JPH01201067A - Wear-resistant composite material - Google Patents

Wear-resistant composite material

Info

Publication number
JPH01201067A
JPH01201067A JP63025924A JP2592488A JPH01201067A JP H01201067 A JPH01201067 A JP H01201067A JP 63025924 A JP63025924 A JP 63025924A JP 2592488 A JP2592488 A JP 2592488A JP H01201067 A JPH01201067 A JP H01201067A
Authority
JP
Japan
Prior art keywords
sic
particles
composite material
wear
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63025924A
Other languages
Japanese (ja)
Inventor
Shigetaka Wada
重孝 和田
Naoyoshi Watanabe
渡辺 直義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP63025924A priority Critical patent/JPH01201067A/en
Publication of JPH01201067A publication Critical patent/JPH01201067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve erosion resistance and wear characteristics in a composite material comprising Al2O3 as a matrix and SiC particles a dispersible material, by specifying particle size of SiC particles and the amount of the particles added and making a specific high density. CONSTITUTION:This wear-resistant composite material consists of 20-50vol.% SiC particles having 0.5-2.0mu average particle diameter and the rest of Al2O3 and has >=98% relative density. The composite material is obtained by blending Al2O3 powder with SiC powder and sintering the mixture. In the case, when the average particle diameter of SiC is <0.5mu, a composite material containing 50vol.% SiC can not be processed to have the above-mentioned density even by hot press, etc. and when >2.0mu, the composite material is slightly sintered in a dense state. When the content of SiC is <20vol.%, improvement in erosion resistance and wear characteristics is insufficient and when >50vol.%, a dense sintered material is not obtained. When relative density is <98%, hardness is insufficient and erosion resistance is not obtained even if SiC content is 40-50vol.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐摩耗性材料、特に、固体微粒子の衝突によ
る摩耗(エロージョン摩耗)に対して優れたセラミック
ス複合体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to wear-resistant materials, particularly to ceramic composites that are excellent against wear caused by collisions of solid particles (erosion wear).

〔従来の技術〕[Conventional technology]

タービンのブレードのような高速回転体は、大気中の浮
遊粉塵であるSiO□微粒子によって摩耗する。また、
石炭粉塵による摩耗により、石炭使用プラントは大きな
障害を受けている。このようなエロージョン摩耗に対し
て優れた材料は、硬いことが望ましいことは知られてい
る。硬い材料の中でもセラミックスとしては、Bs C
,S i C1A2□O,、Si、N4等があり、Ba
C,SiCとは特に硬い材料として、Alto3は硬さ
が比較的大きいと同時に低価格の材料として知られてい
る。これらの材料の耐摩耗性は、通常、摩耗した材料の
体積と衝突させた微粒子(砥粒)の体積の比(これを摩
耗率(c這/ a+7 )という。)で評価される。
High-speed rotating bodies such as turbine blades are worn out by SiO□ fine particles, which are airborne dust particles. Also,
Coal-using plants are severely hampered by wear caused by coal dust. It is known that it is desirable that a material that is excellent against such erosion wear be hard. Among the hard materials, Bs C is one of the ceramics.
, S i C1A2□O, , Si, N4, etc., and Ba
C and SiC are particularly hard materials, and Alto3 is known as a material with relatively high hardness and low cost. The wear resistance of these materials is usually evaluated by the ratio of the volume of the worn material to the volume of collided fine particles (abrasive grains) (this is called the wear rate (c/a+7)).

上記のセラミックスについて、衝突させる砥粒をSiC
とし、その大きさを約500μm、砥粒の衝突速度を2
50〜300m/秒、衝突角度を80°で試験したとこ
ろ、その摩耗率はB4C:27X 10−’cuf/c
nf、 S ic : 18X10−’cal/ci、
 All Owl  : 39〜45 X I O−’
cU/crA、 Sl 3 N4  : 27〜59 
X 10−’Cnl/c+11であった。
Regarding the above ceramics, the abrasive grains to be collided with SiC
The size of the abrasive grains is approximately 500 μm, and the collision speed of the abrasive grains is 2.
When tested at 50 to 300 m/sec and a collision angle of 80°, the wear rate was B4C: 27X 10-'cuf/c.
nf, Sic: 18X10-'cal/ci,
All Owl: 39-45 XIO-'
cU/crA, Sl3N4: 27-59
X 10-'Cnl/c+11.

これらの摩耗率は多くのセラミックス材料の中では優れ
たものであるが、粉塵排気装置などの高速回転体では、
より摩耗率の少ない材料が望まれている。
These wear rates are excellent among many ceramic materials, but in high-speed rotating objects such as dust exhaust equipment,
Materials with lower wear rates are desired.

従来、耐摩耗性を向上させた材料として、Af。Conventionally, Af has been used as a material with improved wear resistance.

03をマトリックスとし、SiC粒子を分散材とした複
合体が知られている(中手 敦、新原皓−1平井敏雄、
Al2O2sic?1合材料の微細構造と機械的性質、
窯業協会誌94 (8L 767−772.1986)
。しかし、この複合体は、SiC粒子として約2〜8μ
mの大きな粒子を用いており、その最大添加量は約30
体積%であり、耐エロージヨン摩耗の問題を解決してい
ない。
A composite using 03 as a matrix and SiC particles as a dispersion material is known (Atsushi Nakate, Akira Shinhara-1 Toshio Hirai,
Al2O2sic? 1. Microstructure and mechanical properties of composite materials,
Ceramics Association Magazine 94 (8L 767-772.1986)
. However, this composite is approximately 2-8μ as SiC particles.
We use large particles with a maximum diameter of approximately 30 m.
% by volume, and does not solve the problem of anti-erosion wear.

〔第1発明の説明〕 本第1発明(特許請求の範囲に記載された発明)は、固
体微粒子の衝突によるエロージョン摩耗等の摩耗に対し
て優れた実用材料を提供しようとするものである。
[Description of the first invention] The first invention (the invention described in the claims) is intended to provide a practical material that is excellent against wear such as erosion wear caused by collision of solid particles.

本第1発明の耐摩耗性複合体は、平均粒径0.5〜2.
0μmの炭化珪素粒子20〜50体積%と、残部アルミ
ナとからなり、その相対密度が98%以上であることを
特徴とするものである。
The wear-resistant composite of the first invention has an average particle size of 0.5 to 2.
It consists of 20 to 50 volume % of silicon carbide particles of 0 μm and the balance is alumina, and is characterized by having a relative density of 98% or more.

本第1発明の複合体は、硬さが大きいと共に靭性にも優
れており、耐エロージヨン摩耗性等の耐摩耗性に優れて
いる。また、本第1発明の複合体は、エロージョン摩耗
のみならず、摩擦7耗や研削的摩耗にも優れるものであ
る。このような優れた特性を有する本第1発明の複合体
は、タービンブレード等の高速回転体、あるいは石炭使
用プラントの材料等に利用することができる。
The composite of the first invention has high hardness and excellent toughness, and has excellent wear resistance such as erosion wear resistance. Furthermore, the composite of the first invention is excellent not only in erosion wear but also in friction wear and grinding wear. The composite of the first invention having such excellent properties can be used as a material for high-speed rotating bodies such as turbine blades or coal-using plants.

〔第2発明の説明〕 以下、本第1発明を具体的にした発明(本第2発明とす
る。)を説明する。
[Description of the Second Invention] Hereinafter, an invention that embodies the first invention (referred to as the second invention) will be described.

本第2発明にかかる複合体は、炭化珪素(SiC)粒子
とアルミナ(Affi203)とからなるものであり、
望ましい形態は、A2□0.中にSIC粒子が分散して
いる状態である。このSiC粒子の分散が均一であるほ
ど、複合体の耐摩耗性が向上する。
The composite according to the second invention is composed of silicon carbide (SiC) particles and alumina (Affi203),
A desirable form is A2□0. In this state, SIC particles are dispersed inside. The more uniform the dispersion of the SiC particles, the better the wear resistance of the composite.

上記SiC粒子の平均粒径は、0.5〜2.0μmの範
囲から選択する。この平均粒径を上記範囲にする理由は
、以下に示すように、本発明の複合体を製造する際の問
題のためである。
The average particle diameter of the SiC particles is selected from the range of 0.5 to 2.0 μm. The reason why this average particle size is set in the above range is due to problems in manufacturing the composite of the present invention, as described below.

本発明の複合体は、AlzOz粉末とSiC粉末とを混
合し、この混合物を焼結することにより製造することが
できる。混合物の焼結において、焼結するのはAltO
zであって、SiCは焼結を阻害する。このため、Si
Cの粒径は緻密な複合体を得るために重要な因子である
。SiCの粒径が小さいと、SiCの量が同じでもAl
zO*の焼結を阻害することが増える。このためSiC
粒子の平均粒径の下限は0.5μmに限定される。
The composite of the present invention can be manufactured by mixing AlzOz powder and SiC powder and sintering this mixture. In the sintering of the mixture, it is AltO that is sintered.
z, SiC inhibits sintering. For this reason, Si
The particle size of C is an important factor in obtaining a dense composite. If the particle size of SiC is small, even if the amount of SiC is the same, Al
This increases the possibility of inhibiting sintering of zO*. For this reason, SiC
The lower limit of the average particle size of the particles is limited to 0.5 μm.

この平均粒径が0.5μmより実質的に小さくなると、
ホットプレス法やHIP法によってもSiCを50体積
%含有する複合体を相対密度98%以上に緻密にするこ
とができない。また、SiCの粒径が大きすぎると、S
iC粒子同志が接触したブリッヂが形成され、その中間
にA120zが入りにくくなるので、緻密に焼結しにく
くなる。そのため、その上限は2μmとする。
When this average particle size is substantially smaller than 0.5 μm,
Even by hot pressing or HIP, a composite containing 50% by volume of SiC cannot be densified to a relative density of 98% or more. Also, if the particle size of SiC is too large, S
A bridge is formed where the iC particles are in contact with each other, and it becomes difficult for A120z to enter between the bridges, making it difficult to sinter densely. Therefore, the upper limit is set to 2 μm.

ところで、セラミックスの硬さは測定する荷重や読み取
り装置の倍率によって変化するので、一義的に定まらな
い。しかし、SiCの硬さは、通常27〜30ONm−
”、Al2O:lの硬さは17〜20ONm−”である
。そして、複合体の硬さは一般に定性的には加成性が成
立するので、複合体の硬さはSiCの添加割合が増すに
つれて大きくなる。また、SiCは破壊におけるクラン
ク進展の障害物となって複合体の靭性を大きくする作用
をなす。このため、SiCの含有量は、耐エロージヨン
摩耗性と密接に関係している。
By the way, the hardness of ceramics varies depending on the load to be measured and the magnification of the reading device, so it cannot be determined uniquely. However, the hardness of SiC is usually 27 to 30 ONm-
", the hardness of Al2O:l is 17 to 20 ONm-". Since the hardness of the composite is generally qualitatively additive, the hardness of the composite increases as the proportion of SiC added increases. In addition, SiC acts as an obstacle to crank progress during fracture, thereby increasing the toughness of the composite. Therefore, the SiC content is closely related to erosion wear resistance.

本第2発明において、複合体中のSiCの含有量は、2
0〜50体積%とする。SiCの含有量が20体積%未
満では、耐エロージヨン摩耗性の改善が不十分なためで
ある。SiCの含有量が50体積%を越える場合には、
緻密な焼結体が得られず、複合体の耐摩耗性が低下して
しまう。
In the second invention, the content of SiC in the composite is 2
0 to 50% by volume. This is because if the SiC content is less than 20% by volume, the improvement in erosion and wear resistance is insufficient. When the content of SiC exceeds 50% by volume,
A dense sintered body cannot be obtained, and the wear resistance of the composite is reduced.

なお、SiCには、α型、β型の2種類の結晶形がある
が、本発明においては、α型でもβ型でもどちらでもよ
く、また、両者の混合したものでもよい。
Note that SiC has two types of crystal forms, α type and β type, but in the present invention, either the α type or the β type may be used, or a mixture of both may be used.

また、本第2発明にかかる複合体の相対密度は98%以
上とする。これは、相対密度が98%未満になると、た
とえSiCの含有量が40〜50体積%と多くても、硬
さが十分大きくならず、その結果、優れた耐エロージヨ
ン性が得られないためである。
Further, the relative density of the composite according to the second invention is 98% or more. This is because if the relative density is less than 98%, even if the SiC content is as high as 40 to 50% by volume, the hardness will not be large enough, and as a result, excellent erosion resistance will not be obtained. be.

なお、本第2発明の複合体中には、製造時に用いた5i
Ozやアルカリ土類金属の酸化物やそれらの混合物等、
通常のA2□03の焼結助剤が含まれていてもよい。
Note that the composite of the second invention contains 5i used during production.
Oz, alkaline earth metal oxides, and mixtures thereof, etc.
A conventional A2□03 sintering aid may be included.

次に、本発明にかかる複合体の製造方法としては、Al
zOx粉末とSiC粉末とを混合し、その後この混合物
を焼結する方法がある。
Next, as a method for producing a composite according to the present invention, Al
There is a method of mixing zOx powder and SiC powder and then sintering this mixture.

上記両粉末の混合は、所定量のAltos粉末とSiC
粉末とを秤量し、常法により混合・乾燥する。A1.z
OsもSiCも水に対して不活性であるから、混合に当
たってSi3N4などのように混合溶媒としてアルコー
ルを用いたりする必要はなく、水で十分である。乾燥は
乾燥器を用いてもよいが、通常はスプレードライヤを用
いる。乾燥された混合粉体は、通常の焼結法、ホットプ
レス法、あるいはHIP法、ガス圧焼結法等、及びこれ
らの方法の組み合わせにより緻密に焼結させる。ただし
、この混合粉体は、後述するように焼結しにくいので、
特に好ましくは、ホットプレス法あるいはHIP法で焼
結するのがよい。
The above-mentioned mixture of both powders includes a predetermined amount of Altos powder and SiC powder.
Weigh the powder, mix and dry using a conventional method. A1. z
Since both Os and SiC are inert to water, there is no need to use alcohol as a mixed solvent during mixing, as with Si3N4, and water is sufficient. Although a dryer may be used for drying, a spray dryer is usually used. The dried mixed powder is densely sintered by a normal sintering method, a hot press method, a HIP method, a gas pressure sintering method, or a combination of these methods. However, this mixed powder is difficult to sinter as described below, so
Particularly preferably, sintering is performed by a hot press method or a HIP method.

前記の混合粉体の焼結において、A2□03は焼結過程
で粒成長をするが、SiCは粒成長せずに、複合体中に
原料と同じSiC粒子として存在する。このため、複合
体中のSiC粒子の平均粒径は、出発原料のSiC粉末
の平均粒径0.5〜2μmと同じである。
In the sintering of the mixed powder described above, A2□03 undergoes grain growth during the sintering process, but SiC does not undergo grain growth and exists in the composite as SiC particles similar to the raw material. Therefore, the average particle size of the SiC particles in the composite is the same as the average particle size of the starting material SiC powder, 0.5 to 2 μm.

また、A2□03粉末は、SiC粒子を20〜50体積
%含む緻密な複合体が得られるものであればよく、特に
限定される必要はないが、焼結しやすい原料であること
は好ましい条件あるので、AffzO3の平均粒径は1
μm以下であることが望ましい。耐エロージヨン摩耗性
に化学的純度は顕著に影響しないため、Aj2. O,
は普通純度のもので十分である。また、A2□03の焼
結を助けるために、通常のA l z Osの焼結助剤
であるSiO□やアルカリ土類金属の酸化物やそれらの
複合体を適量加えてもよい。
Further, the A2□03 powder is not particularly limited as long as it can yield a dense composite containing 20 to 50% by volume of SiC particles, but it is preferable that it is a raw material that is easily sintered. Therefore, the average particle size of AffzO3 is 1
It is desirable that it is less than μm. Since chemical purity does not significantly affect erosion wear resistance, Aj2. O,
of normal purity is sufficient. Further, in order to aid the sintering of A2□03, an appropriate amount of SiO□, which is a usual sintering aid for A l z Os, an alkaline earth metal oxide, or a composite thereof may be added.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 第1表に示すように、平均粒径が異なる6種のSiC粉
末粉末5槓 径0.4μm)50体積%とを常法により混合・乾燥し
た混合粉末を温度1850°C1圧力25MNm−”、
加圧時間1時間の条件でホットプレスした。
Example 1 As shown in Table 1, a mixed powder obtained by mixing and drying 50 volume % of six kinds of SiC powders having different average particle diameters (50% by volume) with a diameter of 0.4 μm was heated at a temperature of 1850° C. and a pressure of 25 MNm. −”,
Hot pressing was carried out under conditions of pressurization time of 1 hour.

得られた複合体中のSiCは、上記出発原料として用い
たSiC粉末の平均粒径と同じ平均粒径の粒子として存
在していた。得られた複合体について、SiC砥粒によ
るエロージョン試験を行った。砥粒は平均500μmの
大きさのものを用い、その衝突条件は速度250〜30
0m/秒、角度80°とした。その結果を第1表に示す
SiC in the obtained composite existed as particles having the same average particle size as the SiC powder used as the starting material. The resulting composite was subjected to an erosion test using SiC abrasive grains. Abrasive grains with an average size of 500 μm are used, and the collision conditions are at a speed of 250 to 30
The speed was 0 m/sec and the angle was 80°. The results are shown in Table 1.

複合体中のSiC粒子の平均粒径が0.28μm、0、
48μmと0.5μmより小さい場合(試料NαC1、
C2)には、相対密度が98%に達せず、このため、ビ
ッカース硬さが小さく、エロージョン摩耗率が大きくな
った。また、SiC粒子の平均粒径が3.0μmと大き
い場合(試料No、C3)にも、相対密度が97%と低
くなり、硬さが低下し、エロージョン摩耗率も大きくな
った。これに対して、SiC粒子の平均粒径が0.65
μm、1.0 u m、2.0μmの場合(試料Nα1
〜3)は、いずれも相対密度が98%以上で、硬さも大
きく、耐エロージヨン摩耗性も良好であった。
The average particle size of SiC particles in the composite is 0.28 μm, 0,
48 μm and smaller than 0.5 μm (sample NαC1,
In C2), the relative density did not reach 98%, so the Vickers hardness was low and the erosion wear rate was high. Furthermore, even when the average particle size of the SiC particles was as large as 3.0 μm (sample No., C3), the relative density was as low as 97%, the hardness was decreased, and the erosion wear rate was also high. On the other hand, the average particle size of SiC particles is 0.65
μm, 1.0 μm, 2.0 μm (sample Nα1
-3) all had relative densities of 98% or more, high hardness, and good erosion abrasion resistance.

実施例2 第2表に示すような配合割合で、平均粒径が0゜65μ
mのSiC粉末と、残部A12oz粉末(平均粒径0.
4μm)とを常法により混合・乾燥した混合粉末を、温
度1850°C1圧力30MNm″′、加圧時間2時間
の条件でホットレスした。
Example 2 With the blending ratio shown in Table 2, the average particle size was 0°65μ.
m SiC powder and the remainder A12oz powder (average particle size 0.
The mixed powder obtained by mixing and drying the powder (4 μm) using a conventional method was hot-resisted at a temperature of 1850° C., a pressure of 30 MNm'', and a pressurizing time of 2 hours.

得られた複合体中のSiCは、平均粒径が0.65μm
の粒子として存在していた。
The SiC in the resulting composite has an average particle size of 0.65 μm.
existed as particles.

また、得られた複合体について、実施例1と同じ条件で
エロージョン試験を行った。その結果を第2表に示す。
Further, an erosion test was conducted on the obtained composite under the same conditions as in Example 1. The results are shown in Table 2.

SiCの配合量が0.10体積%の場合(試料NαC4
、C5)には、相対密度が99.5%と十分に緻密化し
ているが、硬さ、靭性とも十分大きくなく、エロージョ
ン摩耗率は大きかった。また、SiCの配合量が55体
積%の場合(試料N(LC6)には、緻密に終結せず、
このため硬さも小さく、耐エロージヨン摩耗性も劣るも
のであった。これに対し、SiCの配合量が20.30
.40.50体積%の場合(試料Nα4.5.6.7)
には、いずれも相対密度が98%以上に緻密化し、靭性
も大きく、耐エロージヨン摩耗性も優れている。
When the blending amount of SiC is 0.10% by volume (sample NαC4
, C5) had a sufficiently dense relative density of 99.5%, but neither hardness nor toughness were sufficiently large, and the erosion wear rate was large. In addition, when the blending amount of SiC is 55% by volume (sample N (LC6)), it does not finish densely,
Therefore, the hardness was low and the erosion wear resistance was also poor. On the other hand, the blended amount of SiC is 20.30
.. In the case of 40.50 volume% (sample Nα4.5.6.7)
Both have a relative density of 98% or more, high toughness, and excellent erosion and wear resistance.

なお、前記の実施例1.2において、衝突する粒子とし
ては、平均粒径500μmのSiC砥粒を用いたが、砥
粒の大きさが異なっても、砥粒としてAnt O3、ム
ライト等を用いても耐エロージヨン性の傾向は同じであ
った。
In Example 1.2, SiC abrasive grains with an average particle size of 500 μm were used as colliding particles, but even if the abrasive grains have different sizes, Ant O3, mullite, etc. may be used as the abrasive grains. However, the tendency of erosion resistance was the same.

Claims (1)

【特許請求の範囲】[Claims]  平均粒径0.5〜2.0μmの炭化珪素粒子20〜5
0体積%と、残部アルミナとからなり、その相対密度が
98%以上であることを特徴とする耐摩耗性複合体。
20 to 5 silicon carbide particles with an average particle size of 0.5 to 2.0 μm
A wear-resistant composite comprising 0% by volume and the remainder alumina, and having a relative density of 98% or more.
JP63025924A 1988-02-05 1988-02-05 Wear-resistant composite material Pending JPH01201067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025924A JPH01201067A (en) 1988-02-05 1988-02-05 Wear-resistant composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025924A JPH01201067A (en) 1988-02-05 1988-02-05 Wear-resistant composite material

Publications (1)

Publication Number Publication Date
JPH01201067A true JPH01201067A (en) 1989-08-14

Family

ID=12179324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025924A Pending JPH01201067A (en) 1988-02-05 1988-02-05 Wear-resistant composite material

Country Status (1)

Country Link
JP (1) JPH01201067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648303A (en) * 1994-02-25 1997-07-15 Kyocera Corporation Non-magnetic ceramics for recording/reproducing heads and method of producing the same
JPWO2018155374A1 (en) * 2017-02-23 2019-02-28 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648303A (en) * 1994-02-25 1997-07-15 Kyocera Corporation Non-magnetic ceramics for recording/reproducing heads and method of producing the same
JPWO2018155374A1 (en) * 2017-02-23 2019-02-28 住友大阪セメント株式会社 Composite sintered body, electrostatic chuck member, and electrostatic chuck device

Similar Documents

Publication Publication Date Title
JP2009504869A (en) Fine polycrystalline abrasive
JPH09268050A (en) Alumina-zirconia sintered material, its production and impact mill using the same
JPS58213679A (en) Composite ceramic cutting tool and manufacture
RU2402507C2 (en) Ceramic material and preparation method thereof
JPH06239660A (en) Ceramic cutting tool material
JPH06298573A (en) Ceramic cutting tool material
JPH0273946A (en) Sintered hard alloy and duplex coated sintered hard alloy composed by forming film on surface of same alloy
JPH01201067A (en) Wear-resistant composite material
JP2920482B2 (en) Silicon carbide sintered body excellent in toughness and manufacturing method
JPH06122563A (en) Ceramic composite material and its production
JPH08267305A (en) Composite ceramic too, coated composit ceramic tool, and manufacture thereof
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JP7510645B2 (en) Method for producing raw material powder for producing oxidation-induced self-healing ceramics, and raw material powder for producing oxidation-induced self-healing ceramics
JPS6240340A (en) Diamond-type sintered material for cutting tool
JP2591163B2 (en) Silicon nitride cutting tool with excellent strength and toughness
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JPH069271A (en) Diamond-based sintered material excellent in abrasion resistance and its production
JPH01212290A (en) Cutting tool material
JPH0488103A (en) Complex sintered cutting tool material having excellent chipping resistance and manufacture thereof
JPH0723263B2 (en) Cutting tool made of aluminum oxide based ceramics
JP2925899B2 (en) Ceramic cutting tool and its manufacturing method
JP2887242B2 (en) Fiber reinforced ceramics
JP2743666B2 (en) Ceramic material for turbine and method of manufacturing the same
JPS62287035A (en) Copper-iron group metal-base diamond tool for cutting fine ceramic