JPH01201165A - Flow observation device - Google Patents

Flow observation device

Info

Publication number
JPH01201165A
JPH01201165A JP2379888A JP2379888A JPH01201165A JP H01201165 A JPH01201165 A JP H01201165A JP 2379888 A JP2379888 A JP 2379888A JP 2379888 A JP2379888 A JP 2379888A JP H01201165 A JPH01201165 A JP H01201165A
Authority
JP
Japan
Prior art keywords
flow
flow velocity
screen mesh
temperature
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2379888A
Other languages
Japanese (ja)
Inventor
Tamotsu Sano
佐野 保
Yoichiro Iritani
陽一郎 入谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2379888A priority Critical patent/JPH01201165A/en
Publication of JPH01201165A publication Critical patent/JPH01201165A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the flow phenomenon and flow velocity of one section by providing a mesh screen in an observation part and applying a voltage for heat generation and observing variation in temperature by the cooling effect of a flow through an external thermoviewer. CONSTITUTION:The voltage is applied between electrodes 6 on both ends of the screen mesh 5 by a power source 7 to heat the screen mesh 5 uniformly. The screen mesh 5 is provided in the observation part along the flow and becomes low in temperature by being cooled where the flow velocity is fast and high where the flow velocity is slow, which is observed by the infrared thermoviewer 9 through the infrared transmissive window 8 to measure the temperature distribution and flow velocity distribution. Further, the relation between the flow velocity and temperature is calibrated to know the distribution of the absolute value of the flow velocity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流体力学の分野における流動現象を観察・測
定するために用いる流動観測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow observation device used for observing and measuring flow phenomena in the field of fluid mechanics.

〔従来の技術〕[Conventional technology]

流動現象を観測する方法は多数あるが、はとんどの場合
「トレーサー」法と称するもので、流れの中に煙やイン
クなどのトレーサーを混入し、これを観測するものであ
る。
There are many methods for observing flow phenomena, but the most common is the so-called ``tracer'' method, in which tracers such as smoke or ink are mixed into the flow and then observed.

4は観測方向を示し、10は流れの入口部分に設けた煙
の発生源である。流体の流動現象の観測にあたって、流
体と共に動きかつ目視可能な煙の動きを観測するもので
ある。
Reference numeral 4 indicates the observation direction, and reference numeral 10 indicates a smoke generation source provided at the inlet of the flow. In observing fluid flow phenomena, we observe the movement of smoke that moves with the fluid and is visible to the naked eye.

〔発明が解決しようとする昧題〕[The problem that the invention attempts to solve]

従来の技術においては次のような問題点があった。 The conventional technology has the following problems.

(1)  観測方向から見て、煙などのトレーサーの厚
さ方向の濃さの総和が観測されるので、1断面の流動状
況だけをピックアップして観測することができない。
(1) Viewed from the observation direction, the total density of tracers such as smoke in the thickness direction is observed, so it is not possible to pick up and observe the flow situation of only one cross section.

(2)トレーサーの濃淡や移動状況を観測者の主観によ
らないで記録あるいは表示する適切な方法がないので、
観測は観測者の主観を介して行われており、客観性に欠
ける。
(2) There is no appropriate method to record or display the shading and movement status of the tracer without relying on the subjectivity of the observer.
Observation is performed through the subjectivity of the observer and lacks objectivity.

(3)トレーサーの観測だけでは流速についての情報は
得られない。
(3) Information about flow velocity cannot be obtained from tracer observations alone.

本発明は、1断面をピックアップして観測でき、かつ流
動状況を客観的に観測でき、さらに流速の測定も可能な
流動観測装置を提供しようとするものである。
The present invention aims to provide a flow observation device that can pick up and observe one cross section, objectively observe the flow situation, and also measure the flow velocity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記課題を解決したものであって、観測部の中
に流れに沿って設けたスクリーンメツシュ、同スクリー
ンメツシュ両端に設けられた電極、同電極間に電圧を付
加する電源、および同スクリーンメツシュを観測部の外
から観測する赤外線サーモビュアを具備したことを特徴
とする流動観測装置で゛ある。
The present invention has solved the above problems, and includes a screen mesh provided along the flow in the observation section, electrodes provided at both ends of the screen mesh, a power source for applying voltage between the electrodes, and This is a flow observation device characterized by being equipped with an infrared thermoviewer for observing the screen mesh from outside the observation section.

〔作用〕[Effect]

スクリーンメツシュの両端の電極間に電圧をかけること
によってスクリーンメツシュバー様発熱する。これを流
れ圧沿って観測部の中に設けたことによって、流速の速
い所では冷やされて低温になシ、流速の遅い所では高温
となる。
A screen mesh bar generates heat by applying a voltage between the electrodes at both ends of the screen mesh. By installing this in the observation section along the flow pressure, areas where the flow velocity is high will be cooled down to a low temperature, and areas where the flow velocity is slow will be high temperature.

これを赤外線サーモビュアによって観測すれば流速分布
が観測できる。スクリーンメツシュは流れに沿って設け
であるのでスクリーンメツシュの位置における流れの断
面の流動状況が観測できる。
If this is observed using an infrared thermoviewer, the flow velocity distribution can be observed. Since the screen mesh is provided along the flow, the flow condition in the cross section of the flow at the position of the screen mesh can be observed.

〔実施例〕〔Example〕

4は観測方向、5は観測部3の中に流れの方向に平行に
設けられたスクリーンメツシュ、6はスクリーンメツシ
ュ5の両端に設けられた電極、7は同電極に接続されて
いる電源、8は観測部3の前面に設けられた赤外線透過
窓、9は赤外線透過窓を経て観測部の内部のスクリーン
メソシュ5を観察するための赤外線サーモビュアである
。スクリーンメツシュ5は5〜20メツシュ程度のもの
で、表面はふく射率を1にするために黒色にしである。
4 is the observation direction, 5 is a screen mesh provided in the observation section 3 parallel to the flow direction, 6 is an electrode provided at both ends of the screen mesh 5, and 7 is a power source connected to the electrode. , 8 is an infrared transmission window provided in the front of the observation section 3, and 9 is an infrared thermoviewer for observing the screen mesh 5 inside the observation section through the infrared transmission window. The screen mesh 5 has about 5 to 20 meshes, and its surface is black in order to make the radiation rate 1.

本装置においては、スクリーンメツシュ5の両端の電極
6に電源7によって電圧をかけ、スクリーンメツシュを
一様発熱させる。これを赤外線透過窓8を通して赤外線
サーモビュア9で東 観測する。スクリーンメツシュは一様熱流速の発熱体で
あるから流速の大きい所では良く冷えて温度が低くなる
。逆に流速が小さい所では温度が高くなる。したがって
温度分布を測定すれば流速分布がわかる。予め流速と温
度との関係を校正しておけば、流速の絶対値の分布を知
ることができる。またステップ状またはパルス状に電圧
をかければ、温度分布の時間的変遷によって流動状況を
把握することができる。前述の流速分布データと対照す
ればより正確な観測を行うことができる。
In this device, a voltage is applied to the electrodes 6 at both ends of the screen mesh 5 by a power source 7 to cause the screen mesh to generate heat uniformly. This is observed to the east by an infrared thermoviewer 9 through an infrared transmission window 8. Since the screen mesh is a heating element with a uniform heat flow rate, it cools well and has a low temperature in areas where the flow rate is high. Conversely, where the flow velocity is low, the temperature increases. Therefore, by measuring the temperature distribution, the flow velocity distribution can be determined. By calibrating the relationship between flow velocity and temperature in advance, it is possible to know the distribution of absolute values of flow velocity. Furthermore, by applying a voltage stepwise or in a pulsed manner, it is possible to grasp the flow situation based on the temporal change in temperature distribution. More accurate observations can be made by comparing with the flow velocity distribution data described above.

〔発明の効果〕〔Effect of the invention〕

本発明の観測装置においては、観測部の中に流れに沿っ
てメツシュスクリーンを設は電圧をかけて一様発熱させ
、流れによる冷却効果による温度の高低を外部からサー
モビュアによって観測するようにしたことによって、流
れ洗沿った1断面の流動現象を客観的に観測でき、また
あらかじめ流速とメツシュスクリーンの温度を校正して
おくことによって流速の測定も可能である。
In the observation device of the present invention, a mesh screen is installed inside the observation section along the flow, and a voltage is applied to uniformly generate heat, and the temperature rise and fall due to the cooling effect of the flow is observed from the outside using a thermoviewer. By doing this, it is possible to objectively observe the flow phenomenon in one cross section along the flow, and it is also possible to measure the flow velocity by calibrating the flow velocity and mesh screen temperature in advance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の斜視図、第2図は従来技術
の一例の斜視図である。 1・・・流れの流入方向、2・・・流れの流出方向3・
・・観測部、4・・・観測方向、5・・・スクリーンメ
ツシュ、6・・・電極、7・・・電源、8・・・赤外線
透過窓、9・・・赤外線サーモビュア、10・・・煙の
発生源。 代理人 弁理士  坂 間    暁     外2名
」IA 、$2TA
FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is a perspective view of an example of the prior art. 1...Inflow direction of flow, 2...Outflow direction of flow3.
... Observation section, 4... Observation direction, 5... Screen mesh, 6... Electrode, 7... Power supply, 8... Infrared transmission window, 9... Infrared thermoviewer, 10... - Source of smoke. Agent: Patent attorney Akira Sakama and 2 others” IA, $2TA

Claims (1)

【特許請求の範囲】[Claims] 観測部の中に流れに沿つて設けたスクリーンメッシュ、
同スクリーンメッシュ両端に設けられた電極、同電極間
に電圧を付加する電源、および同スクリーンメッシュを
観測部の外から観測する赤外線サーモビュアを具備した
ことを特徴とする流動観測装置。
A screen mesh installed along the flow inside the observation section,
A flow observation device comprising electrodes provided at both ends of the screen mesh, a power source for applying voltage between the electrodes, and an infrared thermoviewer for observing the screen mesh from outside the observation section.
JP2379888A 1988-02-05 1988-02-05 Flow observation device Pending JPH01201165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2379888A JPH01201165A (en) 1988-02-05 1988-02-05 Flow observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2379888A JPH01201165A (en) 1988-02-05 1988-02-05 Flow observation device

Publications (1)

Publication Number Publication Date
JPH01201165A true JPH01201165A (en) 1989-08-14

Family

ID=12120342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2379888A Pending JPH01201165A (en) 1988-02-05 1988-02-05 Flow observation device

Country Status (1)

Country Link
JP (1) JPH01201165A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6732582B2 (en) * 2002-08-23 2004-05-11 General Electric Company Method for quantifying film hole flow rates for film-cooled parts
DE102005031845A1 (en) * 2005-07-06 2007-01-11 Behr Gmbh & Co. Kg Measurement station e.g. for motor vehicle air nozzle, has projection screen and thermograhic camera with projection screen arranged perpendicularly to axis of camera of thermographic camera
US7651261B2 (en) 2007-07-10 2010-01-26 General Electric Company System and method for thermal inspection of parts
US7909507B2 (en) 2008-04-11 2011-03-22 General Electric Company Thermal inspection system and method
CN104569486A (en) * 2015-01-16 2015-04-29 东南大学 Hot air speed sensing system composed of infrared image sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6732582B2 (en) * 2002-08-23 2004-05-11 General Electric Company Method for quantifying film hole flow rates for film-cooled parts
DE102005031845A1 (en) * 2005-07-06 2007-01-11 Behr Gmbh & Co. Kg Measurement station e.g. for motor vehicle air nozzle, has projection screen and thermograhic camera with projection screen arranged perpendicularly to axis of camera of thermographic camera
US7651261B2 (en) 2007-07-10 2010-01-26 General Electric Company System and method for thermal inspection of parts
US7909507B2 (en) 2008-04-11 2011-03-22 General Electric Company Thermal inspection system and method
CN104569486A (en) * 2015-01-16 2015-04-29 东南大学 Hot air speed sensing system composed of infrared image sensor

Similar Documents

Publication Publication Date Title
US20170188486A1 (en) Rack airflow monitoring system and method
Stasiek Thermochromic liquid crystals and true colour image processing in heat transfer and fluid-flow research
JPH01201165A (en) Flow observation device
Handford et al. The pulsed-wire anemometer
Lin et al. Experimental study of unstable mixed convection of air in a bottom heated horizontal rectangular duct
Moss et al. The effects of turbulence length scale on heat transfer
DE102005053096B4 (en) Method for calibrating a calorimetric flow meter and corresponding device
GB1515611A (en) Electric circuits
US2814731A (en) Measuring apparatus
Wei et al. Study on the influence of the response characteristics of a temperature sensor on the measurement accuracy of a water-absorption-based high-energy laser energy meter
MORROW The evaluation and use of hot-wire and hot-film anemometers in liquids
Neely Mapping temperature distributions in flows using radiating high-porosity meshes
Allan et al. Post-arc temperature decay
Spinosa et al. Application of Liquid Crystal Thermography for the investigation of the near-wall coherent structures in a turbulent boundary layer
Smith et al. Liquid crystal thermography for aerodynamic heating measurements in short duration hypersonic facilities
Uz Analytical and numerical sensitivity analysis of constant temperature hot-wire anemometre
Nakamura et al. Visualization of spatio-temporal heat transfer to a turbulent flow
US3316764A (en) Radiation pyrometer and temperature standard therefor
Matsuda et al. A new thermochromic liquid crystal temperature identification technique using color space interpolations and its application to film cooling effectiveness measurements
Disimile et al. Full field surface shear stress measurements using liquid crystals
SU435535A1 (en) DEVICE FOR MODELING FLAT FLOWS
US1321546A (en) Hammer meg
Parro Alonso LHCb VELO Bandgap Temperature Calibration
JPH0621804B2 (en) Measuring method of flow velocity distribution of fluid
JP3163558B2 (en) Flow velocity detector