JPH0120363B2 - - Google Patents

Info

Publication number
JPH0120363B2
JPH0120363B2 JP21496582A JP21496582A JPH0120363B2 JP H0120363 B2 JPH0120363 B2 JP H0120363B2 JP 21496582 A JP21496582 A JP 21496582A JP 21496582 A JP21496582 A JP 21496582A JP H0120363 B2 JPH0120363 B2 JP H0120363B2
Authority
JP
Japan
Prior art keywords
temperature
voltage
self
heating element
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21496582A
Other languages
Japanese (ja)
Other versions
JPS59104515A (en
Inventor
Hiroyuki Tsuji
Koki Masui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21496582A priority Critical patent/JPS59104515A/en
Publication of JPS59104515A publication Critical patent/JPS59104515A/en
Publication of JPH0120363B2 publication Critical patent/JPH0120363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices

Description

【発明の詳細な説明】 この発明は感温半導体素子を用いた液面検出装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid level detection device using a temperature-sensitive semiconductor element.

従来、この種の液面検出装置として、第1図に
示すものが知られている。図中の符号1,2,
3,4は抵抗、5,6はサーミスタ等の感温半導
体素子であり、5は自己発熱用素子、6は温度測
定用素子である。これらの素子5,6はケーシン
グ(図示せず)に配設されている。上記抵抗1,
2,3,4は自己発熱用素子5及び温度測定用素
子6の指数関数的に変化する温度・抵抗特性を正
比例変化するように補正するものである。7は電
圧比較器であり、上記抵抗1と3との結合点、即
ち自己発熱用素子5の非接地側端部(点aで示
す)と、抵抗2と4との結合点、即ち温度測定用
素子6の非接地側端部(点bで示す)との電圧を
比較し、この出力によつて制御回路8を動作させ
るものである。
Conventionally, as this type of liquid level detection device, one shown in FIG. 1 is known. Codes 1, 2, in the figure
3 and 4 are resistors, 5 and 6 are temperature-sensitive semiconductor elements such as thermistors, 5 is a self-heating element, and 6 is a temperature measurement element. These elements 5, 6 are arranged in a casing (not shown). The above resistance 1,
2, 3, and 4 correct the exponentially changing temperature/resistance characteristics of the self-heating element 5 and the temperature measuring element 6 so that they change in direct proportion. 7 is a voltage comparator, which connects the resistors 1 and 3, i.e., the non-grounded end of the self-heating element 5 (indicated by point a), and the resistors 2 and 4, i.e., measures the temperature. The voltage with the non-grounded end (indicated by point b) of the control element 6 is compared, and the control circuit 8 is operated based on this output.

上記のように構成された液面検出装置では、自
己発熱用素子5及び温度測定用素子6として負性
抵抗のものを用いると、上記点a及び点bの温度
に対する電圧は第2図のようになる。この図にお
いて、温度が一定なら自己発熱用素子5が液中か
気中かによつて放熱係数が異なるので、抵抗値も
異なり、これが点aの電圧の差異として示されて
いる。また点aの電圧が上記液中のときには、温
度測定用素子6の温度変化による抵抗値の変化に
よつて点bの電圧が第2図のように変化するのと
対比して、大略高く、また気中のときには低くな
るので、点aと点bとの電圧を比較する前記比較
によつて点aの電圧が高いと検出されたときには
液中であることが判り、また点bの電圧が高いと
検出されたときには気中であることが判る。尚、
上記放熱係数の差異は、気中においては自己発熱
用素子5が自己加熱され、抵抗値が減少すること
に起因する。
In the liquid level detection device configured as described above, if negative resistance elements are used as the self-heating element 5 and the temperature measurement element 6, the voltage with respect to the temperature at the points a and b will be as shown in Fig. 2. become. In this figure, if the temperature is constant, the heat radiation coefficient differs depending on whether the self-heating element 5 is in liquid or air, so the resistance value also differs, and this is shown as the difference in voltage at point a. Furthermore, when the voltage at point a is in the liquid, the voltage at point b changes as shown in FIG. Furthermore, since the voltage is low when in air, when the voltage at point a is detected as high by the above comparison of the voltage at point a and point b, it is known that the voltage at point b is high. When it is detected as high, it is known that it is in the air. still,
The difference in the heat dissipation coefficients is due to the fact that the self-heating element 5 is self-heated in the air and its resistance value decreases.

上記電圧比較器7の出力により、液中か気中か
を知ることができるので、液中から気中またはそ
の逆になつたことが電圧比較器7で検出されて液
面を検出することができる。
The voltage comparator 7 can detect whether the liquid is in the air or in the air by the output of the voltage comparator 7, so the voltage comparator 7 can detect the change from being in the liquid to the air or vice versa and detect the liquid level. can.

ところで、負性抵抗の感温半導体素子は、温度
の低下に伴なつて指数関数的に抵抗が増大するの
で、低温域では印加電圧が一定べあることから、
その消費電力が著しく減少し、充分な発熱が得ら
れない。この発熱が少いと、自己発熱用素子5の
抵抗値が低下せず、液面を検出できないことがあ
る。この消費電力不足を補うために、液中におけ
る点a、点bの電圧を低温側で近づけておくこと
も考えられるが、この場合には自己発熱用素子5
と温度測定用素子6のサーミスタ定数の差異によ
り点aの電圧が点bの電圧に接近してしまい、液
面が存在するにもかかわらず誤動作するという欠
点があつた。この誤動作を防ぐために、予め点b
の電圧のゲインを下げておくと、第3図のように
液中における自己発熱用素子5と温度測定用素子
6のサーミスタ定数の差、及び周辺回路部品の差
によつて点aの電圧が高温域において点bの電圧
と接近して誤動作を生ずることがあつた。
By the way, in a negative resistance temperature-sensitive semiconductor element, the resistance increases exponentially as the temperature decreases, so the applied voltage remains constant in the low temperature range.
Its power consumption is significantly reduced and sufficient heat generation cannot be obtained. If this heat generation is small, the resistance value of the self-heating element 5 may not decrease and the liquid level may not be detected. In order to compensate for this lack of power consumption, it is possible to keep the voltages at points a and b in the liquid close to each other on the low temperature side, but in this case, the self-heating element 5
Due to the difference between the thermistor constants of the temperature measuring element 6 and the temperature measuring element 6, the voltage at point a approaches the voltage at point b, resulting in a drawback that malfunction occurs even though there is a liquid level. To prevent this malfunction, set point b in advance.
If the gain of the voltage is lowered, the voltage at point a will increase due to the difference in the thermistor constant between the self-heating element 5 and the temperature measurement element 6 in the liquid, and the difference in peripheral circuit components, as shown in Figure 3. In high-temperature ranges, the voltage at point b could approach this and cause malfunctions.

また、これらの誤動作を防止するために、液中
と気中とでの点aでの電圧差を拡大すべく、温度
が低下しても自己発熱用素子5が充分加熱される
電力が消費されるように高電圧を印加することも
あつた。しかしながら特殊小形ガラス封入式サー
ミスタを上記自己発熱用素子5及び温度測定用素
子6に用いると、このサーミスタは消費電力とし
て60mW程度が限度であり、高温域ではその抵抗
値が指数関数的に減少し、消費電力の著しい増大
により上記サーミスタを破壊するという欠点があ
つた。
In addition, in order to prevent these malfunctions, in order to increase the voltage difference at point a between the liquid and the air, power is consumed to sufficiently heat the self-heating element 5 even when the temperature drops. In some cases, high voltages were applied to ensure that the However, when a special small glass-encapsulated thermistor is used as the self-heating element 5 and temperature measurement element 6, the power consumption of this thermistor is limited to about 60 mW, and its resistance value decreases exponentially in the high temperature range. However, there was a drawback that the thermistor was destroyed due to a significant increase in power consumption.

この発明は、上記した従来の欠点を除去するも
のであり、温度測定用素子6により検出した温度
によつて自己発熱用素子5に印加する電圧を変化
させ、該自己発熱用素子の消費電力が一定になる
ようにした液面検出装置を提供するものである。
This invention eliminates the above-mentioned conventional drawbacks, and changes the voltage applied to the self-heating element 5 according to the temperature detected by the temperature measurement element 6, thereby reducing the power consumption of the self-heating element. The present invention provides a liquid level detection device that maintains a constant liquid level.

以下、この発明の一実施例を第4図について説
明する。図において、1,2,4,10は抵抗、
5は自己発熱用素子、6は温度測定用素子であ
り、これらの素子5,6は第1図について同一符
号で説明したものと同様のものである。7は電圧
比較器、8は制御回路であり、これらは第1図に
ついて同一符号で説明したものと同様のものであ
る。9は3端子レギユレータ、11はインピーダ
ンス変換回路である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, 1, 2, 4, 10 are resistances,
5 is a self-heating element, and 6 is a temperature measuring element, and these elements 5 and 6 are the same as those explained with the same reference numerals in connection with FIG. 7 is a voltage comparator, and 8 is a control circuit, which are the same as those described with the same reference numerals in connection with FIG. 9 is a three-terminal regulator, and 11 is an impedance conversion circuit.

上記のように構成された液面検出装置では、周
囲媒質温度が低温域の場合には、温度測定用素子
6の抵抗値は高くなり、点bの電圧は上昇する。
この上昇によりインピーダンス変換回路11を介
して3端子レギユレータ9のグランド端子の電圧
が上昇し、該3端子レギユレータの出力電圧が上
昇する。従つて上記3端子レギユレータ9を介し
て電源電流が供給される自己発熱用素子5には高
電圧が印加される。上記とは逆に、周囲媒質の温
度が高温域にある場合には、温度測定用素子6の
抵抗値は低くなり、点bの電圧は低くなつて、イ
ンピーダンス変換素子11を介して3端子レギユ
レータ9のグランド端子の電圧が低くなり、該3
端子レギユレータの出力電圧が下降する。従つ
て、自己発熱用素子5の印加電圧は制限される。
In the liquid level detection device configured as described above, when the temperature of the surrounding medium is in a low temperature range, the resistance value of the temperature measuring element 6 becomes high, and the voltage at point b increases.
This rise causes the voltage at the ground terminal of the three-terminal regulator 9 to rise via the impedance conversion circuit 11, and the output voltage of the three-terminal regulator to rise. Therefore, a high voltage is applied to the self-heating element 5 to which the power supply current is supplied via the three-terminal regulator 9. Contrary to the above, when the temperature of the surrounding medium is in a high temperature range, the resistance value of the temperature measuring element 6 becomes low, the voltage at point b becomes low, and the voltage is transferred to the three-terminal regulator via the impedance conversion element 11. The voltage of the ground terminal of 9 becomes low, and the voltage of the ground terminal of 3
The output voltage of the terminal regulator drops. Therefore, the voltage applied to the self-heating element 5 is limited.

上記のように、周囲媒質の温度変化に応じて自
己発熱用素子5の印加電圧は変化され、これによ
り該自己発熱用素子5の消費電力は上記温度変化
とは無関係に一定に保持されるように構成されて
いる。この消費電力が一定になると、気中におけ
る図中の点a、液中における点a及び点bの電位
差は一定に保持されるので、前記従来例で説明し
た誤動作を防止することができる。上記の点aと
点bは電圧比較器7に接続され、これが制御回路
8に接続されて液面が検出されることは第1図の
ものと同様である。
As described above, the voltage applied to the self-heating element 5 is changed according to the temperature change of the surrounding medium, so that the power consumption of the self-heating element 5 is kept constant regardless of the temperature change. It is composed of When this power consumption becomes constant, the potential difference between point a in the figure in the air and points a and b in the liquid is kept constant, so that the malfunction described in the conventional example can be prevented. Points a and b are connected to a voltage comparator 7, which is connected to a control circuit 8 to detect the liquid level, as in FIG. 1.

尚、上記実施例では、感温半導体素子として負
性抵抗のものを用いたが、正性抵抗の感温半導体
素子を用いてもよい。
In the above embodiment, a negative resistance temperature sensitive semiconductor element is used, but a positive resistance temperature sensitive semiconductor element may be used.

この発明は温度測定用素子で検出した温度に応
じて自己発熱用素子へ印加する電圧を変化させ
て、該自己発熱用素子の消費電力を一定となし、
これにより周囲媒質温度の変動とは無関係に、液
中及び気中における自己発熱用素子の出力電圧と
温度測定用素子の出力電圧との差が一定になるよ
うにしたので、広範囲の温度における液面を正確
に検出することができる。
This invention changes the voltage applied to the self-heating element according to the temperature detected by the temperature measurement element, thereby keeping the power consumption of the self-heating element constant,
This makes it possible to maintain a constant difference between the output voltage of the self-heating element and the temperature measurement element in liquid and air, regardless of fluctuations in the temperature of the surrounding medium. Surfaces can be detected accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液面検出装置の回路図、第2図
及び第3図は第1図の装置の温度・電圧特性図、
第4図はこの発明の一実施例を示す液面検出装置
の回路図である。 1,2,4,10:抵抗、5:自己発熱用素
子、6:温度測定用素子、7:電圧比較器、8:
制御回路、9:3端子レギユレータ、11:イン
ピーダンス変換回路。
Figure 1 is a circuit diagram of a conventional liquid level detection device, Figures 2 and 3 are temperature/voltage characteristic diagrams of the device in Figure 1,
FIG. 4 is a circuit diagram of a liquid level detection device showing an embodiment of the present invention. 1, 2, 4, 10: Resistor, 5: Self-heating element, 6: Temperature measurement element, 7: Voltage comparator, 8:
Control circuit, 9: 3-terminal regulator, 11: impedance conversion circuit.

Claims (1)

【特許請求の範囲】 1 ケーシング内に配設された2個の感温半導体
素子を備え、これらの感温半導体素子のうち、一
方の素子は周囲媒質の温度測定用として、また他
方の素子は自己発熱用として用い、該他方の素子
における液中と気中とでの放熱係数の差異により
生じる抵抗値の差異を、上記一方の素子のそのと
きの温度における抵抗値との対比において検出す
る液面検出装置において、 上記一方の素子で検出した温度により上記他方
の素子に印加する電圧を制御して該他方の素子の
消費電力を一定ならしめたことを特徴とする液面
検出装置。
[Claims] 1. Two temperature-sensitive semiconductor elements arranged in a casing, one of which is used for measuring the temperature of the surrounding medium, and the other element is used for measuring the temperature of the surrounding medium. A liquid that is used for self-heating and detects the difference in resistance value caused by the difference in heat radiation coefficient between the liquid and the air in the other element by comparing it with the resistance value of the one element at that temperature. A liquid level detection device, characterized in that the voltage applied to the other element is controlled based on the temperature detected by the one element, so that the power consumption of the other element is made constant.
JP21496582A 1982-12-06 1982-12-06 Detector for liquid level Granted JPS59104515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21496582A JPS59104515A (en) 1982-12-06 1982-12-06 Detector for liquid level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21496582A JPS59104515A (en) 1982-12-06 1982-12-06 Detector for liquid level

Publications (2)

Publication Number Publication Date
JPS59104515A JPS59104515A (en) 1984-06-16
JPH0120363B2 true JPH0120363B2 (en) 1989-04-17

Family

ID=16664498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21496582A Granted JPS59104515A (en) 1982-12-06 1982-12-06 Detector for liquid level

Country Status (1)

Country Link
JP (1) JPS59104515A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153135U (en) * 1987-03-30 1988-10-07
US5111692A (en) * 1990-03-27 1992-05-12 Fluid Components, Inc. Temperature compensated liquid level and fluid flow sensor
JPH07199636A (en) * 1993-12-28 1995-08-04 Fujitsu Ltd Residual toner detector
JP3869169B2 (en) * 1999-09-29 2007-01-17 株式会社鷺宮製作所 Liquid level detector
JP4548192B2 (en) * 2005-04-15 2010-09-22 パナソニック株式会社 Water level detector
JP4577128B2 (en) * 2005-07-11 2010-11-10 パナソニック株式会社 Liquid level detection device and clothes dryer using the same
JP5529056B2 (en) * 2011-02-23 2014-06-25 株式会社トリケミカル研究所 Liquid level detector

Also Published As

Publication number Publication date
JPS59104515A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
US4319233A (en) Device for electrically detecting a liquid level
US6190039B1 (en) Heated type sensor with auxiliary heater in bridge circuit for maintaining constant sensor temperature
JPS6038619A (en) Sensing circuit for quantity of air
US4276536A (en) Self-heating thermistor probe for low temperature applications
CA1317655C (en) Temperature sensing circuit
KR100398492B1 (en) Air flow meter and air flow detection method
JPH0120363B2 (en)
US4658120A (en) Sensor device for use with cooking appliances
US3641372A (en) Temperature controlled microcircuits
GB2163008A (en) Miniature, temperature controlled phase detector
US4800292A (en) Temperature sensing circuit
JPH05164721A (en) Humidity detecting circuit
JPH0663800B2 (en) Heater temperature control circuit
JPH0251129B2 (en)
JPS5814617Y2 (en) Cooling temperature control circuit for small cooler
JP2005092793A (en) Electronic appliance circuit
JPS58191926A (en) Detecting apparatus of liquid level
JPS59172095A (en) Heater control for gas leak alarm
JP2690221B2 (en) Semiconductor integrated circuit
KR930006306B1 (en) Temperature sensing circuit
JP2000292389A (en) Sensor circuit
JPH06137963A (en) Temperature detecting circuit employing thermister
JPH10160537A (en) Thermal type flow sensor
JPH0526995Y2 (en)
JPH0486524A (en) Liquid level detector