40Bの高反応度領域×2に形成される各
横孔41のうち、隣接する複数個ずつグループh1〜h
、を構成し、各グループの各横孔41の孔間ピッチを小
さくしたものである。第8図(C)の希釈合金400は
第8図(B)の各グループの各横孔間を互いに連絡して
長孔42を形成したものである。FIG. 8(A) or G) shows the first area X of the wing 15.
FIG. 8 (A>
Δ is the same as that shown in Figure 7 (B), and Δ is the same as that shown in Figure 8 (8
) of each horizontal hole 41 formed in the high reactivity region x 2 of the diluted alloy 40B, a plurality of adjacent horizontal holes are grouped h1 to h.
, and the pitch between the horizontal holes 41 of each group is reduced. The diluted alloy 400 shown in FIG. 8(C) has elongated holes 42 formed by interconnecting the horizontal holes of each group shown in FIG. 8(B).
さらに、第8図(D)の希釈合金710Dに示すように
小径の横孔43、通常の横孔41、長孔44を組み合せ
たものであり、第8図(E)の希釈合金40Eは高反応
度領域×2の長孔44間に小径の横孔45を穿設したも
のである。さらに、高反応度領域X2の横孔は第8図(
F)の希釈合金40Fに示すように矩形孔46であって
も、第8図(G)の希釈合金40Gに示すように変形矩
形孔47と三角形孔48とを組み合せてもよい。その他
、各収納孔は種々の形状の横孔が考えられる。Furthermore, as shown in the diluted alloy 710D in FIG. 8(D), a small-diameter horizontal hole 43, a normal horizontal hole 41, and a long hole 44 are combined, and the diluted alloy 40E in FIG. 8(E) has a high A small-diameter horizontal hole 45 is bored between the long holes 44 of two reactivity regions. Furthermore, the horizontal holes in the high reactivity region X2 are shown in Figure 8 (
A rectangular hole 46 may be used as shown in the diluted alloy 40F in F), or a modified rectangular hole 47 and a triangular hole 48 may be combined as shown in the diluted alloy 40G in FIG. 8(G). In addition, each storage hole may be a horizontal hole of various shapes.
いずれの希釈合金40も原子炉停止時未臨界度が浅くな
る部分により多くの84C等の中性子吸収材を充填して
大反応度化を図っている。In each of the diluted alloys 40, a large amount of neutron absorbing material such as 84C is filled in the portion where the subcriticality becomes shallow when the nuclear reactor is shut down to increase the reactivity.
また、希釈合金40の各横孔に充填されるB4Cの充填
密度は、中性子源11)1聞の特に高い挿入先端側で理
論充填密度の30〜65%とすることができる。既存の
制御棒では84C粉末は70%TD±5%TDで充填さ
れているが、B4C粉末の充填量が約5%TOの変化で
スエリング応力が同一となる中性子照射量は20%程度
変化することが考えられる。このスエリング応力の変化
はB4C粉末の粒径にも依存するので必ずしも一義的で
はないが、低密度化によりスエリング応力発生までの時
間をπらせることができる。Further, the packing density of B4C filled in each horizontal hole of the diluted alloy 40 can be set to 30 to 65% of the theoretical packing density especially at the high insertion tip side of the neutron source 11). In existing control rods, 84C powder is filled with 70% TD ± 5% TD, but if the filling amount of B4C powder changes by about 5% TO, the neutron irradiation amount to keep the swelling stress the same will change by about 20%. It is possible that This change in swelling stress depends on the particle size of the B4C powder, so it is not necessarily unambiguous, but by reducing the density, the time until swelling stress occurs can be increased by π.
第8図の(A)〜(G)に示すように、希釈合金40A
〜40Gに横孔を穿設した場合には、B4C粉末の沈積
問題は実質上生じないので、多少低密度化を図ることが
でき、従来のように84C粉末を70%丁り充填させる
場合には、粒径の異なる84C粉末を混合させて使用す
る必要があるが、60%TD程度あるいはそれ以下では
、B4C粉末は一種類の粒径でよく、コスト低減効果が
あり、粒度のコントロールが不要となる。As shown in FIG. 8 (A) to (G), diluted alloy 40A
~ If a horizontal hole is drilled in 40G, there is virtually no problem of B4C powder deposition, so it is possible to lower the density to some extent, and when filling 70% of 84C powder as in the past, It is necessary to use a mixture of 84C powders with different particle sizes, but at around 60% TD or less, only one type of B4C powder is required, which has a cost reduction effect and does not require particle size control. becomes.
一方、B4C粉末の粒径を30%TD以下とすると、中
性子反応によるB−10の消耗が早く、長寿命化に不適
当である。また、低密度充填で沈積なしとすることは困
難であるが、84C粉末が30%TDまでは粉の粒度を
小さくすることにより容易に対処できる。On the other hand, if the particle size of the B4C powder is set to 30% TD or less, B-10 is quickly consumed due to neutron reaction, which is inappropriate for extending the service life. Furthermore, although it is difficult to achieve no sedimentation with low density packing, this can be easily overcome by reducing the particle size of the powder up to 30% TD of 84C powder.
原子炉用制御棒10Bは第9図(A)、(B)に示すよ
うに構成してもよい。The nuclear reactor control rod 10B may be configured as shown in FIGS. 9(A) and 9(B).
この原子炉用制御棒10Bは、ウィング15の金m製シ
ース14内に形成される中性子吸収材充填空間内に挿入
先端から挿入末端にかけてほぼ全長にわたって長寿命型
中性子吸収材希釈合金50゜51を収容してもよい。第
9図(A)および(B)には長寿命型中性子吸収材希釈
合金50.51を第1ffi域Xに配設されるものと、
第2領域Yに配設されるものとに区画される。第1領域
Xに配設される長寿命型中性子吸収材希釈合金50は第
7図の第1領域Xに配設された希釈合金40と挿入末端
領域x3が存在しない以外はほぼ同様であるので同一符
号(記号)を付して説明は省略する。This nuclear reactor control rod 10B has a long-life neutron absorber diluted alloy 50°51 over almost the entire length from the insertion tip to the insertion end in the neutron absorber filling space formed in the gold sheath 14 of the wing 15. May be accommodated. In FIGS. 9(A) and (B), a long-life neutron absorber diluted alloy 50.51 is disposed in the first ffi region X,
It is divided into those arranged in the second area Y. The long-life neutron absorber diluted alloy 50 disposed in the first region X is almost the same as the diluted alloy 40 disposed in the first region X in FIG. The same reference numerals (symbols) are given and explanations are omitted.
また、第2領域Yに配設される長寿命型中性子吸収材希
釈合金51として、ハフニウム等のHD命梨型中性子吸
収材例えばジルコニウムの希釈材で希釈した希釈合金で
、ハフニウムは2wt%以上有する。この希釈合金51
に該当するものとして例えば天然のジルコニウムがある
。天然のジルコニウムはハフニウムを約2.5〜3.O
wt%程度有する。この希釈合金51に形成される収容
孔としての横孔内には84C等の長寿命型中性子吸収材
とは異なる中性子吸収材52が充填される。In addition, the long-life neutron absorbing material diluted alloy 51 disposed in the second region Y is a diluted alloy diluted with a diluent of a HD-type neutron absorbing material such as hafnium, such as zirconium, and hafnium contains 2 wt% or more. . This diluted alloy 51
An example of this is natural zirconium. Natural zirconium has hafnium of about 2.5 to 3. O
It has about wt%. A neutron absorbing material 52 different from a long-life neutron absorbing material such as 84C is filled in a horizontal hole as a housing hole formed in this diluted alloy 51.
また、原子炉用制御棒10Bのウィング15内に形成さ
れる中性子吸収材充填空間は第9図(A)および(B)
に示すように必ずしも第1領域Xと第2領域Yとを必ず
しも区画する必要がなく、中性子吸収材充填空間の挿入
先端から挿入末端にかけてほぼ全長にわたり、はぼ同じ
長寿命型中性子吸収材希釈合金を収容させてbよい。こ
の場合、全長にわたって希釈合金を一体成形してもある
いは数分割してもよく、また、希釈合金は中性子吸収材
充填空間の上端部および下端部の少なくとも一方を除い
て収容してもよい。希釈合金の収容孔としての横孔内に
第9図(A)、(B)の中性子吸収材を充填させるとと
もに、各横孔内金てに84C等からなる同じ中性子吸収
材を充填させてもよい。Furthermore, the neutron absorbing material filling space formed in the wing 15 of the reactor control rod 10B is shown in FIGS. 9(A) and 9(B).
As shown in the figure, it is not necessary to separate the first region may be accommodated. In this case, the diluted alloy may be integrally molded over the entire length or divided into several parts, and the diluted alloy may be accommodated except for at least one of the upper and lower ends of the neutron absorber filling space. In addition to filling the neutron absorbing material shown in FIGS. 9(A) and 9(B) in the horizontal holes serving as accommodation holes for the diluted alloy, it is also possible to fill the same neutron absorbing material made of 84C or the like in each horizontal hole. good.
その際、中性子吸収材充填空回の全域にわたって充填さ
れる長寿命型中性子吸収材希釈合金は、ハフニウム等の
長寿命型中性子吸収材をジルコニウムやチタン等の希釈
材で希釈させたものであり、例えばハフニウムがジルコ
ニウムとの合金である場合、約lQwt%稈度のハフニ
ウムを、チタンとの合金である場合、約3Qwt%程度
のハフニウムをそれぞれ含むものが一例として用いられ
る。At this time, the long-life neutron absorber diluted alloy that is filled over the entire area of the neutron absorber filling empty circuit is a long-life neutron absorber diluted alloy such as hafnium diluted with a diluent such as zirconium or titanium. For example, when hafnium is an alloy with zirconium, it contains about 1Qwt% of hafnium, and when it is an alloy with titanium, it contains about 3Qwt% of hafnium.
以上に述べたように本発明に係る原子炉用it、!J御
棒においては、制御棒のウィングを挿入先端側の第1領
域と、この第1領域に隣接する挿入末端側の第2領域と
に区画し、上記第1領域はシース内に長寿命型中性子吸
収材を希釈材で希釈した長寿命型中性子吸収材希釈合金
が収容されるとともに第1領域内に高反応度領域を形成
し、この高反応度領域の長寿命型中性子吸収材に複数の
孔を列状に形成し、上記各孔内にハフニウム以外の中性
子吸収材を充填したから、原子炉停止中の未臨界度が浅
くなる領域の反応度を高めて、原子炉停止余裕を効果的
に増大させることができ、また、高反応度領域に長寿命
型中性子吸収材とハフニウム以外の中性子吸収材との少
なくとも2種類の中性子吸収材を用いて相補、協調的な
中性子吸収効果により核的寿命の長期化を図ることがで
き、原子炉停止余裕が大きな高反応度長寿命型制御棒を
提供できる。As described above, the nuclear reactor IT according to the present invention! In the J control rod, the wing of the control rod is divided into a first region on the insertion end side and a second region on the insertion end side adjacent to this first region, and the first region has a long-life type inside the sheath. A long-life neutron absorber diluted alloy made by diluting a neutron absorber with a diluent is accommodated, and a high reactivity region is formed in the first region, and a plurality of long-life neutron absorbers are disposed in this high reactivity region. By forming holes in a row and filling each hole with a neutron absorbing material other than hafnium, the reactivity in the region where subcriticality becomes shallow during reactor shutdown is increased, effectively increasing reactor shutdown margin. In addition, by using at least two types of neutron absorbers, a long-life neutron absorber and a neutron absorber other than hafnium, in the high reactivity region, the nuclear energy can be increased by complementary and cooperative neutron absorption effects. A long-life control rod with high reactivity and a large reactor shutdown margin can be provided.
さらに、第1領域には長寿命型中性子吸収材を比重の小
さな希釈材で希釈した長寿命型中性子吸収材希釈合金を
少なくとも限定的に配置して制御棒の軽量化と原子炉停
止時に未臨界度が浅くなる部分の大反応度化、長寿命化
とを図り、かつ′tS(fIな長寿命型中性子吸収材の
全体の使用♀を軽減できるので、コストダウンが図れ、
また、軽量化により既存のプラントにバックフィツトさ
せることができる。Furthermore, in the first region, a long-life neutron absorber diluted alloy, which is a long-life neutron absorber diluted with a diluent with a small specific gravity, is placed at least in a limited manner to reduce the weight of control rods and make them subcritical when the reactor is shut down. It is possible to increase the reactivity of the shallow part, extend the life, and reduce the overall use of the long-life neutron absorber, which reduces costs.
Furthermore, the weight reduction allows it to be backfitted into existing plants.
第1図は本発明に係る原子炉用制御棒の一実施例を示す
もので、制御棒のウィングの断面図、第2図(A)およ
び第2図(B)は原子炉用制御棒のウィング内に収容さ
れるハフニウムfit、84CMの軸方向分布をそれぞ
れ示す図、WS3図(A>は第1図に示されたウィング
の第1領域を拡大して示す図、第3図(B)は第3図(
A)の■−■線に沿う断面図、第4因(A)、(B)お
よび(C)は第3図(A)のA−A線、B−B線、C−
C線に沿う平断面図、第5図(A)は従来の原子炉用制
御棒の未臨界度を示す図、第5図(8)は本発明の原子
炉用制御棒の中性子吸収特性を示す図、第5図(C)は
未臨界度を従来の原子炉用1III3 Ill棒と本発
明の原子炉用制御棒とを比較して示す図、第6図(A>
はウィングの第1領域に収容される長寿命型中性子吸収
材希釈合金(Hf−Zr希釈合金)の断面図、第6図(
B)および(C)は上記希釈合金に含有されるハフニウ
ム濃度と中性子吸収率および比mとの関係を示す図、第
7図(A)および(B)は本発明に係る原子炉用制御棒
の第2実施例を示す断面図、第8図(A)〜(G)は上
記Hill m棒のウィングの第1領域に収容される長
寿命型中性子吸収材希釈合金の各変形例をそれぞれ示す
図、第9図(Δ)および(B)は本発明に係る原子炉用
制御棒の第3実施例を示す図、第10図は従来の原子か
用111111棒を示す斜視図、第11図は従来の原子
炉用υ制御棒の平断面図である。
10.10A、10B・・・原子炉用υJilt棒、1
1・・・先端構造材、12・・・末端病造材、13・・
・タイ0ッド、14・・・金ff1lシース、15・・
・ウィング、20.24.25.40.50.51・・
・S寿命型中性子吸収材希釈合金、21.26・・・横
孔(収容孔)、22.32・・・長寿命型中性子吸収材
、28゜52・・・中性子吸収材、30・・・長′ti
命型中性子吸収棒、40A〜40G・・・長寿命型中性
子吸収材希釈合金。
x3 u
(ε)
第4図
一一一従泉の原J7F屑制S#膠
−JR1@I)II子〃周利ぴ梯
上j巖 上端
よ縞(A)(15)(C)
$5図
(C)
$6図
$lθ図FIG. 1 shows an embodiment of a control rod for a nuclear reactor according to the present invention, and FIG. 2 (A) and FIG. 2 (B) are a sectional view of a wing of the control rod. A diagram showing the axial distribution of hafnium fit and 84CM housed in the wing, Figure WS3 (A> is an enlarged view of the first region of the wing shown in Figure 1, Figure 3 (B) is shown in Figure 3 (
The cross-sectional view taken along the line ■-■ of A), the fourth factor (A), (B), and (C) are the cross-sectional view along the line A-A, line B-B, and C- of Fig. 3 (A).
A plan sectional view taken along line C, FIG. 5(A) is a diagram showing the subcriticality of a conventional nuclear reactor control rod, and FIG. 5(8) is a diagram showing the neutron absorption characteristics of the nuclear reactor control rod of the present invention. Figure 5 (C) is a diagram comparing the subcriticality of the conventional nuclear reactor control rod and the nuclear reactor control rod of the present invention, Figure 6 (A>
is a cross-sectional view of a long-life neutron absorber diluted alloy (Hf-Zr diluted alloy) accommodated in the first region of the wing;
B) and (C) are diagrams showing the relationship between the hafnium concentration contained in the diluted alloy, the neutron absorption rate, and the ratio m, and Figures 7 (A) and (B) are diagrams showing the control rod for a nuclear reactor according to the present invention. 8(A) to 8(G) are cross-sectional views showing the second embodiment of the invention, and FIGS. 8(A) to 8(G) respectively show modified examples of the long-life neutron absorber diluted alloy accommodated in the first region of the wing of the Hill m bar. 9(Δ) and (B) are views showing a third embodiment of the control rod for a nuclear reactor according to the present invention, FIG. 10 is a perspective view showing a conventional atomic control rod 111111, and FIG. is a plan cross-sectional view of a conventional υ control rod for a nuclear reactor. 10.10A, 10B... υJilt rod for nuclear reactor, 1
1...Tip structure material, 12...Terminal disease construction material, 13...
・Tie 0d, 14... Gold ff1l sheath, 15...
・Wing, 20.24.25.40.50.51...
・S life type neutron absorber diluted alloy, 21.26...Horizontal hole (accommodation hole), 22.32...Long life type neutron absorber, 28°52...Neutron absorber, 30... long'ti
Life-type neutron absorption rod, 40A to 40G...Long-life neutron absorption material diluted alloy. x3 u (ε) Fig. 4 111 Juizunohara J7F scrap type S # glue - JR1 @ I) II child Shuuripi ladder top j wao top end
Horizontal stripes (A) (15) (C) $5 figure (C) $6 figure $lθ figure
Claims (1)
上記タイロッドに金属製シースを固着してウィングを構
成した原子炉用制御棒において、前記ウィング内に形成
される中性子吸収材充填空間を、挿入先端側の第1領域
とこの第1領域に隣接する挿入末端側の第2領域とに区
画し、前記第1領域には長寿命型中性子吸収材を希釈材
にて希釈した長寿命型中性子吸収材希釈合金を収容した
高反応度領域を有し、前記希釈合金に複数の孔を列状に
穿設し、上記孔内に前記長寿命型中性子吸収材以外の中
性子吸収材を充填したことを特徴とする原子炉用制御棒
。 2、第1領域に形成される高反応度領域は中性子吸収材
充填空間の軸方向長さの少なくともほぼ1/4の長さ空
間であり、この高反応度領域は挿入先端側の高反応度長
寿命部と挿入末端側の高反応度部に区画され、第1領域
に収容される希釈合金は挿入先端側から挿入末端側に向
って含有長寿命型中性子吸収材の濃度が減少する方向に
変化させるとともに希釈材はジルコニウムあるいはチタ
ンを主成分とする物質である請求項1記載の原子炉用制
御棒。 3、金属製シース内の中性子吸収材充填空間には挿入先
端から挿入末端に向つて上記充填空間全長の少なくとも
1/4以上の長さを第1領域に形成し、この第1領域に
長寿命型中性子吸収材希釈合金を収容し、上記希釈合金
にウィング幅方向に延びる横孔を列状に形成するととも
に、前記希釈合金の挿入先端付近の横孔はガスプレナム
を形成し、この横孔に続く挿入末端側の少なくとも1個
の横孔に長寿命型中性子吸収材を充填し、この長寿命型
中性子吸収材を充填した横孔に続く挿入末端側の原子炉
停止時未臨界度が浅くなる領域の各横孔は長孔あるいは
孔間ピッチを密にしてボロンカーバイドなどの中性子吸
収材を充填し、さらに、これらの横孔に続く第1領域の
挿入末端側の横孔に中性子吸収材を配置し、第1領域の
挿入末端側の第2領域には、ボロンカーバイドなどの中
性子吸収材を充填した中性子吸収棒を配列した請求項1
記載の原子炉用制御棒。 4、先端構造材と末端構造材とをタイロッドで結合し、
上記タイロッドに金属製シースを固着してウィングを構
成した原子炉用制御棒において、前記ウィング内に形成
される中性子吸収材充填空間に、挿入先端側から挿入末
端側のほぼ全長にわたり長寿命型中性子吸収材希釈合金
を収容し、上記希釈合金に形成される収容孔にボロンカ
ーバイド等の中性子吸収材が充填されたことを特徴とす
る原子炉用制御棒。[Claims] 1. The tip structure member and the end structure member are connected by a tie rod,
In the nuclear reactor control rod in which a metal sheath is fixed to the tie rod to form a wing, a neutron absorbing material filling space formed in the wing is arranged in a first region on the insertion tip side and adjacent to the first region. and a second region on the insertion end side, and the first region has a high reactivity region containing a long-life neutron absorber diluted alloy obtained by diluting a long-life neutron absorber with a diluent, A control rod for a nuclear reactor, characterized in that a plurality of holes are bored in a row in the diluted alloy, and the holes are filled with a neutron absorbing material other than the long-life neutron absorbing material. 2. The high reactivity region formed in the first region is at least approximately 1/4 of the axial length of the neutron absorbing material filling space, and this high reactivity region is the high reactivity region on the insertion tip side. The diluted alloy contained in the first region is divided into a long-life region and a high-reactivity region on the insertion end side, and the concentration of the long-life neutron absorber contained therein decreases from the insertion end side to the insertion end side. 2. The control rod for a nuclear reactor according to claim 1, wherein the diluent is a substance containing zirconium or titanium as a main component. 3. The neutron absorbing material filling space in the metal sheath is formed with a first region having a length of at least 1/4 or more of the total length of the filling space from the insertion tip to the insertion end, and this first region has a long life. A type neutron absorber diluted alloy is accommodated, horizontal holes extending in the wing width direction are formed in a row in the diluted alloy, and the horizontal hole near the insertion tip of the diluted alloy forms a gas plenum, which continues to the horizontal hole. At least one horizontal hole on the insertion end side is filled with a long-life neutron absorbing material, and a region adjacent to the horizontal hole filled with the long-life neutron absorbing material is where the degree of subcriticality becomes shallow at the time of reactor shutdown on the insertion end side. Each horizontal hole is filled with a neutron absorbing material such as boron carbide with a long hole or a dense hole pitch, and the neutron absorbing material is placed in the horizontal hole on the insertion end side of the first region following these horizontal holes. Claim 1, wherein neutron absorbing rods filled with a neutron absorbing material such as boron carbide are arranged in the second region on the insertion end side of the first region.
The described control rod for a nuclear reactor. 4. Connect the tip structure material and the end structure material with tie rods,
In a nuclear reactor control rod in which a metal sheath is fixed to the tie rod to form a wing, long-life neutrons are emitted over almost the entire length from the insertion tip side to the insertion end side in the neutron absorbing material filling space formed in the wing. 1. A control rod for a nuclear reactor, characterized in that a neutron absorbing material such as boron carbide is filled in a housing hole formed in the diluted alloy, and a neutron absorbing material such as boron carbide.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63027634A JP2735211B2 (en) | 1988-02-10 | 1988-02-10 | Reactor control rod |
US07/307,758 US5034185A (en) | 1988-02-09 | 1989-02-08 | Control blade for nuclear reactor |
SE8900427A SE505354C2 (en) | 1988-02-09 | 1989-02-08 | Nuclear reactor guide blades |
DE3903844A DE3903844A1 (en) | 1988-02-09 | 1989-02-09 | ABSORBER BAR FOR A CORE REACTOR |
DE3943681A DE3943681C2 (en) | 1988-02-09 | 1989-02-09 | Absorber rod for nuclear reactors |
SE9701444A SE512598C2 (en) | 1988-02-09 | 1997-04-18 | Control rod for nuclear reactors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63027634A JP2735211B2 (en) | 1988-02-10 | 1988-02-10 | Reactor control rod |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01203994A true JPH01203994A (en) | 1989-08-16 |
JP2735211B2 JP2735211B2 (en) | 1998-04-02 |
Family
ID=12226378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63027634A Expired - Lifetime JP2735211B2 (en) | 1988-02-09 | 1988-02-10 | Reactor control rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2735211B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052092A (en) * | 1990-09-14 | 1993-01-08 | Hitachi Ltd | Control rod |
CN111933313A (en) * | 2020-07-21 | 2020-11-13 | 上海核工程研究设计院有限公司 | Long-life neutron absorbing material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01202691A (en) * | 1988-02-09 | 1989-08-15 | Nippon Atom Ind Group Co Ltd | Nuclear reactor control rod |
-
1988
- 1988-02-10 JP JP63027634A patent/JP2735211B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01202691A (en) * | 1988-02-09 | 1989-08-15 | Nippon Atom Ind Group Co Ltd | Nuclear reactor control rod |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052092A (en) * | 1990-09-14 | 1993-01-08 | Hitachi Ltd | Control rod |
CN111933313A (en) * | 2020-07-21 | 2020-11-13 | 上海核工程研究设计院有限公司 | Long-life neutron absorbing material |
CN111933313B (en) * | 2020-07-21 | 2023-06-02 | 上海核工程研究设计院有限公司 | Long-life neutron absorption material |
Also Published As
Publication number | Publication date |
---|---|
JP2735211B2 (en) | 1998-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1085525B1 (en) | Light water reactor core and fuel assembly | |
US6925138B2 (en) | Reactor core and method for operating nuclear reactor | |
JP2511581B2 (en) | Boiling water reactor core and boiling water reactor | |
JP5738861B2 (en) | A method for operating a pressurized water reactor capable of going from a plutonium-equilibrium cycle to a uranium-equilibrium cycle and corresponding to a nuclear fuel assembly | |
JPH1123765A (en) | Reactor core | |
JP2006113069A (en) | Use of boron or enriched boron isotope 10b for uranium dioxide | |
WO2010074592A1 (en) | Fuel assembly for a light-water nuclear reactor (embodiments), light-water nuclear reactor and fuel element of the fuel assembly | |
JP2008256697A (en) | Use of boron or enriched boron 10 in uo2 | |
JPH01203994A (en) | Control rod for nuclear reactor | |
JP2000241582A (en) | Fuel assembly, fuel rod and reactor core | |
JPS5873896A (en) | Fissionable fuel assembly for low speed reactor | |
JP2007086078A (en) | Nuclear fuel assembly | |
JPH0213889A (en) | Controller for long-life nuclear reactor | |
JPH0345354B2 (en) | ||
US4832906A (en) | Fuel assembly | |
JPH01312492A (en) | Control rod for atomic reactor | |
JPH036493A (en) | Reactor control rod | |
JPS5855886A (en) | Control rod of reactor | |
JP3958545B2 (en) | Fuel assembly | |
JP2878813B2 (en) | Reactor control rod | |
JP2509625B2 (en) | Core structure of fast breeder reactor | |
JP2024519870A (en) | Nuclear fuel rods with cladding of varying diameter | |
EP0369305A1 (en) | Fuel assembly containing fuel rods having standardized-length burnable absorber integral with fuel pellets and method of customizing fuel assembly | |
JPS63215992A (en) | Control-rod for nuclear reactor | |
JP3788170B2 (en) | Fuel assemblies and reactor cores |