JPH01202693A - Nuclear reactor control rod - Google Patents

Nuclear reactor control rod

Info

Publication number
JPH01202693A
JPH01202693A JP63028420A JP2842088A JPH01202693A JP H01202693 A JPH01202693 A JP H01202693A JP 63028420 A JP63028420 A JP 63028420A JP 2842088 A JP2842088 A JP 2842088A JP H01202693 A JPH01202693 A JP H01202693A
Authority
JP
Japan
Prior art keywords
region
wing
absorbing material
area
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63028420A
Other languages
Japanese (ja)
Other versions
JP2507512B2 (en
Inventor
Kiyoshi Ueda
精 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63028420A priority Critical patent/JP2507512B2/en
Priority to US07/307,758 priority patent/US5034185A/en
Priority to SE8900427A priority patent/SE505354C2/en
Priority to DE3903844A priority patent/DE3903844A1/en
Priority to DE3943681A priority patent/DE3943681C2/en
Publication of JPH01202693A publication Critical patent/JPH01202693A/en
Application granted granted Critical
Publication of JP2507512B2 publication Critical patent/JP2507512B2/en
Priority to SE9701444A priority patent/SE512598C2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To plan long term of nuclear lifetime by arranging a long-lived neutron absorber in housing holes of the insert edge area of a wing contributing to reactivity value, and enlarging the hole volume of the housing holes in the area where subcritical degree is shallow during reactor stop. CONSTITUTION:A wing 11 is partitioned into an insert edge area X contributing to reactivity value, an high-reactivity area Y where subcritical degree is shallow during reactor stop and an area X in the neighborhood of the area Y. Next, each housing hole 17 of the area X and the housing channel of a wing outside are filled with long-lived neutron absorbers 20, 21 such as hafnium. Further, each hole 18 of the area Y, for example, is made as a long hole and the filling quantity of an absorber 23 is enlarged while the housing holes 19 of the area Z are filled with an absorber 25. The neutron absorbing capacity of the area X is maintained for a long time while the reactivity value of the area Y is held. Therefore, the long term of nuclear lifetime can be planned.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、原子炉出力を調整し制御する原子炉用制御棒
に係り、特に高い原子炉停止余裕を有する長寿命型原子
炉用制御棒に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear reactor control rod that adjusts and controls nuclear reactor output, and particularly relates to a long-life type control rod that has a high reactor shutdown margin. Regarding control rods for nuclear reactors.

(従来の技術) 原子炉の出力を制御する原子炉用制御棒として、例えば
中央に結合部材を配して4枚のステンレス鋼製ウィング
を一体的に結合し、ウィングの幅方向の内部に形成した
多数の収容穴にボロンカーハード(84G>などの中性
子吸収材の粉末を均一な密度で充填した新しい型式の制
御棒が開発されている。
(Prior art) As a control rod for a nuclear reactor that controls the output of a nuclear reactor, for example, four stainless steel wings are integrally connected by placing a connecting member in the center, and formed inside the wing in the width direction. A new type of control rod has been developed in which a large number of accommodation holes are filled with powder of a neutron absorbing material such as boron carbide (84G) at a uniform density.

この原子炉用制御棒を沸騰水型原子炉等の炉心部に挿入
すると、収容孔に充填した中性子吸収材は中性子の照射
を受け、中性子吸収能力を次第に失うため、所定期間の
運転に供した後に定期的に交換される。
When this nuclear reactor control rod is inserted into the core of a boiling water reactor, etc., the neutron absorbing material filled in the accommodation hole is irradiated with neutrons and gradually loses its neutron absorption ability, so it is not suitable for operation for a predetermined period of time. It will then be replaced periodically.

ところで、原子炉の炉心部において使用される制御棒は
、各ウィングの全面に亘って一様に中性子照射を受ける
ものではなく、例えば各ウィングの挿入先端領域および
翼端(外側縁)領域は、強度の中性子照射を受ける。そ
のため、その領域に充填された中性子吸収材は多量の中
性子を吸収して他領域より早く消耗し、早期に核的寿命
を終える。したがって、他領域に充填された中性子吸収
材がまだ十分核的寿命を残しているにも拘らず、原子炉
用制御棒全体を放射性廃棄物として廃棄しなければなら
ない不経済性があった。一方、原子炉用制御棒の交換頻
度が高いと交換作業に長時間を要するため、原子炉の稼
動率が低下し、大きな経済的デメリットの原因となる。
By the way, control rods used in the core of a nuclear reactor are not irradiated with neutrons uniformly over the entire surface of each wing. For example, the insertion tip region and blade tip (outer edge) region of each wing are Subject to intense neutron irradiation. Therefore, the neutron absorbing material filled in that area absorbs a large amount of neutrons and is consumed faster than other areas, ending its nuclear life earlier. Therefore, even though the neutron absorbing material filled in other areas still has sufficient nuclear life left, it is uneconomical to discard the entire reactor control rod as radioactive waste. On the other hand, if the control rods for a nuclear reactor are replaced frequently, the replacement work takes a long time, which reduces the operating rate of the reactor and causes a major economic disadvantage.

その他、作業員の被曝線量も増大するおそれが生ずる場
合も考えられる。
In addition, there may be cases where there is a risk that the radiation dose of workers will also increase.

また、従来の原子炉用制御棒は、ウィングの全領域に亘
って中性子吸収材を均一な密度で充填しており、軸方向
の中性子吸収能力すなわち反応度が等しく調製されてい
るが、前記のように中性子照射量の不均一によって経時
的に反応度にばらつきを生じ、原子炉の運転サイクル末
期においては部分的に原子炉停止余裕が低下する可能性
がある。
In addition, in conventional control rods for nuclear reactors, the entire wing area is filled with neutron absorbing material at a uniform density, and the neutron absorption capacity, or reactivity, in the axial direction is adjusted to be equal. As such, non-uniformity in the amount of neutron irradiation causes variations in reactivity over time, and there is a possibility that the reactor shutdown margin may partially decrease at the end of the reactor operating cycle.

°すなわち、上記の原子炉用制御棒を使用して原子炉を
所定WJ間運転した場合における原子炉停止余裕(未臨
界度)の炉心軸方向分布は、燃料集合体の設計仕様また
は原子炉の運転方法によって若干の相違を生じるが、基
本的には第3図(A)に示す分布となる。すなわち、原
子炉停止余裕は炉心の上端および下端において大きく、
一方、上端より若干下った位置において最小の値をとる
。この原因としては、次のことが考えられる。
°In other words, when the reactor is operated for a predetermined WJ using the above-mentioned reactor control rods, the distribution of the reactor shutdown margin (subcriticality) in the core axis direction is determined by the design specifications of the fuel assembly or the reactor Although there are some differences depending on the driving method, basically the distribution is as shown in FIG. 3(A). In other words, the reactor shutdown margin is large at the upper and lower ends of the core,
On the other hand, the minimum value is taken at a position slightly below the upper end. Possible causes of this are as follows.

原子炉炉心の軸方向長さをLとした場合、下端から3/
4Lの位置から上端にかけての上端領域においては、運
転時の気泡率(ボイド率)が高く、炉の出力密度が若干
低下するため、核分裂性物質である質量数235のウラ
ン(U−235)の残存量が比較的多く、また発生する
気泡(ボイド)によって中性子スペクトルの硬化現象を
生じる。
If the axial length of the reactor core is L, then 3/3 from the bottom end.
In the upper end region from the 4L position to the upper end, the bubble rate (void rate) during operation is high and the power density of the reactor decreases slightly. The residual amount is relatively large, and the generated bubbles (voids) cause a phenomenon of hardening of the neutron spectrum.

その結果、プルトニウム生成反応(中性子吸収反応)が
促進されるため、原子炉の運転後において炉心上部の核
分裂性物質の濃度が高くなり、その領域の原子炉停止余
裕が低下する。
As a result, the plutonium production reaction (neutron absorption reaction) is promoted, so the concentration of fissile material in the upper part of the reactor core increases after the reactor is in operation, and the margin for reactor shutdown in that region decreases.

一方、今後の原子炉は運転経済性の向上に対する要請か
ら核燃料の高燃焼度化および運転サイクルの長期化への
移行は必至の情勢である。その具体的な対応として濃縮
度の高い核燃料の採用が進み、それに伴って寿命が長く
、原子炉停止余裕が大きな原子炉用制御棒が強く求めら
れる。
On the other hand, it is inevitable that future nuclear reactors will shift to higher burn-up of nuclear fuel and longer operating cycles due to the demand for improved operating economy. As a concrete response to this, the adoption of highly enriched nuclear fuel is progressing, and as a result, there is a strong demand for control rods for nuclear reactors that have a long life and a large margin for reactor shutdown.

(発明が解決しようとする課題) 従来の原子炉用制御棒を高濃縮度の核燃料を装荷した原
子炉に採用すると、短い運転サイクル毎に原子炉用制御
棒を頻繁に交換しなければならない。原子炉用制御棒の
交換作業にあたっては、原子炉を停止し、交換すべきt
JI ill棒の周囲に配設された多数の燃料集合体を
炉心から予め排除する煩雑な作業が必要とされる。した
がって、制御棒の交換のための原子炉停止が頻発し、ま
た停止期間が長期化することにより原子炉の運転効率、
経済性が著しく低下する一方、管理労力が著しく増大す
る可能性がある。
(Problems to be Solved by the Invention) When conventional nuclear reactor control rods are employed in a nuclear reactor loaded with highly enriched nuclear fuel, the reactor control rods must be frequently replaced every short operating cycle. When replacing reactor control rods, the reactor must be shut down and the time required for replacement
A complicated work is required to remove in advance from the core a large number of fuel assemblies arranged around the JI ill rod. Therefore, reactor shutdowns occur frequently to replace control rods, and the extended shutdown period reduces the operating efficiency of the reactor.
Management effort may increase significantly while economics will be significantly reduced.

本発明は上記の問題点を解決するためになされたもので
あり、原子炉用制御棒全体の反応度価値を^めるととも
に、原子炉停止余裕が低下しがちな領域に、特に反応度
が高く、または長寿命を有する中性子吸収材を部分的に
配設することによって、安価で効果的に原子炉停止余裕
を増大化し、かつ核的寿命の長期化を図り得る長寿命型
原子炉用制御棒を提供することを目的とする。
The present invention has been made to solve the above problems, and it increases the reactivity value of the entire control rod for a nuclear reactor, and also improves the reactivity value, especially in the area where the reactor shutdown margin tends to decrease. Control for a long-life nuclear reactor that can inexpensively and effectively increase reactor shutdown margin and prolong the nuclear life by partially disposing neutron absorbing material with high or long life. The purpose is to provide sticks.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る原子炉用制御棒は、複数の矩形状ウィング
の内側端をウィング長手方向に間隔をおいた複数の結合
部材で結合し、上記ウィングにその幅方向に穿設された
収容孔を、ウィングの挿入先端から挿入末端にかけて列
状に配設し、上記収容孔に中性子吸収材を充填した原子
炉用制御棒において、反応度価値に寄与するウィングの
少なくとも挿入先端領域の収容孔に長寿命型中性子吸収
材を配置するとともに、原子炉停止中に未臨界度が浅く
なる領域に配設される各収容孔のウィング長手方向単位
長さ当りの孔容積を、他の領域の孔容積より増大させた
ものである。
(Means for Solving the Problems) A control rod for a nuclear reactor according to the present invention connects the inner ends of a plurality of rectangular wings with a plurality of connecting members spaced apart in the longitudinal direction of the wings, and In a control rod for a nuclear reactor, accommodation holes drilled in the direction are arranged in a row from the insertion tip to the insertion end of the wing, and the accommodation holes are filled with a neutron absorbing material. A long-life neutron absorber is arranged in the accommodation hole at least in the insertion tip region, and the hole volume per unit length in the longitudinal direction of each accommodation hole is arranged in the region where subcriticality becomes shallow during reactor shutdown. is larger than the pore volume in other regions.

本発明はまた複数の矩形状ウィングの内側端をウィング
長手方向方向に間隔をおいて複数の結合部材で結合し、
上記ウィングにその幅方向に穿設された収容孔を、ウィ
ングの挿入先端から挿入末端にかけて列状に配設し、上
記収容孔に中性子吸収材を充填させた原子炉用制御棒に
おいて、前記ウィングを中性子照射量が著しく高い挿入
先端側の第1ff!11と、この第1領域に隣接し、原
子炉停止中に未臨界度が浅くなる第2f!4域と、この
第2領域に挿入末端側で隣接する第3領域とに区画し、
上記第1領域の収容孔に長寿命型中性子吸収材を、第2
および第3領域の収容孔にボロンカーハード等の中性子
吸収材を充填させるとともに、第3領域に形成される収
容孔の一部はガスプレナムとして形成した原子炉用制御
棒である。
The present invention also includes connecting the inner ends of the plurality of rectangular wings with a plurality of connecting members at intervals in the wing longitudinal direction,
In the control rod for a nuclear reactor, accommodation holes bored in the width direction of the wing are arranged in a row from the insertion tip to the insertion end of the wing, and the accommodation hole is filled with a neutron absorbing material. The first ff on the insertion tip side where the amount of neutron irradiation is extremely high! 11, and the second f! which is adjacent to this first region and whose subcriticality becomes shallow during reactor shutdown! divided into four regions and a third region adjacent to the second region on the insertion end side,
A long-life neutron absorbing material is placed in the accommodation hole in the first region, and a second
The accommodation hole in the third region is filled with a neutron absorbing material such as boron carbide, and a part of the accommodation hole formed in the third region is a control rod for a nuclear reactor formed as a gas plenum.

(作用) 本発明に係る原子炉用MH棒は、各ウィングの幅方向に
穿設された収容孔をウィングの長手方向に多数配列して
おり、上記ウィングの少なくとも挿入先端部の反応度価
値に寄与する収容孔には長寿命型中性子吸収材を配置し
ているため、原子炉運転中炉心に挿入されていて、ある
いは引抜かれていても中性子照射を受ける挿入先端部は
中性子吸収能力が長lIJ間衰えず核的寿命が長い。
(Function) The MH rod for a nuclear reactor according to the present invention has a large number of accommodation holes drilled in the width direction of each wing arranged in the longitudinal direction of the wing, and the reactivity value of at least the insertion tip of the wing is increased. Since a long-life neutron absorbing material is placed in the contributing accommodation hole, the insertion tip, which is exposed to neutron irradiation even if it is inserted into the reactor core during reactor operation or withdrawn, has a long neutron absorption capacity. It has a long nuclear lifespan and does not deteriorate over time.

また、原子炉用制御棒を炉心に全挿入した状態において
使用する場合、原子炉用制御棒の第1領域に隣接して縦
方向に設けられた未臨界度が浅くなる第2flj域に対
応する燃料集合体内部における核反応はボイド現象によ
って抑制されるため、その領域における核燃料の残存量
が多い。そのうえ、プルトニウムの生成反応によって核
分裂性物質の濃度が^まっている。しかし、その第2領
域に例えば収容孔間のピッチ、形状寸法等を変えること
により、ウィング長手方向単位長さ当りの孔容積を他の
itsの孔容積より増大させたから、中性子吸収材の充
填量を増加させることができた。このため、原子炉を長
JI間運転した後においても、第2領域における中性子
吸収材の反応度価値が保持される。したがって、原子炉
用制御棒全体の全挿入時における原子炉停止余裕も十分
に確保することができる。
In addition, when the reactor control rod is used with the reactor control rod fully inserted into the reactor core, the subcriticality corresponds to the second flj region provided vertically adjacent to the first region of the reactor control rod, where the degree of subcriticality becomes shallower. Since the nuclear reaction inside the fuel assembly is suppressed by the void phenomenon, there is a large amount of nuclear fuel remaining in that area. Moreover, the concentration of fissile material is decreasing due to plutonium production reactions. However, by changing the pitch, shape, etc. between accommodation holes in the second region, the hole volume per unit length in the longitudinal direction of the wing was increased compared to the hole volume of other its, so the filling amount of the neutron absorbing material was able to increase. Therefore, even after the reactor is operated for a long JI period, the reactivity value of the neutron absorbing material in the second region is maintained. Therefore, a sufficient margin for reactor shutdown can be ensured when all reactor control rods are fully inserted.

また、長寿命または高反応度を有する高価な中性子吸収
材は必要最少量を限定的に配設しているため原子炉用制
御棒全体の製作費を安価にすることができる。
Further, since the expensive neutron absorbing material having a long life or high reactivity is provided in a limited amount to the minimum required amount, the manufacturing cost of the entire control rod for a nuclear reactor can be reduced.

(実施例) 以下、本発明に係る原子炉用制御棒の一実施例について
添付図面を参照して説明する。
(Example) Hereinafter, an example of a control rod for a nuclear reactor according to the present invention will be described with reference to the accompanying drawings.

第1図は、本発明に係る原子炉用制御棒10を示すもの
で、この原子炉用制御棒10は例えばステンレス鋼板で
形成された複数枚の矩形のウィング11を有する。原子
炉用制御棒10は軸方向に所要の間隔をおいて複数の結
合部材12を有し、この結合部材12を介して複数のウ
ィング11の内側端が結合され、横断面十字状に形成さ
れる。
FIG. 1 shows a nuclear reactor control rod 10 according to the present invention, and this nuclear reactor control rod 10 has a plurality of rectangular wings 11 made of, for example, a stainless steel plate. The nuclear reactor control rod 10 has a plurality of coupling members 12 spaced apart from each other in the axial direction, and the inner ends of the plurality of wings 11 are coupled via the coupling members 12 to form a cross-shaped cross section. Ru.

ウィング11の挿入先端部には操作用ハンドル13が固
着される。ウィング11はステンレス鋼板の代りにハフ
ニウム−ジルコニウム合金やハフニウム−チタン合金な
どのようにハフニウムを含む長寿命型中性子吸収材希釈
合金を用いてもよい。
An operating handle 13 is fixed to the insertion tip of the wing 11. The wing 11 may be made of a long-life neutron absorber diluted alloy containing hafnium, such as a hafnium-zirconium alloy or a hafnium-titanium alloy, instead of the stainless steel plate.

この場合には、ハフニウムによるφ性子吸収効果が加わ
り、制御棒10の長寿命化、大反応度化を図ることがで
きる。
In this case, the effect of absorbing phi trons due to hafnium is added, and the life of the control rod 10 can be extended and the reactivity can be increased.

原子炉用制御棒10の挿入末端側には末端構造材15が
設けられ、この末m構造材15の下部に図示しないスピ
ードリミッタや制御棒駆動機構への結合部が設けられる
A terminal structural member 15 is provided on the insertion end side of the nuclear reactor control rod 10, and a connecting portion to a speed limiter and a control rod drive mechanism (not shown) is provided at the lower part of the terminal structural member 15.

原子炉用制御棒10のウィング11は挿入先端側および
外側縁側(11端側)に強い中性子照射を受け、反応度
価値に寄与する挿入先端領111xを備えた第1領域と
、この第1領域に隣接し、原子炉停止中に未臨界度が浅
くなる第2領域の高反応度領域Yと、この^反応度領域
Yに挿入末端側で隣接する第3領域Zとに区画される、
原子炉用制御棒10の各ウィング11には、ウィング幅
方向に延びる横孔としての収容孔17.18.19がウ
ィングの挿入先端から挿入末端にかけて多数穿設されて
いる。
The wing 11 of the reactor control rod 10 receives strong neutron irradiation on the insertion tip side and the outer edge side (11 end side), and has a first region including an insertion tip region 111x that contributes to reactivity value, and this first region. It is divided into a high reactivity region Y, which is a second region adjacent to the reactor and whose subcriticality becomes shallow during reactor shutdown, and a third region Z adjacent to this reactivity region Y on the insertion end side.
In each wing 11 of the nuclear reactor control rod 10, a large number of accommodation holes 17, 18, and 19 are bored as horizontal holes extending in the width direction of the wing from the insertion tip to the insertion end of the wing.

一方、ウィング11の第1領域に形成される挿入先端領
!4!xは、原子炉用制御棒の軸方向有効長りの挿入先
端から挿入末端側に約5 cm以上で約321以下の長
さに形成され、好ましくは挿入先端領域Xは挿入先端か
ら約5rJ以上で約161以下とされる。この挿入先端
領域Xに形成される各収容孔17やウィング外側縁部の
領域に位置する縦方向の収容溝には、ハフニウム等の長
寿命型中性子吸収材20.21が充填される。この原子
炉用制御棒10では、ウィング11内側端側に形成され
る空隙内に水が充填されるが、この空隙が広い場合には
熱中性子束の盛上りが著しくなるため、ウィング11の
内側端側は内側縁から0.5〜1゜5C11程度の幅で
挿入先端から挿入末端に向って一定長さ、例えば15〜
40α程度の長寿命型中性子吸収材を配置してもよい。
On the other hand, the insertion tip region formed in the first region of the wing 11! 4! x is formed to have a length of about 5 cm or more and about 321 cm or less from the insertion tip to the insertion end side of the axial effective length of the reactor control rod, and preferably the insertion tip region X is about 5 rJ or more from the insertion tip It is said to be approximately 161 or less. Each accommodation hole 17 formed in the insertion tip region X and the longitudinal accommodation groove located in the area of the outer edge of the wing are filled with a long-life neutron absorbing material 20, 21 such as hafnium. In this nuclear reactor control rod 10, water is filled in the void formed on the inner end side of the wing 11, but if this void is wide, the thermal neutron flux increases significantly. The end side has a width of about 0.5 to 1°5C11 from the inner edge and a constant length from the insertion tip to the insertion end, for example, 15 to 1.
A long-life neutron absorbing material of about 40α may be arranged.

また、第1領域のウィング外側縁側において、長寿命型
中性子吸収材21を充填する領域幅15は例えば約1〜
2α程度でよいが、大反応度化を主目的とした原子か用
制御棒10では、長寿命型中性子吸収材21は84Gに
比べて反応度価値が劣る場合が多いので、領域幅15は
0.5cm程度としてもよい。この領域幅15部分の長
さ11は、大反応度化を主目的とした制御棒の場合には
短かくてもよいが、原子炉運転時に炉心部に挿入して原
子炉運転制御を主目的とする場合には、軸方向有効長し
の少なくとも1/4以上の長さを必要とする。制御棒使
用方法が特定できない場合には、領域幅15を0.5〜
11程度、(j!4−1.)を1/2L程度とすれば、
反応度価値の低下を来すことなく大反応度化達成の目的
に有害となることはない。ウィング11の外側縁は溶接
等により各収容孔の開口側を長寿命型中性子吸収材21
等を介して閉じるように閉塞される。
Further, on the outer edge side of the wing in the first region, the width 15 of the region filled with the long-life neutron absorbing material 21 is, for example, about 1 to
However, in the control rod 10 for atomic bombs whose main purpose is to increase the reactivity, the long-life neutron absorber 21 often has a reactivity value inferior to that of 84G, so the region width 15 should be set to 0. It may be about .5 cm. The length 11 of this region width 15 portion may be short in the case of a control rod whose main purpose is to increase the reactivity, but the main purpose is to insert it into the reactor core during reactor operation and control the reactor operation. In this case, the length must be at least 1/4 of the effective length in the axial direction. If the control rod usage method cannot be specified, set the area width 15 to 0.5~
About 11, if (j!4-1.) is about 1/2L,
It is not detrimental to the purpose of achieving high reactivity without causing a decrease in reactivity value. The outer edge of the wing 11 is welded, etc. to the opening side of each accommodation hole with a long-life neutron absorbing material 21.
etc. to be closed so as to be closed.

ところで、長寿命型中性子吸収材20.21としては、
ハフニウム金属、ハフニウム−ジルコニウム合金、ハフ
ニウム−チタン合金、銀−インジウム・カドミウム合金
、ユーロピウム酸化物、ディスプロシウム酸化物、サマ
リウム酸化物などの希土類酸化物より選択された1種類
または2種類以上の物質を含む固形状または粉末状の中
性子吸収材が採用され、中性子照射強度、運転期間等を
考慮して最適な組合せが決定される。
By the way, as long-life neutron absorbing material 20.21,
One or more substances selected from rare earth oxides such as hafnium metal, hafnium-zirconium alloy, hafnium-titanium alloy, silver-indium cadmium alloy, europium oxide, dysprosium oxide, samarium oxide, etc. A solid or powdered neutron absorbing material is used, and the optimal combination is determined by considering neutron irradiation intensity, operation period, etc.

また、ウィング11の第2領域Yは原子炉用制御棒10
の大反応度価値化を図るため、各収容孔18のウィング
長手方向単位長さ当りの孔容積は、挿入先端領域Xおよ
び第3領域Zの孔容積より増大せしめられる。具体的に
は、第2領域Yの各収容孔18を長孔化することにより
、84C等の中性子吸収材23の充填量を増加させ、原
子炉停止中に未臨界度が浅(なる領域の反応度を高め、
高反応度化している。
In addition, the second region Y of the wing 11 is the reactor control rod 10
In order to achieve high reactivity value, the hole volume per unit length in the wing longitudinal direction of each accommodation hole 18 is made larger than the hole volumes of the insertion tip region X and the third region Z. Specifically, by making each accommodation hole 18 in the second region Y long, the filling amount of the neutron absorbing material 23 such as 84C is increased, and the subcriticality becomes shallow during reactor shutdown. Increases reactivity,
High reactivity.

原子炉停止中に未臨界度が浅くなる領域は第3図(A>
に示すように第2領域Yに形成され、この領域Yの中性
子照射量は比較的高いものの、挿入先端領域Xに比べる
とかなり低下するので、長寿命化には不適であるが大反
応度化に好適な中性子吸収材としてB4Cを用いること
ができる。ボロン−10を濃縮したB4Cやチッ化ボロ
ン、六はう化ユーロピウム(EuB6)等のボロン化合
物を用いるとさらに大反応度化できる。酸化ユーロピウ
ムを主中性子吸収材とし、ボロンを含まない中性子吸収
材を用いると大反応度化と同時に長寿命化を達成するこ
ともできる。しかし酸化ユーロピウムは高価であり、濃
縮ボロンに比べると大反応度の達成には向いていないの
で、酸化ユーロビウムの使用は高反応度領域(第2領域
)Yのうち挿入先端領域Xに隣接する付近のみで使用す
るのが最も好適である。
The region where subcriticality becomes shallow during reactor shutdown is shown in Figure 3 (A>
As shown in the figure, the neutron irradiation amount in this region Y is relatively high, but it is considerably lower than that in the insertion tip region B4C can be used as a neutron absorbing material suitable for. If a boron compound such as B4C enriched with boron-10, boron nitride, or europium hexapolide (EuB6) is used, the reaction degree can be further increased. By using europium oxide as the main neutron absorbing material and using a neutron absorbing material that does not contain boron, it is possible to achieve a high reactivity and a long life at the same time. However, eurobium oxide is expensive and is not suitable for achieving high reactivity compared to enriched boron, so eurobium oxide is used in the region adjacent to the insertion tip region X in the high reactivity region (second region) Y. Most suitable for use alone.

この原子炉用制御棒では第2領域Yの収容孔1日を長孔
化することによって、より多量の大反応度型の中性子吸
収材(代表例はB4C)を充填させることができる。
In this reactor control rod, by making the accommodation hole in the second region Y longer, it is possible to fill a larger amount of high-reactivity neutron absorbing material (a typical example is B4C).

また、第2領域Yに形成される収容孔18は、第2図(
A)に示すように、収容孔18の孔径を一定とした場合
、孔中心間距離(孔間ピッチ)を変えると、中性子吸収
材23の充wA量や反応度価値(相対値)は第2図(B
)に示すように変化させることができる。− この種のIll Ill棒の典型的な設計例では、板厚
tは8 m %孔直径dは6 tuts 、孔中心間距
離(ピッチ:p)は8mとされている。したがって、こ
の条件においてピッチpを変化させたとき、中性子吸収
材量とそれに伴う反応度価値の変化が第2図(B)に表
わされる。収容孔の直径とピッチが同一となったとき中
性子吸収材量は従来の約1.3倍以上となり、収容孔が
ほぼ重なったとき、したがって板は厚さ(t−d)/2
の2枚に分割され、吸収材が板状に充填された状態(極
限)でほぼ1.7倍となる。反応度価値の相対変化は炉
心構成、燃料濃縮度、水ギヤツプ幅、可燃性毒物等によ
っても影響を受けるので一律的に論することはできない
が、−例として示すと第2図(B)の2点鎖線の如くで
ある。この例では、収容孔が重ならずに隣接した状態(
p=d)において4%、完全に重なった状態で約7.5
%の増加となっている。
Moreover, the accommodation hole 18 formed in the second region Y is shown in FIG.
As shown in A), when the diameter of the accommodation hole 18 is constant, if the distance between hole centers (pitch between holes) is changed, the amount of filling wA and the reactivity value (relative value) of the neutron absorbing material 23 change to the second level. Figure (B
) can be changed as shown. - In a typical design example of this type of Ill Ill bar, the plate thickness t is 8 m, the hole diameter d is 6 tuts, and the distance between hole centers (pitch: p) is 8 m. Therefore, when the pitch p is changed under these conditions, the amount of neutron absorbing material and the resulting change in the reactivity value are shown in FIG. 2(B). When the diameter and pitch of the accommodation holes are the same, the amount of neutron absorbing material is approximately 1.3 times that of the conventional one, and when the accommodation holes almost overlap, the plate has a thickness (t-d)/2.
When the absorbent material is divided into two sheets and filled with absorbent material in the form of a plate (at its limit), it becomes approximately 1.7 times as large. Relative changes in reactivity values cannot be uniformly discussed because they are affected by core configuration, fuel enrichment, water gap width, burnable poison, etc.; however, as an example, the It looks like a two-dot chain line. In this example, the accommodation holes are adjacent to each other without overlapping (
4% at p=d), approximately 7.5 when fully overlapped
% increase.

原子炉用制御棒10の実際の設計ではウィング11の板
を完全に分割することはできず、板間に何らかの仕切り
(結合)材となる肉の部分が必要となるため、孔間ピッ
チp=0の状態はあり得ないが、このピッチpを小さく
するという考え方では、幾つかの隣接する収容孔をグル
ープ化し、その間では孔間ピッチpを小さくし、他のグ
ループとの間に母材内(ウィング)を残す第1図のよう
な構成とすれば、実効的にp−4〜5履(d−6M)と
することができ、充分実現可能である。このとき反応度
価値は5%程度向上できることを第2図(B)は示して
いる。
In the actual design of the control rod 10 for a nuclear reactor, the plates of the wing 11 cannot be completely divided, and some kind of partition (bonding) material is required between the plates, so the hole pitch p= Although a state of 0 is impossible, the idea of reducing this pitch p is to group several adjacent accommodation holes, reduce the inter-hole pitch p between them, and make the distance between other groups within the base material. If the configuration is as shown in FIG. 1 where the (wing) is left, it can effectively be made into a p-4 to 5 shoe (d-6M), which is fully achievable. FIG. 2(B) shows that the reactivity value can be improved by about 5% in this case.

以上が本発明における反応度価値向上の原理である。反
応度価値が大きくなる領域Yを長手方向長さオ、とする
と、第3図(B)のような軸方向中性子吸収特性分布と
なる。したがって原子炉停止中の未臨界度の軸方向分布
は第3図(A)から第3図(C)のように改良され、著
しく未臨界度が浅くなる部分がなくなり、軸方向にほぼ
一様化される。
The above is the principle of improving reactivity value in the present invention. Assuming that the region Y where the reactivity value becomes large has a longitudinal length O, the axial neutron absorption characteristic distribution will be as shown in FIG. 3(B). Therefore, the axial distribution of subcriticality during reactor shutdown is improved as shown in Figure 3 (A) to Figure 3 (C), and there is no part where the subcriticality is extremely shallow, and it is almost uniform in the axial direction. be converted into

ところで、ウィング11の第3領域Zの各収容孔19に
は84C等の中性子吸収材25が充填されるが、第3領
域Zのうち挿入末端側からL/2以内に形成される各収
容孔19の一部には反応度価値を大きくする必要がない
ので、中性子吸収材を充填させず、ガスプレナムとして
もよい。この場合、ガスプレナムは互いに隣接する収容
孔19を避けて設けるのが望ましい。
By the way, each accommodation hole 19 in the third region Z of the wing 11 is filled with a neutron absorbing material 25 such as 84C, but each accommodation hole formed within L/2 from the insertion end side in the third region Z Since there is no need to increase the reactivity value in a part of 19, a gas plenum may be used instead of being filled with a neutron absorbing material. In this case, it is desirable that the gas plenums be provided so as to avoid the accommodation holes 19 that are adjacent to each other.

また、ウィング11の第2領域Yに形成される各収容孔
は、第4図(A)〜(G)に示すように種々の変形が考
えられ、限られた領域内により多量の中性子吸収材を充
填させるようになっている。
In addition, each accommodation hole formed in the second region Y of the wing 11 can be modified in various ways as shown in FIGS. It is designed to be filled with

このうち、第4図(A)、に示されるウィング11Aの
高反応度領域である第2領域Yに形成される各収容孔1
8aは孔間ピッチを他の領域より密に(小さく)配設し
たものである。
Among these, each accommodation hole 1 formed in the second region Y, which is a high reactivity region of the wing 11A shown in FIG.
8a is a region in which the pitch between holes is arranged more densely (smaller) than in other regions.

第4図(8)に示されるウィング11Bは、第2領域(
高反応度領域)Yに形成される各収容孔18bのうち、
相互に隣接する複数個ずつをグループ化し、各グループ
(h1〜ho)の各孔間ピッチを小さくしたものである
。第4図(C)はウィング11Cの各収容孔18Cを各
グループ毎に互いに連絡し、長孔を形成したものである
The wing 11B shown in FIG. 4(8) has a second region (
Of each accommodation hole 18b formed in the high reactivity region) Y,
A plurality of mutually adjacent holes are grouped, and the pitch between the holes in each group (h1 to ho) is made small. In FIG. 4(C), the accommodation holes 18C of the wing 11C are connected to each other in each group to form elongated holes.

さらに、第4図(D)のウィング11Dに示すように、
小径の収容孔17d1通常の収容孔19dおよび長孔1
8dを組み合せても、また、第4図(E)のウィングI
IEに示すように、高反応度領域である長孔18e1間
に小径の収容孔18e2を穿設してもよく、また、高反
応度領域の収容孔は第8図(F)のウィング11Fに示
すように矩形孔18fであってもよい。さらにまた、第
4図(G)のウィング11Gのように、変形矩形孔18
g1と三角形孔18g2とを組み合せてもよく、その他
種々の形状としてもよい。
Furthermore, as shown in the wing 11D in FIG. 4(D),
Small diameter accommodation hole 17d1 normal accommodation hole 19d and long hole 1
Even if 8d is combined, the wing I in Fig. 4(E)
As shown in IE, a small-diameter accommodation hole 18e2 may be bored between the long holes 18e1, which are high reactivity regions, and the accommodation hole 18e2 in the high reactivity region may be formed in the wing 11F in FIG. 8(F). As shown, it may be a rectangular hole 18f. Furthermore, like the wing 11G in FIG. 4(G), the modified rectangular hole 18
g1 and the triangular hole 18g2 may be combined, or may have various other shapes.

また、ウィング11の各収容孔に充填されるB4Cの充
1R密度は、中性子照射量の特に高い挿入先端側で理論
充填密度の30〜65%とすることができる。既存の制
御棒ではB4C粉末は70%TD(理論密度)±5%T
Oで充填されているが、84C粉末の充填量が約5%T
Dの変化でスエリング応力が同一となる中性子照射量が
20%程度変化するこが考えられる。このスエリング応
力の変化はB4C粉末の粒径にも依存するので必ずとも
一義的ではないが、低密度化によりスエリング応力発生
までの時間を遅らせることができる。
Further, the filling density of B4C filled in each accommodation hole of the wing 11 can be set to 30 to 65% of the theoretical filling density on the insertion tip side where the amount of neutron irradiation is particularly high. In existing control rods, B4C powder is 70% TD (theoretical density) ± 5% T.
Although it is filled with O, the filling amount of 84C powder is about 5% T.
It is conceivable that the amount of neutron irradiation at which the swelling stress remains the same changes by about 20% due to a change in D. This change in swelling stress depends on the particle size of the B4C powder, so it is not necessarily unambiguous, but by reducing the density, the time until swelling stress occurs can be delayed.

第4図(A)〜(G)に示すように、ウィング11A〜
11Gに収容孔を穿設した場合には、B4C粉末の沈積
問題は実質上中じないので、多少低密度化を図ることが
でき、従来のようにB4C粉末を70%TO充填させる
場合には、粒径の異なるB4C粉末を混合させて使用す
る必要があるが、60%TO程度あるいはそれ以下では
、B4C粉末は一種類の粒径でよく、コスト低減効果が
あり、粒度のコントロールが不要となる。
As shown in FIGS. 4(A)-(G), wings 11A-
If an accommodation hole is drilled in 11G, the problem of B4C powder deposition is virtually eliminated, so it is possible to achieve a somewhat lower density. , it is necessary to use a mixture of B4C powders with different particle sizes, but at around 60% TO or less, only one type of B4C powder is sufficient, which has a cost reduction effect and eliminates the need for particle size control. Become.

一方、B4C粉末の粒径を30%TO以下とすると、中
性子反応による8−10の消耗が早く、長寿命化に不適
当である。また、低密度充填で沈積なしとすることは困
難であるが、B4C粉末が30%TDまでは粉の粒度を
小さくすることにより容易に対処できる。
On the other hand, if the particle size of the B4C powder is set to 30% TO or less, 8-10 is quickly consumed due to neutron reaction, which is inappropriate for extending the service life. Furthermore, although it is difficult to achieve low density packing without sedimentation, this can be easily overcome by reducing the particle size of the B4C powder up to 30% TD.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明に係る原子炉用制御棒にお
いては、各ウィングの幅方向に穿設された収容孔をウィ
ングの長手方向に列状に配列するとともに、上記ウィン
グの反応度価値に寄与する少なくとも挿入先端領域の収
容孔には長寿命型中性子吸収材を配置したため、強い中
性子照射を受ける挿入先端部は中性子吸収能力が長期間
衰えず、核的寿命が長い。
As described above, in the nuclear reactor control rod according to the present invention, the accommodation holes bored in the width direction of each wing are arranged in a row in the longitudinal direction of the wing, and the reactivity value of the wing is Since a long-life neutron absorbing material is disposed in at least the accommodation hole in the insertion tip region, which contributes to the insertion tip region, the insertion tip portion, which is exposed to strong neutron irradiation, does not lose its neutron absorption ability over a long period of time and has a long nuclear life.

また、原子炉用8a棒に使用されるウィングは未臨界度
が浅くなる領域に形成される各収容孔のウィング長手方
向単位長さ当りの孔容積を他の領域より大きくし、その
部分に中性子吸収材を充填させるようにしたから、原子
炉の長期間運転後にも、第2領域における中性子吸収材
の反応度価値が保持され、原子炉用υ制御棒全体の全挿
入時における原子炉停止余裕も充分に確保することがで
きる。
In addition, the wing used for the 8a rod for nuclear reactors has a hole volume per unit length in the longitudinal direction of the wing of each accommodation hole formed in the region where the degree of subcriticality is shallow compared to other regions, and neutrons are Since the absorber is filled, the reactivity value of the neutron absorber in the second region is maintained even after long-term operation of the reactor, and the reactor shutdown margin is reduced when all the reactor υ control rods are fully inserted. can also be secured in sufficient quantities.

さらに、長寿命や高反応度を有する高価な中性子吸収材
は限定的に必要最小量が配設されるため、制御棒全体の
製作費を安価にすることができる。
Further, since the expensive neutron absorbing material having a long life and high reactivity is provided in a limited amount to the minimum necessary amount, the manufacturing cost of the entire control rod can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明に係る原子炉用制御棒のは上記原
子炉用制御棒のウィング内に形成される各収容孔の孔間
ピッチ関係を示す図、第2図(B)は収容孔の孔間ピッ
チと中性子吸収材の充填量および反応度価値(相対値)
を示す図、第3図(A)は従来の原子炉用制御棒の軸方
向の未臨界度を示す図、第3図(B)は本発明に係る原
子炉用制御棒の軸方向に沿う中性子吸収特性を示す図、
第3図(C)は本発明と従来の原子炉用制御棒の未臨界
度を比較して示す図、第4図(A)〜(G)は本発明に
係る原子か用制御棒に用いられるウィングの各変形例を
それぞれ示す図である。 1・Im子1flllltlll棒、11.11A〜1
1G・・・ウィング、12・・・結合部材、15・・・
末端構造材、17、18.19・・・収容孔、18a、
18b、18c、18d、18e  、18e2.18
f、18a  、18a2・・・収容孔、20.21・
・・長寿命型中性子吸収材、23.25・・・中性子吸
収材。 出願人代理人   波 多 野   久第 1 回 (、’l) 0  2  466(mm) 孔開ピッチ! (B) 篤 2 図 よ鴻         上渚 収符佐 (原Jp停止余裕) (Aン             (B>第 3 固 一−−従未O原チjP用ItiII御昇上堵 3鵡芥鷹 (原1?井立奈琲〕 (Cン
FIG. 1(A) is a diagram showing the pitch relationship between the accommodation holes formed in the wings of the nuclear reactor control rod according to the present invention, and FIG. 2(B) is Pitch between accommodation holes, filling amount of neutron absorbing material, and reactivity value (relative value)
3(A) is a diagram showing the axial subcriticality of a conventional nuclear reactor control rod, and FIG. 3(B) is a diagram showing the axial direction of a nuclear reactor control rod according to the present invention. Diagram showing neutron absorption characteristics,
FIG. 3(C) is a diagram comparing the subcriticality of the present invention and the conventional control rod for nuclear reactors, and FIG. It is a figure which shows each modification of the wing. 1.Im child 1flllltllll rod, 11.11A~1
1G...wing, 12...coupling member, 15...
Terminal structural material, 17, 18.19...accommodating hole, 18a,
18b, 18c, 18d, 18e, 18e2.18
f, 18a, 18a2... accommodation hole, 20.21.
...Long-life neutron absorber, 23.25...Neutron absorber. Applicant's agent Hisashi Hatano 1st (,'l) 0 2 466 (mm) Hole pitch! (B) Atsushi 2 Figure Yo Ko Kaminagi Shufusa (Hara JP stoppage allowance) (A) ?Naru Idate] (C-n

Claims (1)

【特許請求の範囲】 1、複数の矩形状ウィングの内側端をウィング長手方向
に間隔をおいた複数の結合部材で結合し、上記ウィング
にその幅方向に穿設された収容孔を、ウィングの挿入先
端から挿入末端にかけて列状に配設し、上記収容孔に中
性子吸収材を充填した原子炉用制御棒において、反応度
価値に寄与するウィングの少なくとも挿入先端領域の収
容孔に長寿命型中性子吸収材を配置するとともに、原子
炉停止中に未臨界度が浅くなる領域に配設される各収容
孔のウィング長手方向単位長さ当りの孔容積を、他の領
域の孔容積より増大させたことを特徴とする原子炉用制
御棒。 2、複数の矩形状ウィングの内側端をウィング長手方向
方向に間隔をおいて複数の結合部材で結合し、上記ウィ
ングにその幅方向に穿設された収容孔を、ウィングの挿
入先端から挿入末端にかけて列状に配設し、上記収容孔
に中性子吸収材を充填させた原子炉用制御棒において、
前記ウィングを中性子照射量が著しく高い挿入先端側の
第1領域と、この第1領域に隣接し、原子炉停止中に未
臨界度が浅くなる第2領域と、この第2領域に挿入末端
側で隣接する第3領域とに区画し、上記第1領域の収容
孔に長寿命型中性子吸収材を、第2および第3領域の収
容孔にボロンカーハード等の中性子吸収材を充填させる
とともに、第3領域に形成される収容孔の一部はガスプ
レナムとして形成したことを特徴とする原子炉用制御棒
[Claims] 1. The inner ends of a plurality of rectangular wings are connected by a plurality of connecting members spaced apart in the longitudinal direction of the wings, and accommodation holes bored in the wings in the width direction are connected to the inner ends of the wings. In a nuclear reactor control rod, which is arranged in a row from the insertion tip to the insertion end, and in which the accommodation hole is filled with a neutron absorbing material, long-life neutrons are provided in at least the accommodation hole in the insertion tip region of the wing that contributes to the reactivity value. In addition to arranging absorbing material, the hole volume per unit length in the longitudinal direction of the wing of each accommodation hole installed in the region where subcriticality becomes shallow during reactor shutdown was increased compared to the hole volume in other regions. A nuclear reactor control rod characterized by: 2. Connect the inner ends of a plurality of rectangular wings with a plurality of connecting members at intervals in the wing longitudinal direction, and connect the accommodation hole bored in the wing in the width direction from the insertion tip of the wing to the insertion end. In the control rods for a nuclear reactor, the control rods are arranged in a row across the range, and the accommodation holes are filled with a neutron absorbing material,
The wing is divided into a first region on the insertion tip side where the neutron irradiation dose is extremely high, a second region adjacent to this first region where the degree of subcriticality becomes shallow during reactor shutdown, and a second region on the insertion end side in this second region. and an adjacent third region, filling the accommodation holes in the first region with a long-life neutron absorbing material and filling the accommodation holes in the second and third regions with a neutron absorbing material such as boron curd, A control rod for a nuclear reactor, characterized in that a part of the accommodation hole formed in the third region is formed as a gas plenum.
JP63028420A 1988-02-09 1988-02-09 Control rod for nuclear reactor Expired - Lifetime JP2507512B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63028420A JP2507512B2 (en) 1988-02-09 1988-02-09 Control rod for nuclear reactor
US07/307,758 US5034185A (en) 1988-02-09 1989-02-08 Control blade for nuclear reactor
SE8900427A SE505354C2 (en) 1988-02-09 1989-02-08 Nuclear reactor guide blades
DE3903844A DE3903844A1 (en) 1988-02-09 1989-02-09 ABSORBER BAR FOR A CORE REACTOR
DE3943681A DE3943681C2 (en) 1988-02-09 1989-02-09 Absorber rod for nuclear reactors
SE9701444A SE512598C2 (en) 1988-02-09 1997-04-18 Control rod for nuclear reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028420A JP2507512B2 (en) 1988-02-09 1988-02-09 Control rod for nuclear reactor

Publications (2)

Publication Number Publication Date
JPH01202693A true JPH01202693A (en) 1989-08-15
JP2507512B2 JP2507512B2 (en) 1996-06-12

Family

ID=12248163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028420A Expired - Lifetime JP2507512B2 (en) 1988-02-09 1988-02-09 Control rod for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2507512B2 (en)

Also Published As

Publication number Publication date
JP2507512B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
JP2511581B2 (en) Boiling water reactor core and boiling water reactor
US4676948A (en) Nuclear reactor control rod
US5416813A (en) Moderator rod containing burnable poison and fuel assembly utilizing same
JP2000019280A (en) Core of light water cooling reactor and operation method of the reactor
EP1149387B1 (en) Control rod
JPH01202693A (en) Nuclear reactor control rod
RU2101788C1 (en) Control rod of water-cooled pressurized-vessel reactor
JPS61180186A (en) Control rod for nuclear reactor
JP2563434B2 (en) Control rod for nuclear reactor
JP2735211B2 (en) Reactor control rod
EP1650767A1 (en) Mox fuel assembly for pressurized water reactor
JPS63215992A (en) Control-rod for nuclear reactor
EP0977206B1 (en) Control rod in a water-cooled nuclear reactor
JPH036493A (en) Reactor control rod
JPH021277B2 (en)
JPH0213889A (en) Controller for long-life nuclear reactor
JPH0134358B2 (en)
JPH01158390A (en) Control rod for nuclear reactor
JPH01148998A (en) Control rod for nuclear reactor
CN1247627A (en) Control rod in hydrogen-cooled vessel reactor
JPH022984A (en) Nuclear reactor control rod
JPH01148997A (en) Control rod for nuclear reactor
JPH02176495A (en) Control rod for reactor
JP2563429B2 (en) Control rod for nuclear reactor
JPS63259494A (en) Control rod for nuclear reactor