JPS63215992A - Control-rod for nuclear reactor - Google Patents
Control-rod for nuclear reactorInfo
- Publication number
- JPS63215992A JPS63215992A JP62047678A JP4767887A JPS63215992A JP S63215992 A JPS63215992 A JP S63215992A JP 62047678 A JP62047678 A JP 62047678A JP 4767887 A JP4767887 A JP 4767887A JP S63215992 A JPS63215992 A JP S63215992A
- Authority
- JP
- Japan
- Prior art keywords
- region
- control rod
- reactor
- filled
- neutron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011358 absorbing material Substances 0.000 claims description 36
- 238000003780 insertion Methods 0.000 claims description 23
- 230000037431 insertion Effects 0.000 claims description 23
- 230000004308 accommodation Effects 0.000 claims description 22
- 238000010521 absorption reaction Methods 0.000 claims description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- 239000006096 absorbing agent Substances 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 229910052580 B4C Inorganic materials 0.000 claims description 5
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910001940 europium oxide Inorganic materials 0.000 claims description 5
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 claims description 5
- INIGCWGJTZDVRY-UHFFFAOYSA-N hafnium zirconium Chemical compound [Zr].[Hf] INIGCWGJTZDVRY-UHFFFAOYSA-N 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- BCEYEWXLSNZEFA-UHFFFAOYSA-N [Ag].[Cd].[In] Chemical compound [Ag].[Cd].[In] BCEYEWXLSNZEFA-UHFFFAOYSA-N 0.000 claims description 2
- 230000002745 absorbent Effects 0.000 claims description 2
- 239000002250 absorbent Substances 0.000 claims description 2
- 229910003440 dysprosium oxide Inorganic materials 0.000 claims description 2
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(iii) oxide Chemical compound O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims 2
- 239000000956 alloy Substances 0.000 claims 2
- 229910052735 hafnium Inorganic materials 0.000 claims 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims 1
- 230000009257 reactivity Effects 0.000 description 12
- 239000003758 nuclear fuel Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910052778 Plutonium Inorganic materials 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- 230000004323 axial length Effects 0.000 description 3
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 3
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、原子炉出力を調整し制御2II″gる原子炉
用制御棒に係り、特に長N命を右し、高い原子炉停止余
裕を有する原子炉用制御棒に関する。[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a control rod for a nuclear reactor that adjusts and controls the reactor output, and particularly relates to a control rod for a nuclear reactor that has a long life. This invention relates to a control rod for a nuclear reactor that has a high reactor shutdown margin.
(従来の技術)
原子炉の出力を制御する原子炉用制御棒として、中央タ
イロッドに例えば4枚のステンレス鋼製ウィングを一体
的に結合し、ウィングの幅方向の内部に形成した多数の
収容穴にボロンカーバイド(84C)などの中性子吸収
材の粉末を均一な密度で充填した新しい型式の制御棒が
開発されている。(Prior art) As a nuclear reactor control rod that controls the output of a nuclear reactor, for example, four stainless steel wings are integrally connected to a central tie rod, and a large number of accommodation holes are formed inside the wings in the width direction. A new type of control rod has been developed that is filled with powder of a neutron absorbing material such as boron carbide (84C) at a uniform density.
この原子炉用制御棒を沸鷹水型原子炉等の炉心部に挿入
すると、収容穴に充填した中性子吸収材は中性子の照射
を受け、中性子吸収能力を次第に失うため、所定期間の
運転に供した後に定II的に交換される。When this control rod for a nuclear reactor is inserted into the core of a boiling water reactor, etc., the neutron absorbing material filled in the accommodation hole is irradiated with neutrons and gradually loses its neutron absorption ability. After that, it is exchanged regularly.
(発明が解決しようとする問題点)
ところで・、原子炉の炉心部において使用される制御棒
は、各ウィングの全面に亘って一様に中性子照射を受け
るものではなく、例えば各ウィングの挿入先端領域およ
び側縁領域は、強麿の中性子照射を受ける。そのため、
その領域に充填された中性子吸収材は多量の中性子を吸
収して他領域より〒く消耗し、早期に核的寿命を終える
。したがって、他領域に充填された中性子吸収材がまだ
十分核的寿命を残しているにも拘らず、原子炉用1、I
I tit棒全体を放射性廃棄物として廃棄しなIJれ
ばならない不経済性があり、一方、交換頻度が八いと交
換作業を行なう作業員の被曝線岳も増大する問題点も考
えられる。(Problem to be solved by the invention) By the way, the control rods used in the core of a nuclear reactor are not irradiated with neutrons uniformly over the entire surface of each wing. The region and the lateral edge regions receive intense neutron irradiation. Therefore,
The neutron absorbing material filled in that area absorbs a large amount of neutrons and is consumed more than other areas, ending its nuclear lifespan earlier. Therefore, even though the neutron absorbing materials filled in other regions still have sufficient nuclear life remaining,
There is an uneconomical problem in that the entire I tit rod must be disposed of as radioactive waste, and on the other hand, there is also the problem that if it is replaced less frequently, the radiation exposure of the workers who perform the replacement work will increase.
また、従来の原子炉用ill m棒は、ウィングの全領
域に亘って中性子吸収材を均一な!度で充填しており、
軸方向の中性子吸収能力すなわち反応度が等しく調製さ
れているが、前記のように中性子照射ωの不均一によっ
て経時的に反応度にばらつきを生じ、原子炉の運転ザイ
クル末期においては部分的に原子炉停止余裕が低下する
可能性がある。In addition, conventional illumination rods for nuclear reactors uniformly distribute the neutron absorbing material over the entire area of the wing! It is filled with
The neutron absorption capacity, that is, the reactivity in the axial direction, is adjusted to be equal, but as mentioned above, the reactivity varies over time due to the non-uniformity of neutron irradiation ω, and at the end of the reactor operation cycle, some atoms The margin for reactor shutdown may decrease.
すなわち、上記の原子炉用υ制御棒を使用して原子炉を
所定期間運転した場合における原子炉停止余裕(未臨界
度)の炉心軸方向分布は、燃料集合体の設計仕様または
原子炉の運転方法によって若干の相違を生じるが、基本
的には第2図(A)に示寸分布となる。すなわら、原子
炉停止余裕は炉心の−L端および下端において大きく、
一方、上D′Jより若干下った位置において最小の値を
とる。この原因としては、次のことが考えられる。In other words, when the reactor is operated for a predetermined period using the above-mentioned υ control rod for a nuclear reactor, the distribution of the reactor shutdown margin (subcriticality) in the core axis direction is determined by the design specifications of the fuel assembly or the operation of the reactor. Although there are some differences depending on the method, basically the indicated size distribution is shown in FIG. 2(A). In other words, the reactor shutdown margin is large at the -L end and bottom end of the core,
On the other hand, the minimum value is taken at a position slightly below the upper D'J. Possible causes of this are as follows.
原子炉炉心の軸方向長さをLとした場合、下端から3/
4Lから上端にかけての上端領域においては、運転時の
気泡発生率(ボイド率)が高く、炉の出力密度が若干低
下するため、核分裂性物質である質量数235のウラン
(jJ−235)の残存ωが比較的多く、また発生する
気泡(ボイド)によって中性子スペクトルの硬化現象を
生じる。If the axial length of the reactor core is L, then 3/3 from the bottom end.
In the upper end region from 4L to the upper end, the bubble generation rate (void rate) during operation is high, and the power density of the reactor decreases slightly, so the remaining uranium (jJ-235) with a mass number of 235, which is a fissile material, ω is relatively large, and the generated bubbles (voids) cause a phenomenon of hardening of the neutron spectrum.
その結果、プルトニウム生成反応(中性子吸収反応)が
促進されるため、原子炉の運転後において炉心上部の核
分裂性物質の濃度が高くなり、その 7領域の原子炉
停止余裕が低下する。As a result, the plutonium production reaction (neutron absorption reaction) is promoted, which increases the concentration of fissile material in the upper part of the core after the reactor is in operation, reducing the margin for reactor shutdown in these seven regions.
一方、今後の原子炉は運転軽流性の向上に対する要請か
ら核燃料の高燃焼度化および運転勺イクルの長期化への
移行は必至の情勢である。その具体的な対応として濃縮
度の高い核燃料の採用が進み、それに伴って寿命が長く
、原子炉停止余裕が大きな原子炉用制御棒が強く求めら
れる。On the other hand, it is inevitable that future nuclear reactors will shift to higher burn-up of nuclear fuel and longer operating cycle due to the demand for improved light-flow operation. As a concrete response to this, the adoption of highly enriched nuclear fuel is progressing, and as a result, there is a strong demand for control rods for nuclear reactors that have a long life and a large margin for reactor shutdown.
ところが、従来の原子炉用制御棒を高漠縮瓜の核燃料を
装荷した原子炉に採用すると、短い運転サイクル毎に原
子炉用制御棒を頻繁に交換しなければならない。また原
子炉用制御棒の交換作業にあたっては、原子炉を停止し
、交換すべき制御棒の周囲に配設された多数の燃料集合
体を炉心から予め排除する煩雑な作業が必要とされる。However, if conventional nuclear reactor control rods are used in a nuclear reactor loaded with high desert nuclear fuel, the reactor control rods must be replaced frequently every short operating cycle. Furthermore, when replacing control rods for a nuclear reactor, it is necessary to shut down the reactor and remove from the reactor a large number of fuel assemblies arranged around the control rods to be replaced, which is a complicated process.
したがって、原子炉停止が頻発し、また停止期間が長期
化することにより原子炉の運転効率、R斉性が署しく低
下する一方、管理労力が著しく増大する可能性がある。Therefore, as nuclear reactor shutdowns occur frequently and the shutdown period becomes long, the operational efficiency and R uniformity of the reactor are significantly reduced, and the management effort may significantly increase.
本発明は上記の問題点を解決するためになされたもので
あり、原子炉用制御棒全体の反応度価値を高めるととも
に、原子炉停止余裕が低下しがちな領域に、特に反応亀
が高く、または長、V命を有する中性子吸収材を部分的
に配設することによって、安価で効果的に原子炉停止余
裕を増大化し、かつ核的寿命の長期化を図り得る原子炉
用制御棒を提供することを目的とする。The present invention has been made in order to solve the above problems, and it increases the reactivity value of the entire control rod for a nuclear reactor, and also improves the reactivity value of the control rod, especially in areas where the reactor shutdown margin tends to decrease. Alternatively, we provide a control rod for a nuclear reactor that can inexpensively and effectively increase the reactor shutdown margin and prolong the nuclear life by partially disposing a neutron absorbing material with a long V life. The purpose is to
(問題点を解決するための手段)
本発明に係る原子炉用!III捧は、複数の矩形のウィ
ングの内側端を結合部材を介して互いに一体的に結合さ
せるとともに、上記ウィングの幅方向に穿設された収容
穴を、上記ウィングの挿入先端から縦方向に長さしに渡
り、多数列状に配設し、上記収容穴に中性子吸収材を充
填した原子炉用u制御棒において、上記ウィングの挿入
先端部に位置する複数の収容穴に長寿命型中性子吸収材
を充填して第1領域を形成し、上記第1領域に隣接して
縦方向に12領域を形成し、第2領域の下端から挿入先
端までの長さは、少なくとb1/411/4設定し、上
記第2領域に位置する収容穴に中性子吸収能力が大きな
高反応度中性子吸収材を充填し、上記第2領域にPR接
して挿入方向末端まで第3領域を形成し、上記第3領域
に位置する収容穴には天然ボ【Jンを充填するとともに
、ウィングの外側縁の領域で挿入先端から縦方向に少な
くとち1/2[以上の長さを有する領域に長寿命型中性
子吸収材を充填して構成したことを特徴とする。(Means for solving the problem) For nuclear reactors according to the present invention! The III-shaped wing integrally connects the inner ends of a plurality of rectangular wings to each other via a connecting member, and also has a housing hole bored in the width direction of the wing extending vertically from the insertion tip of the wing. In U control rods for nuclear reactors, which are arranged in multiple rows across the length and the accommodation holes are filled with neutron absorbing material, long-life neutron absorbing material is placed in the plurality of accommodation holes located at the insertion tip of the wing. 12 regions are formed in the vertical direction adjacent to the first region, and the length from the lower end of the second region to the insertion tip is at least b1/411/4. A highly reactive neutron absorbing material having a large neutron absorption capacity is filled into the accommodation hole located in the second region, and a third region is formed in PR contact with the second region to the end in the insertion direction. The receiving hole located in the region is filled with natural neutrons, and a long-life neutron is filled in the region of the outer edge of the wing with a length of at least 1/2 [longitudinal] from the insertion tip. It is characterized by being filled with an absorbent material.
(作用)
本発明に係る原子炉用υ1m棒は、各ウィングの幅方向
に穿設された収容穴をウィングの縦方向に多数列状に配
設しており、上記ウィングの挿入方向先端の領域に位ば
する収容穴に長寿命型中性子吸収材を充填した第1領域
を形成しているため、運転中において中性子照射剤が特
に高い挿入先端部のm1領域においても中性子吸収能力
が長JfJ間衰えず核的寿命が長い。したがって、原子
炉用制御棒全体としての寿命を大幅に延伸することがで
きる。(Function) The υ1m rod for a nuclear reactor according to the present invention has accommodation holes drilled in the width direction of each wing arranged in multiple rows in the longitudinal direction of the wing, and the area at the tip of the wing in the insertion direction. Since the first region filled with long-life neutron absorbing material is formed in the accommodation hole located at It does not decline and has a long nuclear lifespan. Therefore, the life of the entire nuclear reactor control rod can be significantly extended.
また、原子炉用制御棒を炉心に全挿入した状態において
使用する場合、原子炉用u制御棒の第1領域に隣接して
縦方向に設けられた第2領域に対応する燃料集合体内部
における核反応はボイド現象によって抑制されるため、
その領域における核燃料の残存量が多い。そのうえ、プ
ルトニウムの生成反応によって核分裂性物質のIl痕が
高まっている。しかし、その第2領域に高反応度中性子
吸収材が充填されているため、原子炉を長期間運転した
後においても、第2領域における中性子吸収材の反応度
価値が保持される。したがって、原子炉用制御棒全体の
全挿入時における原子炉停止余裕も十分に確保すること
ができる。In addition, when the reactor control rod is used with the reactor control rod fully inserted into the reactor core, the inside of the fuel assembly corresponding to the second region provided vertically adjacent to the first region of the reactor U control rod is Because nuclear reactions are suppressed by void phenomena,
There is a large amount of nuclear fuel remaining in that area. Moreover, the Il signature of fissile material is increasing due to the plutonium production reaction. However, since the second region is filled with a highly reactive neutron absorber, the reactivity value of the neutron absorber in the second region is maintained even after the reactor is operated for a long period of time. Therefore, a sufficient margin for reactor shutdown can be ensured when all reactor control rods are fully inserted.
さらに、各ウィングの第2領域の下端から末端構造拐ま
での第3領域に天然ボロンを充填して構成し、この第3
領域の面積は各ウィングの全面積の1/2ないし3/4
の大きな割合を占め、その領域には軽鎖な天然ボロンが
充填されているため、原子炉用制御棒全体の重石増加は
殆ど問題にならない。Furthermore, a third region of each wing from the lower end of the second region to the terminal structure is filled with natural boron, and this third region is filled with natural boron.
The area of the area is 1/2 to 3/4 of the total area of each wing.
Since this region is filled with light-chain natural boron, an increase in the weight of the entire reactor control rod is hardly a problem.
また、長寿命または高反応度を有する8価な中性子吸収
材は第1〜第2領域に必要最少量を限定的に配設する一
方、第3領域は安価な天然ボロンで構成しているため原
子炉用i+11 illl金棒の製作費を安価にするこ
とができる。In addition, an octavalent neutron absorbing material with a long life or high reactivity is provided in the first and second regions in a limited amount, while the third region is made of inexpensive natural boron. The manufacturing cost of i+11 illll metal rods for nuclear reactors can be reduced.
さらに、ウィングの外側縁の領域で挿入先端から縦方向
に少なくとも1/2L以上の長さを有する領域に長寿命
型中性子吸収材を充填しているため多聞の中性子照射を
受けるウィングの外側縁領域における核的寿命を延伸す
ることができる。Furthermore, since the outer edge area of the wing is filled with long-life neutron absorbing material in an area having a length of at least 1/2 L or more in the longitudinal direction from the insertion tip, the outer edge area of the wing receives a large amount of neutron irradiation. can extend the nuclear lifespan of
(実施例)
以下、本発明に係る原子炉用1111II棒の一実施例
について添付図面を参照して説明する。(Example) Hereinafter, an example of the 1111II rod for a nuclear reactor according to the present invention will be described with reference to the accompanying drawings.
第1図は、本発明に係る原子炉用υI制御棒ウィングを
部分的に破断して示す正面図である。FIG. 1 is a partially cutaway front view showing a υI control rod wing for a nuclear reactor according to the present invention.
本実施例の原子炉用制御棒Aは、例えばステンレス鋼板
で形成された4枚の矩形のウィング1の内側端を結合部
材2を介して互いに一体的に十字形に結合して構成され
、挿入先端部には操作用のハンドル3が固着されている
。一方、図示しない挿入末端部には末端構造材が取(=
jけられている。The reactor control rod A of this embodiment is constructed by integrally connecting the inner ends of four rectangular wings 1 made of, for example, stainless steel plates to each other in a cross shape via a connecting member 2. A handle 3 for operation is fixed to the tip. On the other hand, an end structure material is attached to the insertion end (not shown).
j is being kicked.
各ウィング1の幅方向には収容穴4が穿設され、この収
容穴4は各ウィング1の縦方向に多数列状に配設され、
この収容穴4内に各種の特性を有する中性子吸収材が充
填される。Accommodation holes 4 are bored in the width direction of each wing 1, and the accommodation holes 4 are arranged in multiple rows in the longitudinal direction of each wing 1,
The accommodation hole 4 is filled with neutron absorbing materials having various properties.
づなわち、各ウィング1の挿入先端の領域に位置する収
容穴4には、長;9命型中性子吸収材αが充填されて第
1領bIirが形成される。ここで、第1領゛域Iの長
さJlは挿入先端1」から5〜15cm程度である。That is, the accommodation hole 4 located in the region of the insertion tip of each wing 1 is filled with the long-life type neutron absorbing material α to form the first region bIir. Here, the length Jl of the first region I is about 5 to 15 cm from the insertion tip 1''.
ここで、長寿命型中性子吸収材αとしては、ハフニウム
金属、ハフニウム−ジルコニウム合金、銀−インジウム
−カドミウム合金、ハフニウム酸化物、あるいはユーロ
ピウム酸化物、ジスプロシウム酸化物などの希土類酸化
物より選択された1種類または2fl類以上の物質を含
む粉末状または固形状の中性子吸収材が採用され、中性
子照射強度、運転期間等を考慮して最適な組合せが決定
される。Here, the long-life neutron absorber α is one selected from hafnium metal, hafnium-zirconium alloy, silver-indium-cadmium alloy, hafnium oxide, or rare earth oxide such as europium oxide or dysprosium oxide. A powdered or solid neutron absorbing material containing a substance of 2fl or more is used, and the optimal combination is determined by taking into consideration the neutron irradiation intensity, operating period, etc.
以上のような構成によると、原子炉運転中において中性
干魚O4mが特に多い挿入先端部の第1領域1において
も、中性子吸収能力が長期間に真っ継続し、核的寿命が
長い。したがって、原子炉用制御棒A全体としての寿命
を大幅に延伸することが可能となる。According to the above configuration, even in the first region 1 of the insertion tip where neutral dried fish O4m is particularly abundant during reactor operation, the neutron absorption ability continues for a long period of time, and the nuclear life is long. Therefore, it becomes possible to significantly extend the life of the reactor control rod A as a whole.
また、上記長寿命型中性子吸収材αは、粉末状の原料で
もよいが、例えば粉末状の原料を焼結して調製した固形
状の焼結体とし、その焼結体を収容穴4に挿入できる形
状に成形した場合は、中性子吸収材の充填または抜用し
作業を行なう場合の操作性が優れる。Further, the long-life neutron absorbing material α may be a powdered raw material, but for example, it may be a solid sintered body prepared by sintering a powdered raw material, and the sintered body is inserted into the accommodation hole 4. If it is molded into a shape that can be used, the operability when filling or extracting neutron absorbing material is performed is excellent.
次に、第2領域■部分の構成を説明する。Next, the configuration of the second area (3) will be explained.
第2領域■は、第1領域■に隣接して縦方向に形成され
、第2領域■の下端から挿入先端ト1よでの長さオ、は
、炉心の軸方向の全長しの1/4ないし1/2程度であ
る。その第2領域■に位置する収容穴4には、中性子吸
収能力が大きな高反応度中性子吸収材βが充填される。The second region (2) is formed vertically adjacent to the first region (2), and the length O from the lower end of the second region (2) to the insertion tip (1) is 1/1/2 of the total axial length of the core. It is about 4 to 1/2. The accommodation hole 4 located in the second region (3) is filled with a highly reactive neutron absorbing material β having a large neutron absorption capacity.
高反応度中性子吸収材βとしては、質量数10のボロン
を濃縮した粉末状のボロンカーバイドまたはユーロピウ
ム酸化物を主成分とした焼結体が採用される。As the highly reactive neutron absorbing material β, a powdery boron carbide obtained by concentrating boron having a mass number of 10 or a sintered body mainly composed of europium oxide is employed.
原子炉用制御棒Aを炉心に全挿入した状態において使用
する場合、原子炉用制御棒Aの第1領域工に隣接して縦
方向に設けられた第2領域■に対応する燃料集合体内部
における核反応はボイド現象によって抑制されるため、
その領域にお1)る核燃料の残存量が多い。そのうえ、
プルトニウムの生成反応によって核分裂性物質の濃度が
高まり、必然的に原子炉停止余裕が低下する領域となる
。When the reactor control rod A is used with the reactor control rod A fully inserted into the reactor core, the inside of the fuel assembly corresponding to the second region (2) provided vertically adjacent to the first region work of the reactor control rod A. Since the nuclear reaction in is suppressed by the void phenomenon,
1) There is a large amount of nuclear fuel remaining in that area. Moreover,
The plutonium production reaction increases the concentration of fissile material, resulting in an area where the margin for reactor shutdown inevitably decreases.
しかしながら、第2領域■の収容穴4に充填されたボロ
ンカーバイドまたはユーロピウム酸化物などの゛高反応
度中性子吸収材βの作用により、長期間に亘って^い反
応度価値が保持される。したがって、原子炉を長期間運
転した後においても、原子炉用制御棒全体として原子炉
停止余裕を十分に確保することができる。However, due to the action of the highly reactive neutron absorbing material β such as boron carbide or europium oxide filled in the accommodation hole 4 of the second region (2), the high reactivity value is maintained for a long period of time. Therefore, even after the reactor has been operated for a long period of time, a sufficient margin for reactor shutdown can be ensured for the reactor control rod as a whole.
次に、第3領域■は、各ウィング1の第2領域■の下端
から末端構造材までの範囲に形成され、ぞの領域の長さ
13は炉心軸方向の全長しの1/2ないし3/4程度で
ある。この第3領域■に位置する収容穴4には天然ボロ
ンγが充填される。Next, the third region (2) is formed in the range from the lower end of the second region (2) of each wing 1 to the terminal structural member, and the length 13 of this region is 1/2 to 3 of the total length in the core axial direction. It is about /4. The accommodation hole 4 located in the third region (2) is filled with natural boron γ.
さらに、ウィング1の外側縁の領域で挿入先端部から縦
方向に少なくとも1/2L以−Eの長さを有する領域に
、第1領域■と同じく長寿命型中性子吸収材αを充填す
る。ここで、ウィング1の外側縁に配設する長寿命型中
性子吸収材αの幅W1は1〜2C11程瓜であり、また
第1領域°■を含めて配設する長さ第4は、炉心の軸方
向全長しの少なくとも1/2以上である。Further, in the outer edge region of the wing 1, a region having a length of at least 1/2 L or more in the longitudinal direction from the insertion tip is filled with a long-life neutron absorbing material α, as in the first region (2). Here, the width W1 of the long-life neutron absorbing material α disposed on the outer edge of the wing 1 is about 1 to 2C11, and the length 4th of the long-life neutron absorbing material α disposed including the first region It is at least 1/2 or more of the total axial length of.
次に、上記の原子炉用制御棒Aを使用した場合の効果等
について第2図を参照して説明する。Next, the effects of using the above-mentioned nuclear reactor control rod A will be explained with reference to FIG. 2.
第2図(B)は本実施例に係る原子炉用制御棒Aにおけ
る中性子吸収特性の軸方向分布を示すグラフであり、炉
心の軸方向の仝艮りに対応する原子炉用制御棒Aの各領
域I、 II、 IIIにおける反応度の相対値を示し
ている。第1領域■には長寿命型中性子吸収材αを充填
し、第2領域■には反応度の高い高反応度中性子吸収材
βを充填し、第3領域■には天然ボロンγを充填してい
る。FIG. 2(B) is a graph showing the axial distribution of the neutron absorption characteristics of the reactor control rod A according to this example, and shows the axial distribution of the reactor control rod A corresponding to the changes in the axial direction of the reactor core. The relative values of reactivity in each region I, II, and III are shown. The first region ■ is filled with a long-life neutron absorber α, the second region ■ is filled with a highly reactive neutron absorber β, and the third region ■ is filled with natural boron γ. ing.
なJ3、一般に、原子炉用制御棒の上端部近傍において
は、第2図(A>に示すように未臨界度が急に大きくな
る。この原因の1つは炉心端部からの中性子線の漏洩に
よる増倍率の低下であり、他の原因としては、炉心端部
に天然ウランまたは低濃縮度の核燃料を配設することに
より炉心燃料の経済性を向上させようとする炉心設計方
針に起因する。その方針に対応して本実施例においても
、第2図(B)に示すように上端部を含む第1領域工に
は高反応度中性子吸収材βは配置せずに長寿命型中性子
吸収材αを充填して寿命の延伸化のみを図っている。Generally speaking, near the upper end of a nuclear reactor control rod, the degree of subcriticality suddenly increases as shown in Figure 2 (A>. One of the reasons for this is that the neutron beam from the end of the core This is due to a decrease in the multiplication factor due to leakage, and another cause is due to the core design policy, which attempts to improve the economic efficiency of the reactor fuel by placing natural uranium or low-enrichment nuclear fuel at the end of the reactor core. Corresponding to that policy, in this example as well, as shown in Fig. 2 (B), the highly reactive neutron absorbing material β is not placed in the first region including the upper end, and a long-life neutron absorbing material is used. The only attempt is to extend the service life by filling with material α.
軸方向の中性子吸収特性の分布を第2図(B)に示すよ
うに構成した原子炉用制御棒を原子炉に装着し、所定期
間運転した後の炉心軸方向の未臨界度すなわち原子炉停
止余裕の分布を第2図(C)に示す。第2図(A>に示
す従来例の場合と比較して炉心の上半分における未臨界
度曲線が改善され、原子炉用制御棒の軸方向全体に頁っ
てほぼ一様な未臨界度曲線が得られ、原子炉停止余裕が
十分確保されることがわかる。A nuclear reactor control rod with a distribution of neutron absorption characteristics in the axial direction as shown in Figure 2 (B) is installed in a nuclear reactor, and after operating for a predetermined period, subcriticality in the axial direction of the reactor core, that is, reactor shutdown. The distribution of margins is shown in FIG. 2(C). Compared to the conventional example shown in Figure 2 (A>), the subcriticality curve in the upper half of the reactor core has been improved, and the subcriticality curve is almost uniform throughout the axial direction of the reactor control rod. It can be seen that sufficient margin for reactor shutdown is obtained.
なお、高反応度中性子吸収材βを充填した領域と天然ボ
ロンγを充填した領域との間に、両名の中間程麿の反応
度を右する中性子吸収材、例えば低濃縮度のボロンカー
バイド、または、低濃度の1−ロビウム酸化物(Eu2
O3)などを充填した領域を介在させることによって、
未臨界度曲線をより平坦化することが可能であり、併せ
て高価な中性子吸収材の使用量を低減し、製作費の低減
を図ることもできる。In addition, between the region filled with the high-reactivity neutron absorber β and the region filled with natural boron γ, a neutron absorber having a reactivity somewhere between the two, such as boron carbide with a low concentration, is added. Or, low concentration of 1-Robium oxide (Eu2
By interposing a region filled with O3) etc.,
It is possible to further flatten the subcriticality curve, and at the same time, it is possible to reduce the amount of expensive neutron absorbing material used, thereby reducing manufacturing costs.
また、第1図に示ずように、各ウィング1の内側縁の上
端領域に第1領域Iと同様に長寿命型中性子吸収材αを
部分的に充填して制御棒の特性をさらに改善することが
できる。この上端領域に配設する長寿命型中性子吸収材
αの幅W2は0.5〜1.51程度が適切であり、また
配設する長さ15は挿入先端部から15〜30aa程度
である。Furthermore, as shown in FIG. 1, the upper end region of the inner edge of each wing 1 is partially filled with long-life neutron absorbing material α, similar to the first region I, to further improve the characteristics of the control rod. be able to. The width W2 of the long-life neutron absorbing material α disposed in this upper end region is appropriately about 0.5 to 1.51, and the disposed length 15 is about 15 to 30 aa from the insertion tip.
この実施例によれば、多聞の中性子照射を受ける挿入先
端部の内側縁における核的寿命を効果的に延伸すること
ができる。すなわら、本実施例の原子炉用制御棒Aは、
中心にタイロッドを有してJ3らず、その部分に中性子
減速材である炉水が充満する構造を採用しているため、
各ウィング1の上端部の内側縁も強度の中性子照射を受
け、♀朋に消耗する可能性がある。しかし、内側縁にお
いて幅W 、長さ15に亘って充填された長寿命型中性
子吸収材αの作用によって寿命を長期に亘って維持でき
る。According to this embodiment, it is possible to effectively extend the nuclear lifetime at the inner edge of the insertion tip which receives a large amount of neutron irradiation. In other words, the reactor control rod A of this example is
Because it has a tie rod in the center and has a structure in which that part is filled with reactor water, which is a neutron moderator,
The inner edge of the upper end of each wing 1 is also exposed to intense neutron irradiation and may be worn away. However, the service life can be maintained over a long period of time due to the action of the long-life neutron absorbing material α filled over the width W and the length 15 at the inner edge.
以上説明の通り、本実施例の原子炉用a、II 1il
l棒によれば、反応度価値を充分維持すると共に長寿命
化を同時に達成することができる。As explained above, the reactor a, II 1il of this example
According to the L rod, it is possible to sufficiently maintain the reactivity value and to extend the service life at the same time.
したがって、原子炉の長期間の運転によっても原子炉用
制御棒全体の反応度価値が保持され、原子炉停止余裕も
十分に確保することができる。Therefore, the reactivity value of the entire reactor control rod is maintained even during long-term operation of the reactor, and a sufficient margin for reactor shutdown can be secured.
本発明に係る原子炉用制御棒によれば、各ウィングの挿
入先端から縦方向に第1〜第3領域に区分し、中性子照
射量が多い第1領域の収容穴に長寿命型中性子吸収材を
充1眞しているため、その部分の核的寿命を延伸するこ
とが可能である。また、ボイド現象およびプルトニウム
生成反応によって核分裂性物質の濃度が高まる部分に対
応する原子炉用制御棒の第2領域に高反応度中性子吸収
材が充填されているため、長期間の運転後においても第
2領域における中性子吸収材の反応度価値が保持される
。したがって、原子炉用制御棒全体の全挿入時における
原子炉停止余裕を十分に確保することができる。According to the control rod for a nuclear reactor according to the present invention, each wing is divided into first to third regions in the vertical direction from the insertion tip, and a long-life neutron absorber is placed in the accommodation hole of the first region where the neutron irradiation amount is high. Since the core is filled with 100% of the nuclear power, it is possible to extend the nuclear life of that part. In addition, the second region of the reactor control rod, which corresponds to the part where the concentration of fissile material increases due to void phenomena and plutonium production reactions, is filled with highly reactive neutron absorbing material, so even after long-term operation, The reactivity value of the neutron absorber in the second region is maintained. Therefore, it is possible to secure a sufficient margin for reactor shutdown when all reactor control rods are fully inserted.
また、第3領域には安価で軽量な天然ボロンを充填して
いるため、原子炉用制御棒を安価で軽ωに製作すること
ができる。Moreover, since the third region is filled with natural boron, which is inexpensive and lightweight, the control rod for a nuclear reactor can be manufactured at low cost and with a light weight ω.
また、特に中性子照射量が多いウィングの外側縁領域に
長寿命型中性子吸収材を充填しているため、外側縁部分
における核的寿命を延伸することができる。In addition, since the outer edge region of the wing, where the amount of neutron irradiation is especially high, is filled with a long-life neutron absorbing material, the nuclear lifetime in the outer edge portion can be extended.
したがって本発明によれば、原子炉停止余裕が効果的に
改善され、製作費も安価である。特に、原子炉燃料の高
燃焼度化に対応リ−る濃縮度の上昇に伴う原子炉停止余
裕の不足問題が解消され、原子炉の安全停止機能が保証
される。Therefore, according to the present invention, the reactor shutdown margin is effectively improved and the manufacturing cost is also low. In particular, the problem of insufficient reactor shutdown margin due to the increase in enrichment corresponding to the high burnup of nuclear reactor fuel is resolved, and the safe shutdown function of the nuclear reactor is guaranteed.
一方、核的ズi命を大幅に延伸できることから、運転サ
イクルが長期化する原子炉にla極的に採用することが
可能であり、原子カプラント運転の経済性を著しく向上
することができる。On the other hand, since the nuclear power life can be significantly extended, it can be widely used in nuclear reactors with long operating cycles, and the economic efficiency of nuclear couplant operation can be significantly improved.
第1図は本発明に係る原子炉用制御棒の一実施例を部分
的に破断して承り正面図、第2図(A)は従来の原子炉
用制御棒を使用して原子炉を所定期間運転した場合の原
子炉停止余裕の軸方向分布を示すグラフ、第2図(F3
)は本発明に係る原子炉用制御棒における中性子吸収特
性の軸方向分布を示すグラフ、第2図(C)は本発明に
係る原子炉用i、II御棒を使用して原子炉を所定期間
運転した場合の原子炉停止余裕の軸方向分布を従来例と
比較して示すグラフである。
1・・・ウィング、2・・・結合部材、3・・・ハンド
ル、4・・・収容穴、A・・・原子炉用イリ御棒、H・
・・挿入先端、し・・・炉心の輻方向全長、α・・・長
寿命型中性子吸収口、β・・・高反応度中性子吸収材、
γ・・・天然ボロン、■・・・第1領域、■・・・第2
領域、■・・・第3領域、1 ・・・第1領域の長さ、
A2・・・第2領域下端から挿入先端までの長さ、(3
・・・第3領域の長さ、14・・・長寿命型中性子吸収
材を充填するウィングの外側縁の長さ、i5・・・長寿
命型中性子吸収口を充填するウィングの内側縁の長さ。
出願人代理人 波 多 野 久上端
上端
(肩、子夕戸停止余裕)
(A) (B)第2図
上端
(C)FIG. 1 is a partially cutaway front view of one embodiment of the nuclear reactor control rod according to the present invention, and FIG. A graph showing the axial distribution of the reactor shutdown margin during period operation, Figure 2 (F3
) is a graph showing the axial distribution of neutron absorption characteristics in the control rod for a nuclear reactor according to the present invention, and FIG. It is a graph showing the axial distribution of reactor shutdown margin when operated for a period of time in comparison with a conventional example. DESCRIPTION OF SYMBOLS 1...Wing, 2...Connecting member, 3...Handle, 4...Accommodation hole, A...Reactor control rod, H.
...Insertion tip, ...Total length in the radial direction of the core, α...Long-life neutron absorption port, β...Highly reactive neutron absorption material,
γ...Natural boron, ■...First region, ■...Second
Area, ■...Third area, 1...Length of the first area,
A2... Length from the lower end of the second region to the insertion tip, (3
... Length of the third region, 14 ... Length of the outer edge of the wing that fills the long-life neutron absorption material, i5 ... Length of the inner edge of the wing that fills the long-life neutron absorption port difference. Applicant's agent Hata Kugami Hata
Upper end (shoulder, side door stop margin) (A) (B) Upper end in Figure 2 (C)
Claims (1)
互いに一体的に結合させるとともに、上記ウィングの幅
方向に穿設された収容穴を、上記ウィングの挿入先端か
ら縦方向に長さLに渡り多数列状に配設し、上記収容穴
に中性子吸収材を充填した原子炉用制御棒において、上
記ウィングの挿入先端部に位置する複数の収容穴に長寿
命型中性子吸収材を充填して第1領域を形成し、上記第
1領域に隣接して縦方向に第2領域を形成し、第2領域
の下端から挿入先端までの長さは少なくとも1/4L以
上に設定し、上記第2領域に位置する収容穴に中性子吸
収能力が大きな高反応度中性子吸収材を充填し、上記第
2領域に隣接して挿入方向末端まで第3領域を形成し、
上記第3領域に位置する収容穴には天然ボロンを充填す
るとともに、ウィングの外側縁の領域で挿入先端から縦
方向に少なくと1/2L以上の長さを有する領域に長寿
命型中性子吸収材を充填して構成したことを特徴とする
原子炉用制御棒。 2、ウィングは、内側縁の上端近傍に長寿命型中性子吸
収材を充填した領域を有する特許請求の範囲第1項記載
の原子炉用制御棒。 3、長寿命型中性子吸収材は、ハフニウム(Hf)金属
、ハフニウム−ジルコニウム(Hf−Zr)合金、銀−
インジウム−カドミウム(Ag−In−Cd)合金、ハ
フニウム酸化物(HfO_2)、ユーロピウム酸化物(
Eu_2O_3)、ジスプロシウム酸化物(Dy_2O
_3)などの希土類酸化物より選択された1種類または
2種類以上の物質を含む固形状吸収材であり、上記固形
状吸収材は収容穴の形状に成形されてなる特許請求の範
囲第1項記載の原子炉用制御棒。 4、高反応度中性子吸収材は、質量数10のボロン(B
−10)を濃縮したボロンカーバイドである特許請求の
範囲第1項記載の原子炉用制御棒。 5、高反応度中性子吸収材は、ユーロピウム酸化物(E
u_2O_3)を主成分とする焼結体である特許請求の
範囲第1項記載の原子炉用制御棒。[Claims] 1. The inner ends of a plurality of rectangular wings are integrally connected to each other via a connecting member, and an accommodation hole bored in the width direction of the wing is inserted from the insertion tip of the wing. In a control rod for a nuclear reactor, which is arranged in multiple rows over a length L in the longitudinal direction, and in which the accommodation holes are filled with a neutron absorbing material, the plurality of accommodation holes located at the insertion tips of the wings are provided with long-life type rods. A first region is formed by filling a neutron absorbing material, a second region is formed in the vertical direction adjacent to the first region, and the length from the lower end of the second region to the insertion tip is at least 1/4 L or more. , filling the accommodation hole located in the second region with a highly reactive neutron absorbing material having a large neutron absorption capacity, and forming a third region adjacent to the second region to the end in the insertion direction,
The accommodation hole located in the third region is filled with natural boron, and a long-life neutron absorber is filled in the region of the outer edge of the wing, which is at least 1/2L in length from the insertion tip in the longitudinal direction. A control rod for a nuclear reactor, characterized in that it is filled with. 2. The control rod for a nuclear reactor according to claim 1, wherein the wing has a region filled with a long-life neutron absorbing material near the upper end of the inner edge. 3. Long-life neutron absorbers include hafnium (Hf) metal, hafnium-zirconium (Hf-Zr) alloy, silver-
Indium-cadmium (Ag-In-Cd) alloy, hafnium oxide (HfO_2), europium oxide (
Eu_2O_3), dysprosium oxide (Dy_2O
_3) A solid absorbent material containing one or more kinds of substances selected from rare earth oxides such as The described control rod for a nuclear reactor. 4. The highly reactive neutron absorber is made of boron (B) with a mass number of 10.
The control rod for a nuclear reactor according to claim 1, which is boron carbide enriched with -10). 5. Highly reactive neutron absorbing material is europium oxide (E
The control rod for a nuclear reactor according to claim 1, which is a sintered body containing u_2O_3) as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62047678A JPS63215992A (en) | 1987-03-04 | 1987-03-04 | Control-rod for nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62047678A JPS63215992A (en) | 1987-03-04 | 1987-03-04 | Control-rod for nuclear reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63215992A true JPS63215992A (en) | 1988-09-08 |
Family
ID=12781936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62047678A Pending JPS63215992A (en) | 1987-03-04 | 1987-03-04 | Control-rod for nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63215992A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02222869A (en) * | 1989-02-21 | 1990-09-05 | Toshiba Corp | Reactor core |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5827092A (en) * | 1981-08-12 | 1983-02-17 | 株式会社東芝 | Reactor control rod |
JPS60161589A (en) * | 1984-02-01 | 1985-08-23 | 株式会社東芝 | Control rod for reactor |
-
1987
- 1987-03-04 JP JP62047678A patent/JPS63215992A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5827092A (en) * | 1981-08-12 | 1983-02-17 | 株式会社東芝 | Reactor control rod |
JPS60161589A (en) * | 1984-02-01 | 1985-08-23 | 株式会社東芝 | Control rod for reactor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02222869A (en) * | 1989-02-21 | 1990-09-05 | Toshiba Corp | Reactor core |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6925138B2 (en) | Reactor core and method for operating nuclear reactor | |
EP1085525B1 (en) | Light water reactor core and fuel assembly | |
WO2010074592A1 (en) | Fuel assembly for a light-water nuclear reactor (embodiments), light-water nuclear reactor and fuel element of the fuel assembly | |
JP2000019280A (en) | Core of light water cooling reactor and operation method of the reactor | |
Rabir et al. | The neutronics effect of TRISO duplex fuel packing fractions and their comparison with homogeneous thorium‐uranium fuel | |
JPS63215992A (en) | Control-rod for nuclear reactor | |
JPH036493A (en) | Reactor control rod | |
JPS61180186A (en) | Control rod for nuclear reactor | |
JP2563434B2 (en) | Control rod for nuclear reactor | |
JPH0134358B2 (en) | ||
JPH021277B2 (en) | ||
JP2735211B2 (en) | Reactor control rod | |
JPS63259494A (en) | Control rod for nuclear reactor | |
JPH022984A (en) | Nuclear reactor control rod | |
JPH01148997A (en) | Control rod for nuclear reactor | |
JPH01148998A (en) | Control rod for nuclear reactor | |
JP2507512B2 (en) | Control rod for nuclear reactor | |
JPH01158390A (en) | Control rod for nuclear reactor | |
JP2563429B2 (en) | Control rod for nuclear reactor | |
JPH01202692A (en) | Nuclear reactor control rod | |
JPH01287499A (en) | Control rod for nuclear reactor | |
KR100291955B1 (en) | Mixed nuclear fuel rod having black lead and nuclear fuel assembly using the same | |
JP3788170B2 (en) | Fuel assemblies and reactor cores | |
JPH01312492A (en) | Control rod for atomic reactor | |
JPH01148995A (en) | Control rod for nuclear reactor |