JPH01201489A - Production of sliding member made of al alloy - Google Patents

Production of sliding member made of al alloy

Info

Publication number
JPH01201489A
JPH01201489A JP2716988A JP2716988A JPH01201489A JP H01201489 A JPH01201489 A JP H01201489A JP 2716988 A JP2716988 A JP 2716988A JP 2716988 A JP2716988 A JP 2716988A JP H01201489 A JPH01201489 A JP H01201489A
Authority
JP
Japan
Prior art keywords
alloy
layer
base material
surface layer
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2716988A
Other languages
Japanese (ja)
Inventor
Takaaki Kanazawa
孝明 金沢
Masahiro Nakagawa
仲川 政宏
Haratsugu Koyama
原嗣 小山
Makoto Yoshida
信 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2716988A priority Critical patent/JPH01201489A/en
Publication of JPH01201489A publication Critical patent/JPH01201489A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N15/00Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0403Refractory metals, e.g. V, W
    • F05C2201/0412Titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0403Refractory metals, e.g. V, W
    • F05C2201/0415Zirconium

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce a sliding member made of an Al alloy having excellent seizure resistance and wear resistance by alloying the hydride of a metal on the surface layer of an Al alloy base material by using high-density energy, thereby crystallizing an intermetallic compd. and forming pores. CONSTITUTION:Powder 2 of the hydride of the metal such as Ti or Zr which can form the intermediate compd. with Al is coated and disposed on the surface of the base material consisting of the Al alloy. An arc 4 is then applied onto this powder fixed layer 2 from above by using a TIG torch 3 to melt the powder fixed layer 2 and the surface layer of the Al alloy base material 1 on the lower side thereof. The alloyed layer is thereby formed on the surface layer of the base material. The high-hardness intermetallic compd. is crystallized into the surface layer by this alloying treatment; in addition, the pores which function as oil pools are formed to 2-30% porosity by the gaseous hydrogen which is generated by decomposition of the metal hydride.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は内燃機関用のピストンやシリンダライナ、あ
るいはパルプリフタやシフトフォーク等の如く、相手材
と摺動する部位を有するアルミニウム合金製の摺動部材
の製造方法に関し、特に多孔質の改質された表面層を有
マる摺動部材を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to sliding members made of aluminum alloy that have a portion that slides on a mating member, such as pistons and cylinder liners for internal combustion engines, pulp lifters, shift forks, etc. The present invention relates to a manufacturing method, and in particular to a method of manufacturing a sliding member having a porous modified surface layer.

従来の技術 自!lJ車に使用される内燃顆間用のピストン等には、
軽量性が要求されるところから一般にアルミニウム合金
が使用されているが、ピストン等は相手材と摺動プる部
材、プなわら摺動部材であるところから耐摩耗性が良好
であることが求められている。そこでアルミニウム合金
製のピストン等の摺動部材については、初晶S1を晶出
させることにより高い耐摩耗性を示プ過共晶Affi−
8i合金を用いることが行なわれている。しかしながら
通常の過共晶Al−8i合金は強度、靭性が若干劣ると
ころから、摺動部材の全体を過共晶Ae−3i合金で形
成することは問題があった。
Traditional technology! Internal combustion intercondylar pistons used in lj cars include:
Aluminum alloys are generally used because they are required to be lightweight, but pistons and other materials are required to have good wear resistance because they are members that slide against the mating material. It is being Therefore, for sliding members such as pistons made of aluminum alloy, hypereutectic Affi-
8i alloy is being used. However, since the normal hypereutectic Al-8i alloy has slightly inferior strength and toughness, there is a problem in forming the entire sliding member from the hypereutectic Ae-3i alloy.

ところでvI造造詣ルミニウム合金りも高強度、高靭性
、高耐熱性を有する粉末冶金法によるアルミニウム合金
を摺動部材に通用することも行なわれており、この場合
粉末成形体に熱間押出等の熱間加■を施して摺動部材と
するのが通常である。
By the way, aluminum alloys produced by powder metallurgy, which have high strength, high toughness, and high heat resistance, are also used for sliding parts. It is usual to apply hot heat treatment to make a sliding member.

しかしながらこのような方法で青た過共晶Al−3i合
金摺動部材は、初晶3iの粒径が鋳造材の場合の数十趨
程度と比べて一般に10顯以下と小さいため、耐摩耗性
に劣る問題があり、また組織が緻密で表面の油溜りとし
て作用する気孔も少ないため、焼付きが生じやすい問題
もあった。
However, the wear resistance of the hypereutectic Al-3i alloy sliding member produced by this method is poor because the grain size of the primary 3i crystals is generally less than 10 mm, compared to the tens of tens of degrees in the case of cast materials. Moreover, since the structure is dense and there are few pores that act as oil reservoirs on the surface, there is also the problem that seizure is likely to occur.

そこで既に特開昭62−112705号においては、過
共晶AN−3i合金粉末から粗形材を成形し、この粗形
材に対して必要に応じて部分的な脱ガス処理を行なって
から熱間加工して所定形状の摺動部材を得、その後摺動
面にレーザ等の高密度エネルギを照射して表面層を再溶
融し、冷却凝固させることにより、初晶3iの径が比較
的大径(25〜ioog)でかつ2〜30%の気孔率を
有ダる表面改質層(再溶融処理層)を形成する方法が提
案されている。この方法により得られた摺動部材の表面
改質層は、摺era耗に対して有効な比較的大きい径の
初晶S1が分散しかつ油溜りとして有効に作用させ得る
程度の気孔が存在しているため、耐摩耗性が優れかつ焼
付きも生じにくいものとなっている。
Therefore, in JP-A No. 62-112705, a rough shape is formed from hypereutectic AN-3i alloy powder, the rough shape is partially degassed as necessary, and then heated. A sliding member with a predetermined shape is obtained by machining, and then the sliding surface is irradiated with high-density energy such as a laser to remelt the surface layer, and the diameter of the primary crystal 3i is relatively large by cooling and solidifying it. A method has been proposed for forming a surface modified layer (remelting layer) having a diameter (25 to ioog) and a porosity of 2 to 30%. The surface-modified layer of the sliding member obtained by this method has pores in which relatively large diameter primary crystals S1, which are effective against sliding wear, are dispersed and can act effectively as an oil reservoir. Because of this, it has excellent wear resistance and is less likely to seize.

発明が解決づべき問題点 前述の特開昭62−112705号の方法の場合、Al
合金粉末から粗形材を成形、必要に応じて脱ガス後、熱
間加工してから再溶i!!処理を行なうという複雑な工
程を必要とし、特に粉末からの粗形材の成形に多大な時
間とコストを必要とづる問題がある。またこの方法の場
合、耐摩耗性に優れる合金成分を摺動部材の全体に用い
ているため、コスト的に無駄があるばかりでなく、母材
部分の成分組成の選択の自由度が低く、場合によっては
母材部分に要求される特性を充分に満足させ得ないこと
もあった。
Problems to be Solved by the Invention In the case of the method of JP-A-62-112705 mentioned above, Al
Rough shapes are formed from alloy powder, degassed if necessary, hot worked, and then remelted i! ! There is a problem in that it requires complicated processing steps, and in particular, it requires a great deal of time and cost to form a rough shape from powder. In addition, in this method, alloy components with excellent wear resistance are used throughout the sliding member, which is not only wasteful in terms of cost, but also reduces the degree of freedom in selecting the component composition of the base material. In some cases, the properties required for the base material portion could not be fully satisfied.

この光間は以上の事情を背景としてなされたもので、表
面の耐焼付性、耐摩耗性が優れたAl合金製摺動部材を
低コストで得ることができ、しかも耐摩耗性、耐焼付性
の優れた層を表面のみに形成することによってコスト低
減のみならず母材部分の成分組成の選択の自由度を大き
クシ得るようにしたへ2合金製摺動部材の製造方法を提
供することを目的とするものである。
This light beam was created against the background of the above circumstances, and it is possible to obtain an Al alloy sliding member with excellent surface seizure resistance and wear resistance at a low cost, and also has excellent wear resistance and seizure resistance. To provide a method for manufacturing a sliding member made of He2 alloy, which not only reduces costs but also provides a greater degree of freedom in selecting the composition of the base material by forming a layer with excellent properties only on the surface. This is the purpose.

問題点を解決するための手段 この光間のAl合金製摺動部材の製造方法は、へ2合金
からなる基材の表面層に、Alとの金属間化合物を生成
し得る金属の水素化物を高密度エネルギを用いて合金化
させ、これによって金属間化合物を表面層中に晶出させ
るとともに金属水素化物の分解に伴なう水素ガス光生に
より表面−中の気孔率を2〜30%とすることを特徴と
するものである。
Means for Solving the Problems This method of manufacturing a sliding member made of an optical Al alloy includes adding a metal hydride that can form an intermetallic compound with Al to the surface layer of a base material made of a He2 alloy. Alloying is performed using high-density energy, thereby crystallizing intermetallic compounds in the surface layer, and increasing the porosity between the surface and the inside by 2 to 30% due to hydrogen gas photogeneration accompanying the decomposition of the metal hydride. It is characterized by this.

作   用 ANとの金属間化合物を生成し得る金属の水素化物を、
高密度エネルギを用いてへ1合金基材の表面層に合金さ
せた際には、前記金属水素化物とA!合金基材表面層と
が溶融一体化して合金化されるが、このとき曲記金属水
素化物は金属成分と水素ガスとに分解する。そのうち金
属成分は基材の八βと結合して金属間化合物を生成させ
、水素ガスは溶R層中で気泡となって多数の気孔を生成
させる。したがって合金化処理後の表面層(改質層)は
、Alと曲記金属との金属間化合物が晶出ししかも多数
の気孔が存在した組織となる。
Action A metal hydride that can form an intermetallic compound with AN,
When alloyed with the surface layer of the He1 alloy substrate using high-density energy, the metal hydride and A! The metal hydride is melted and integrated with the surface layer of the alloy base material to form an alloy. At this time, the metal hydride decomposes into a metal component and hydrogen gas. Among them, the metal component combines with the 8β of the base material to generate an intermetallic compound, and the hydrogen gas becomes bubbles in the molten R layer to generate a large number of pores. Therefore, the surface layer (modified layer) after the alloying treatment has a structure in which the intermetallic compound of Al and the curved metal is crystallized and in which a large number of pores are present.

ここで八!と他の金属との金属間化合物は一般にマトリ
ックスであるα−Al相よりも硬質であるため、相手材
との摺vJFRに荷重を支Mlる役割を果たして、耐摩
耗性を確保し、一方気孔は表面に露呈した状態で油溜り
として機能して、耐焼付性を確保する。したがって上述
のような処理が施された表面改質層は、耐摩耗性、耐焼
付性に優れたものとなる。
Eight here! Intermetallic compounds with other metals are generally harder than the matrix α-Al phase, so they play the role of supporting the load during sliding with the mating material, ensuring wear resistance, and at the same time reducing porosity. When exposed on the surface, it functions as an oil reservoir to ensure seizure resistance. Therefore, the surface modified layer subjected to the above-described treatment has excellent wear resistance and seizure resistance.

上述のような金属水素化物の合金化処理によって生成さ
れる表面改質層中の気孔の割合(気孔率)が2%未満で
は気孔による油溜りの効果がほとんど術られす、充分な
耐焼付性が得られない。一方気孔率が30%を越えれば
強度が不充分となり、損傷が生じるおそれがある。した
がって気孔率は2〜30%の範囲内とする必要がある。
If the ratio of pores (porosity) in the surface modified layer produced by the alloying treatment of metal hydrides as described above is less than 2%, the effect of oil accumulation due to pores is almost eliminated, and sufficient seizure resistance is achieved. is not obtained. On the other hand, if the porosity exceeds 30%, the strength will be insufficient and damage may occur. Therefore, the porosity needs to be within the range of 2 to 30%.

なお表面改質層中の気孔率は、合金化を行なう金属水素
化物中の水素含有量や、合金化率(基材表面の溶融Oれ
る部分と合金化材との割合)を変化させることにより調
整覆ることができる。また表面改質層の硬さは、合金化
する金属水素化物の金属成分の種類や合金化率を変える
ことによって調整でき、したがってこれによって基材よ
りも向上させる耐摩耗性の程度を調整することができる
The porosity in the surface modified layer can be determined by changing the hydrogen content in the metal hydride used for alloying and the alloying ratio (the ratio of the melted part of the base material surface to the alloying material). Adjustment can be covered. In addition, the hardness of the surface modified layer can be adjusted by changing the type of metal component of the metal hydride to be alloyed and the alloying ratio, and thus the degree of wear resistance to be improved over that of the base material can be adjusted. Can be done.

なお上述のような合金化51!を理が施8れて侵れた耐
摩耗性、耐焼付性が付与されるのはAl合金基材の表面
層のみであり、その表面−を除いた母1部分は当初のA
2合金基材の成分組成のままである。そしてA2合金基
材は要はAlを主体とするへ2合金であれば良く、任意
の成分組成とすることができるから、母材の成分組成の
自由度は大きい。
In addition, alloying 51 as described above! It is only the surface layer of the Al alloy base material that is given the wear resistance and seizure resistance that has been obtained through processing, and the base 1 part excluding that surface layer is the same as the original A.
The composition of the two alloy base materials remains the same. In short, the A2 alloy base material only needs to be an A2 alloy mainly composed of Al, and can have any composition, so there is a large degree of freedom in composition of the base material.

弁明の実施のための具体的な説明 この発明の方法を実施するにあたっては一1へ2合金基
材における相手材と摺動する部位、すなわち耐摩耗性、
耐焼付性を付与すべき部分の表面に、前述のよなう金属
水素化物の粉末を予め配置しておき、その上からレーザ
、TIGアーク、プラズマアーク、電子ビームなどの高
密度エネルギを印加して金属水素化物粉末とその下側の
基材の表面層を同時に溶融させれば良い。金属水素化物
粉末を基材上に配置する方法としては、直接その粉末を
載置しても、あるいはスラリー状として塗布しても、さ
らには適当なバインダを用いて基材上に固もさせても良
い。また場合によっては、基材上に金属水素化物の粉末
を供給しながら高密度エネルギを印加しても良い。
Specific explanation for implementation of defense In implementing the method of this invention, 1. 2. Parts of the alloy base material that slide against the mating material, that is, wear resistance
Metal hydride powder as described above is placed in advance on the surface of the part to which seizure resistance is to be imparted, and high-density energy such as a laser, TIG arc, plasma arc, or electron beam is applied from above. The metal hydride powder and the surface layer of the base material below it may be melted simultaneously. The metal hydride powder can be placed on the substrate by placing it directly, by applying it as a slurry, or by hardening it onto the substrate using a suitable binder. Also good. In some cases, high-density energy may be applied while supplying metal hydride powder onto the base material.

金属水素化物を構成づる金属成分は、要はAlとの硬質
な金属間化合物を生成し得るものであれば良く、例えば
M(]、7 i、Nb、v、Zrなどを用いることがで
きる。ここて、Mgの水素化物を合金化した場合は金属
間化合物としてM(J2 Al3が晶出し、またTiの
水素化物を用いた場合はTiAf3が、zrの水素化物
を用いた場合はZrAJ’3がそれぞれ晶出量る。これ
らの金属間化合物のうち、TlAl3、zrAi!3は
M92A&3よりも硬質であるから、表面改質層の硬さ
を充分に高めて耐摩耗性を充分に向上させるためには、
Tiの水素化物もしくはZrの水素化物を用いることが
望ましい。
The metal component constituting the metal hydride may be any metal as long as it can form a hard intermetallic compound with Al, and for example, M(], 7i, Nb, v, Zr, etc. can be used. Here, when a hydride of Mg is alloyed, M(J2Al3 is crystallized as an intermetallic compound, when a hydride of Ti is used, TiAf3 is formed, and when a hydride of zr is used, ZrAJ'3 is formed. Of these intermetallic compounds, TlAl3 and zrAi!3 are harder than M92A&3, so in order to sufficiently increase the hardness of the surface modified layer and sufficiently improve wear resistance. for,
It is desirable to use Ti hydride or Zr hydride.

また金属水素化物それ自体の水素含有!(J常は水木固
溶吊)は調整可能であり、水素含有量の多い金属水素化
物を用いれば気孔率が増大する反面金属間化合物の晶出
量が減少(但し合金化率が同じであることをIO提とす
る〉し、水素含有量が少ない金属水素化物を用いれば金
属間化合物の晶出量が増す反面、気孔率が減少づる傾向
を示)。
Also, the metal hydride itself contains hydrogen! (J is usually Mizuki solid solution suspension) can be adjusted, and if a metal hydride with a high hydrogen content is used, the porosity will increase, but the amount of crystallization of intermetallic compounds will decrease (however, the alloying rate remains the same) However, if a metal hydride with a low hydrogen content is used, the amount of intermetallic compounds crystallized increases, but the porosity tends to decrease).

したがってA2合金基材ぞのものの耐1?耗性が比較的
良好な場合は水素含有量の多い金属水素化物を用いて気
孔率を増大させることにより、主として耐焼付性を向上
させ、逆にAl合金基材そのものの耐摩耗性が低い場合
は水素含有量の少ない金属水素化物を用いて金属rJ化
合物品出量を多くすることにより、主として耐摩耗性を
向上させることが望ましい。
Therefore, the resistance of the A2 alloy base material to 1? When the wear resistance is relatively good, the seizure resistance is mainly improved by increasing the porosity using a metal hydride with a high hydrogen content, and conversely, when the wear resistance of the Al alloy base material itself is low. It is desirable to mainly improve wear resistance by increasing the amount of metal rJ compound produced by using a metal hydride with a low hydrogen content.

実施例 [実施例11 第1図に示すようにJIS  A02BからなるAl合
金基材1の表面の10X3011#Iの領域に、水素固
溶15cc/100 gの水素化チタンの粉末0,3g
をポリビニルアルコールをバインダとして同量させ、紛
未固考層2を形成した。次いでその粉末固@明2の上か
らTIGトーチ3を用いてアーク4を印力Oして、粉末
固@層2とその下側のへ2合金塁祠1の表面層とを同時
に溶融させる合金化処理を行ない、第3図に示1ような
合金化層(表面改質層)5を形成した。このとぎのT 
I G 7−り印すロ条ftは次の通りである。
Example [Example 11 As shown in Fig. 1, 0.3 g of titanium hydride powder with hydrogen solid solution of 15 cc/100 g was added to the area of 10×3011 #I on the surface of the Al alloy base material 1 made of JIS A02B.
An unmixed layer 2 was formed by adding the same amount of polyvinyl alcohol as a binder. Next, an arc 4 is applied from above the powder layer 2 using a TIG torch 3 to simultaneously melt the powder layer 2 and the surface layer of the alloy layer 1 below it. A chemical treatment was carried out to form an alloyed layer (surface modified layer) 5 as shown in FIG. This Togi no T
IG 7-The markings ft are as follows.

出  カニピーク電流150A ベース電流120A (ピーク電流とベース電流の印加 時間は各0.5秒) トーチ送り速度:  1.5am/S シールドガス流Φ:155/l1tI 電   極   径  : 448闇φ電極−試片間距
離: 2關 このようにして形成された合金化層(表面改質層)の組
織を調べたところ、面積率で約30%のAi’3T i
金属間化合物(硬さHv 710)が晶出しており、ま
た気孔率が約8%であることが判明した。
Output Peak current 150A Base current 120A (application time of peak current and base current is 0.5 seconds each) Torch feed speed: 1.5am/S Shield gas flow Φ: 155/l1tI Electrode diameter: 448 dark φ electrode - trial Distance between pieces: 2. When the structure of the alloyed layer (surface modified layer) formed in this way was investigated, it was found that the area ratio of Ai'3T i was about 30%.
It was found that intermetallic compounds (hardness Hv 710) were crystallized and the porosity was about 8%.

[実施例21 水素化チタン粉末として水素固溶量が Icc/100 gのものを用いた点以外は実施例1と
同様にして1’ I Gアークによる合金化層J!を行
ない、合金化層(表面改質層)を形成した。
[Example 21 Alloyed layer J! by 1' IG arc was prepared in the same manner as in Example 1 except that titanium hydride powder having a hydrogen solid solution amount of Icc/100 g was used. was carried out to form an alloyed layer (surface modified layer).

この合金化層の組織を調べたところ、 Ai’3Ti金属間化合物の晶出量は実施例1の場合と
同様に約30%であり、また気孔率は約3%であること
が判明した。
When the structure of this alloyed layer was examined, it was found that the amount of Ai'3Ti intermetallic compound crystallized was about 30% as in Example 1, and the porosity was about 3%.

[性能評価試験] 実施例1、実施例2と同じ条件でAl合金基材の表面(
平面)における幅7111#Iの環状の領域(内縁の半
径8市、外縁の半径15制)に合金化層を形成し、表面
を仕上加工した。これらの試料からそれぞれ30tnr
t X 30HHx厚さ5rI#lの大きさの試験片を
切出し、機械試験所式摩擦摩耗試験機により焼付き限度
試験を行なった。このとき、相手側試験片としては5C
r420(JIS  G4104)に浸炭焼入れを施し
た円筒試験片(内径20rR11L s外径25.6m
s、長さ16a#I)を用い、試験条件を次のように設
定した。
[Performance evaluation test] The surface of the Al alloy base material (
An alloyed layer was formed in an annular region with a width of 7111 #I (inner edge radius: 8 mm, outer edge radius: 15 mm) on the flat surface), and the surface was finished. 30 tnr each from these samples.
A test piece having a size of t x 30 HH x 5 rI #l was cut out and subjected to a seizure limit test using a mechanical testing laboratory type friction and wear tester. At this time, the mating test piece was 5C.
Cylindrical test piece made of r420 (JIS G4104) carburized and quenched (inner diameter 20rR11L souter diameter 25.6m)
s, length 16a#I), and the test conditions were set as follows.

づべり速度:  2.4m/秒 Al  滑 油:低粘度オイル 油  温  :60℃ この焼付き限度試験は、面圧を2分毎に12.5Aig
/C−ずつB大250に9/cjiまで上?8せ、焼付
きが生じる最小n1(焼付面圧)を調べた。
Slip speed: 2.4 m/sec Al Lubricating oil: Low viscosity oil Temperature: 60°C In this seizure limit test, the surface pressure was increased to 12.5 Aig every 2 minutes.
/C- each B large 250 up to 9/cji? 8, the minimum n1 (seizing surface pressure) at which seizure occurs was investigated.

その枯采、実施例1の条f)で形成した合金化層、実施
例2の条1′1て形成した合金化層のいずれも焼付面圧
が250Kfl/′cti以」ニであることがずり明し
た。
In this case, both the alloyed layer formed in section f) of Example 1 and the alloyed layer formed in section 1'1 of Example 2 have a baking surface pressure of 250 Kfl/'cti or less. It dawned on me.

比較のため、無処理材(合金化層なし)についても同じ
焼付き限度試験を11なったが、この場合は焼付面圧が
150Kg/’ ciであり、したがって実施例1、実
施例2により形成した合金化層は耐焼付性が著しく向上
していることが明らかである。
For comparison, the same seizing limit test was conducted on untreated material (without alloyed layer), but in this case, the seizing surface pressure was 150 kg/'ci, so the material formed according to Examples 1 and 2 It is clear that the alloyed layer has significantly improved seizure resistance.

光間の効果 この発明の方法により得られた摺動部材は、合金化処理
により改質された表面層中の気孔が油溜りとして機能し
て優れた耐焼付性を承りとともに、その改質8れた表面
層中に硬質な金属間化合物が晶出しているため高い耐摩
耗性を示し、したがりてこの発明の方法によれば耐焼付
性、耐摩耗性の優れた摺動部材を得ることができる。ま
たこの発明の方法によれば、相手Iと摺動する部分の表
面層のみに耐摩耗性の優れた層を形成覆るため、部材全
体を耐摩耗性材料で形成する場合と比較してコスト而で
有利となり、また母材の成分組成の選択の自由度が高い
から、耐摩耗性以外の母材に要求される特性を容易に満
足させることができる。
The sliding member obtained by the method of the present invention has excellent seizure resistance as the pores in the surface layer modified by the alloying treatment function as oil reservoirs, and the modified 8 Since hard intermetallic compounds are crystallized in the surface layer, the sliding member exhibits high wear resistance, and therefore, according to the method of the present invention, a sliding member with excellent seizure resistance and wear resistance can be obtained. Can be done. In addition, according to the method of the present invention, since a layer with excellent wear resistance is formed and covered only on the surface layer of the part that slides with the counterpart I, the cost is lower than when the entire member is made of a wear-resistant material. In addition, since there is a high degree of freedom in selecting the component composition of the base material, properties required for the base material other than wear resistance can be easily satisfied.

さらにこの光間の方法によれば、合金化さゼる金属水素
化物中の水素含有のや金属成分元素の種類、あるいは合
金化率を調ツすることによって、表面層の気孔卒ヤ晶出
する金属間化合物の拳、種類を容易に制Wすることがで
き、したがって要求特性に応じた適切な耐焼付性、耐摩
耗性を付与することができる。
Furthermore, according to this optical method, by adjusting the type of hydrogen-containing metal component element or alloying ratio in the alloyed metal hydride, pores in the surface layer can be crystallized. The nature and type of intermetallic compound can be easily controlled, and therefore appropriate seizure resistance and wear resistance can be imparted according to the required properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図まではこの発明の方法を実施している
状況の一例を段階的に示す略解的な断面、図である。 1・・・A2合金基材、 2・・・水素化チタン粉末固
考層、 5・・・合金化−(表面改賞層)。 出願人  トヨタ自初申株式会社 代理人  弁理士 尊 1)武久 (ほか1名)
1 to 3 are schematic cross-sections and diagrams showing step-by-step an example of a situation in which the method of the present invention is implemented. DESCRIPTION OF SYMBOLS 1... A2 alloy base material, 2... Titanium hydride powder fixed layer, 5... Alloying (surface modification layer). Applicant Toyota Jishushushin Co., Ltd. Agent Patent Attorney Takashi 1) Takehisa (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims]  Al合金からなる基材の表面層に、Alとの金属間化
合物を生成し得る金属の水素化物を高密度エネルギを用
いて合金化させ、これによって金属間化合物を表面層中
に晶出させるとともに金属水素化物の分解に伴なう水素
ガス発生により表面層中の気孔率を2〜30%とするこ
とを特徴とするAl合金製摺動部材の製造方法。
A metal hydride that can form an intermetallic compound with Al is alloyed on the surface layer of a base material made of an Al alloy using high-density energy, thereby crystallizing the intermetallic compound in the surface layer. A method for manufacturing an Al alloy sliding member, characterized in that the porosity in the surface layer is set to 2 to 30% by hydrogen gas generation accompanying the decomposition of metal hydride.
JP2716988A 1988-02-08 1988-02-08 Production of sliding member made of al alloy Pending JPH01201489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2716988A JPH01201489A (en) 1988-02-08 1988-02-08 Production of sliding member made of al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2716988A JPH01201489A (en) 1988-02-08 1988-02-08 Production of sliding member made of al alloy

Publications (1)

Publication Number Publication Date
JPH01201489A true JPH01201489A (en) 1989-08-14

Family

ID=12213558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2716988A Pending JPH01201489A (en) 1988-02-08 1988-02-08 Production of sliding member made of al alloy

Country Status (1)

Country Link
JP (1) JPH01201489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526200A (en) * 2013-10-08 2014-01-22 山东电力工程咨询院有限公司 Method for preparing Fe-Al intermetallic compound coat on low-carbon steel substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526200A (en) * 2013-10-08 2014-01-22 山东电力工程咨询院有限公司 Method for preparing Fe-Al intermetallic compound coat on low-carbon steel substrate

Similar Documents

Publication Publication Date Title
US4902359A (en) Wear-resistant titanium or titanium-alloy member and a method for manufacturing the same
JP3148340B2 (en) High-toughness chromium-based alloy for hard facing, powder thereof, and engine valve for automobile coated with the alloy
US5792289A (en) Titanium alloy products and methods for their production
DE1817321A1 (en) Piston ring or cylinder sealing ring
JPH0525655A (en) Method for hardening surface of aluminum base metal and surface hardened aluminum base member
US5911949A (en) Abrasion resistant copper alloy
GB2155495A (en) Cast iron article surface hardened by plasma arc deposition
JP2019500491A (en) Laminate construction of metal matrix composites in situ
IE47334B1 (en) Sintered metal articles and processes for their manufacture
JP3614430B2 (en) Aluminide / silicide coatings, coating compositions, coating methods and improved coating products
DE102006036101A1 (en) Production process for valve components comprises preparing coating substance, partly melting it, putting valve component in contact with it and cooling
US4092158A (en) Spray powder for the manufacture of layers having high resistance to wear and burn traces
JPH01201489A (en) Production of sliding member made of al alloy
US3947269A (en) Boron-hardened tungsten facing alloy
US3809546A (en) Method of making a hard alloy matrix containing a tungsten-boron phase
US5139585A (en) Structural member made of titanium alloy having embedded beta phase of different densities and hard metals
CA1045916A (en) Corrosion protection methods for refractory metal pieces
JPH0480991B2 (en)
JPH01100298A (en) Formation of anodic oxide film on aluminum alloy casting
EP0494977A1 (en) Method of modifying the surface of a substrate.
JPH01255677A (en) Production of sliding member
US11773494B2 (en) Modified oxide surface treatment layer for alloys and corresponding methods
JPS60116761A (en) Sliding member made of cast iron and its manufacture
JP2930497B2 (en) Method of forming high temperature corrosion resistant alloy spray coating
JPH0247278A (en) Wear resistant ti-based member