JPH01200586A - Manufacture of penetrating device for accommodation vessel conductor - Google Patents

Manufacture of penetrating device for accommodation vessel conductor

Info

Publication number
JPH01200586A
JPH01200586A JP63026008A JP2600888A JPH01200586A JP H01200586 A JPH01200586 A JP H01200586A JP 63026008 A JP63026008 A JP 63026008A JP 2600888 A JP2600888 A JP 2600888A JP H01200586 A JPH01200586 A JP H01200586A
Authority
JP
Japan
Prior art keywords
resin
conductor
thermo
injected
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63026008A
Other languages
Japanese (ja)
Inventor
Isao Yoshinaga
功夫 好永
Toshikazu Edashima
枝嶋 敏数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63026008A priority Critical patent/JPH01200586A/en
Publication of JPH01200586A publication Critical patent/JPH01200586A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To provide air-tightness and simplify component members, when insulative plates and conductors penetrating it are sealed air-tightly by a thermo- hardening resin, by performing hardening of the thermo-hardening resin through application of a pressure in the axial direction of the conductor. CONSTITUTION:A plurality of conductors 13 penetrate insulative plates 9, 9 inserted into a ring-shaped header 5 and fixed thereto, and the part of penetration is filled with a thermo-hardening resin 2 so as to provide air-tightness. A tubular surrounding member 8 is fixed to both sides of this ring-shaped header 5, and the thermo-hardening resin 2 is injected till middle level of this surrounding member 8 and hardened. Within a pressurized vessel 20, a pressure by nitrogen gas is applied to the injected thermo-hardening resin 2 in the surrounding member 8 above and below alternately in the axial direction of the conductors 13, or otherwise a similarly axial-directed pressure is applied by the use of a disc for pressurization 26. Therefore, the resin 2 does not present contraction in the radial direction of the surrounding member 8, wherein hardening can be made without using any complicated device to ensure that air-tightness is held.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、導体を原子炉などの格納容器内に封止して
通すのに適用石れる、格納容器導体貫通装置の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a containment vessel conductor penetration device that is applied to sealingly pass a conductor into a containment vessel such as a nuclear reactor.

〔従来の技術〕[Conventional technology]

第4図及び第5図は例えば特公昭46−28464号公
報に示された、従来の金属外筒と熱硬化性樹脂との気密
接着方法を示す。第4図において、金、属外81内にエ
ポキシ樹脂などの熱硬化性樹脂2が注入され硬化されて
いる。
4 and 5 show a conventional method of airtightly adhering a metal outer cylinder and a thermosetting resin, as disclosed in, for example, Japanese Patent Publication No. 46-28464. In FIG. 4, a thermosetting resin 2 such as an epoxy resin is injected into a metal 81 and hardened.

この熱硬化性樹脂2は硬化により、内方への収縮力が生
じ、間隙3ができて気密性が阻害される。
When this thermosetting resin 2 is cured, an inward contraction force is generated, a gap 3 is created, and airtightness is impaired.

これを解決するため、第5図に示すように、金属外筒ユ
の内面に可とり性をもつ薄い金属筒4を気密に固着して
いる。この状態の金属外局1内に熱硬化性樹脂2を注入
し硬化させている。この樹脂2は硬化に際し内方に収縮
するが、金M筒4はそれにつれ内方に変形され、樹脂2
との密着か保たれる。この場合、金M筒4の外周側の樹
脂2が外筒1の内面からはく離が生じても、金属外筒1
内面に金属筒4の一端が固着しておジ、かつ、樹脂2が
金属筒4に接着しているので、内部の気密性は保たれる
In order to solve this problem, as shown in FIG. 5, a thin metal tube 4 having removability is airtightly fixed to the inner surface of the metal outer tube. A thermosetting resin 2 is injected into the metal outer station 1 in this state and hardened. This resin 2 contracts inward when it hardens, but the gold M cylinder 4 is deformed inward accordingly, and the resin 2
Close contact is maintained. In this case, even if the resin 2 on the outer circumferential side of the gold M cylinder 4 peels off from the inner surface of the outer cylinder 1, the metal outer cylinder 4
Since one end of the metal tube 4 is fixed to the inner surface and the resin 2 is adhered to the metal tube 4, the airtightness of the interior is maintained.

第6図は特公昭54−33357号公報に示された他の
従来例を示す格納容器導体貫通装置の縦断面図で、上記
第5図の技術を応用している。図において、5は環状ヘ
ッダ部材で、溜れ監視用の孔6があけられてあり、外周
に0リンダg7が設けられている。8はこのヘッダ部材
5の両端に溶装固着された金属材からなる管状囲い部材
、9はヘッダ部材す内に固着された一対の絶縁円板で、
双方間に絶縁スペーサ10が入れられ、漏れ監視室11
が形成されている。12は双方の管状囲い部材8内面に
溶接などで気密固着嘔れた薄金属材からなるiTとう性
の環状封止シュラウドで、上記第5図の金属筒4に相当
する。13は絶縁円板9を貫通ずる24体である。
FIG. 6 is a longitudinal cross-sectional view of another conventional containment vessel conductor penetration device disclosed in Japanese Patent Publication No. 54-33357, to which the technique shown in FIG. 5 is applied. In the figure, reference numeral 5 denotes an annular header member, which is provided with a hole 6 for monitoring the reservoir, and an O cylinder g7 provided on the outer periphery. Reference numeral 8 denotes a tubular enclosure member made of a metal material that is welded and fixed to both ends of the header member 5, and 9 is a pair of insulating discs fixed to the inside of the header member.
An insulating spacer 10 is inserted between the two, and a leak monitoring chamber 11 is formed.
is formed. Reference numeral 12 denotes an annular sealing shroud made of a thin metal material that is airtightly fixed to the inner surfaces of both tubular enclosure members 8 by welding or the like, and corresponds to the metal cylinder 4 in FIG. 5 above. 13 is 24 bodies that pass through the insulating disk 9.

この状態の環状ヘッダ5及び一方の囲い部材8の央部に
熱硬化性樹脂2を注入し硬化処理をする。
The thermosetting resin 2 is injected into the center of the annular header 5 and one of the enclosing members 8 in this state and hardened.

絖いて、他方の囲い部材8の央部に熱硬化性樹脂2を注
入し硬化処理をする。導体130両端にそれぞれケーブ
ル14を圧縮スリーブ(図示しない)で接続し、収縮チ
ューブ15ヲかぶせている。この後、一方の囲い部g8
内と他方の囲い部材8内とに、順に熱硬化性樹脂16を
注入し硬化処理する。囲い部材8内に固着された封止シ
ュラウド12の介在により、硬化収縮した樹脂2は、封
止シュラウド12に密着を保ち、すき間を生じることは
なく、気密封止か維持される。
Then, the thermosetting resin 2 is injected into the center of the other enclosing member 8 and hardened. Cables 14 are connected to both ends of the conductor 130 with compression sleeves (not shown), and are covered with shrink tubes 15. After this, one enclosure g8
Thermosetting resin 16 is sequentially injected into the inside and the inside of the other enclosing member 8 and hardened. Due to the interposition of the sealing shroud 12 fixed within the enclosure member 8, the hardened and shrunk resin 2 is kept in close contact with the sealing shroud 12, without creating any gaps, and an airtight seal is maintained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の格納容器導体貫通装置では、気密を維持する
のに管状囲い部材8内に環状飴止シュラクト12の設置
を要していた。また、硬化した樹脂内部にクラック発生
のおそれが旨無とは云えず、気密を維持することは完全
ではないという問題点があった。
In the conventional containment vessel conductor penetration device described above, it was necessary to install the annular candy shrac 12 within the tubular enclosure member 8 to maintain airtightness. Furthermore, there is a problem that there is a risk of cracks occurring inside the cured resin, and it is not possible to maintain airtightness completely.

この発明は、このような問題点を解決するためになされ
たもので、構成が簡単で、気密性が信頼度高く維持でき
る格納容器導体貫通装置の製造方法を得ることを目的と
している。
The present invention was made to solve these problems, and an object of the present invention is to provide a method for manufacturing a containment vessel conductor penetration device that has a simple structure and can maintain airtightness with high reliability.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる格納容器導体貫通装置の製盾方法は、
環状ヘッダの両側に管状囲い部材を固盾し、環状ヘッダ
に挿入固着した絶縁円板に導体を貝通し、一方の管状囲
い部材の奥部に熱硬化性樹脂を注入後、外方から軸方向
に圧力を加えながら加熱硬化させ、続いて他方の管状囲
い部材の央部に熱硬化性樹脂を注入後、外方から軸方向
に圧力を加えながら加熱硬化させるようにしたものであ
る0 〔作用〕 この発明においては、管状囲い部材の奥部に注入された
熱硬化性樹脂は、f$、硬化に際し収縮するが、外方か
ら圧力が加えられているので、軸方向に収縮し、半径方
向には収縮せず、従来の環状封止シュラウドがなくても
管状囲い部材内面とのすき間や、内部クラックの発生が
なくされる。
A shielding method for a containment vessel conductor penetration device according to the present invention includes:
Tubular enclosure members are secured on both sides of the annular header, a conductor is passed through the insulating disk that is inserted and fixed into the annular header, and after injecting thermosetting resin into the inner part of one tubular enclosure member, it is inserted from the outside in the axial direction. The thermosetting resin is then injected into the center of the other tubular enclosing member, and then heated and cured while applying pressure from the outside in the axial direction. ] In this invention, the thermosetting resin injected into the inner part of the tubular enclosure member contracts during curing, but since pressure is applied from the outside, it contracts in the axial direction and shrinks in the radial direction. This eliminates the need for a conventional annular sealing shroud to eliminate gaps with the inner surface of the tubular shroud and the occurrence of internal cracks.

〔実施例〕〔Example〕

第1図はこの発明による格納容器導体貫通装置の製造方
法の一実施例を示す断面図であり、2j5〜11,13
は上記従来装置と同一のものでるも環状へラダ5の両側
に管状囲い部材8がli!111t iれ、環状ヘッダ
5の内部に一対の絶縁円板9が挿入固着されている。こ
の絶縁円板9に複数の導体13が貫通している。この状
態で立て方向にし、上方から熱硬化性樹脂2を管状囲い
部材8内の中間部高ざまで注入する。
FIG. 1 is a cross-sectional view showing an embodiment of the method for manufacturing a containment vessel conductor penetration device according to the present invention, and shows 2j5 to 11, 13.
is the same as the conventional device described above, but has tubular enclosure members 8 on both sides of the annular ladder 5. 111t i, a pair of insulating discs 9 are inserted and fixed inside the annular header 5. A plurality of conductors 13 penetrate this insulating disk 9. In this state, the thermosetting resin 2 is injected into the tubular enclosure member 8 from above up to the middle height.

この状態の導体Xn装置を直ちに加圧容器20内に入れ
、ふた体21をボルト22で気密に収付ける。23は窒
素ボンベで、ふた体21との間に配管24が接続されて
おり、配管24には圧力調整弁25が取付けられている
。圧力調整弁25を開き窒素ガスを加圧容器20内に圧
入し所要の加圧をする。
The conductor Xn device in this state is immediately placed in the pressurized container 20, and the lid 21 is hermetically sealed with the bolts 22. 23 is a nitrogen cylinder, a pipe 24 is connected between it and the lid 21, and a pressure regulating valve 25 is attached to the pipe 24. The pressure regulating valve 25 is opened and nitrogen gas is injected into the pressurized container 20 to apply the required pressure.

熱硬化性樹脂2を加熱硬化させると、樹脂2は軸方向に
上方から加圧でれておるので、軸方向に下方に収縮し、
半径方向には収縮しない。したがって、硬化した樹脂2
は囲い部材8内面との気密接着が維持される。
When the thermosetting resin 2 is heated and cured, since the resin 2 is pressed out from above in the axial direction, it contracts downward in the axial direction.
It does not shrink in the radial direction. Therefore, the cured resin 2
The airtight contact with the inner surface of the surrounding member 8 is maintained.

こうして、一方の囲い部材8内の央部が樹脂2で気密封
止ちれると、加圧容器20内から引上げ、一方の囲い部
材8を下に反転する。上方になった他方の囲い部材8内
に熱硬化性樹脂2を注入し、中間部高さまで元てんする
In this way, when the central part of one of the enclosure members 8 is hermetically sealed with the resin 2, it is pulled out from inside the pressurized container 20 and one of the enclosure members 8 is inverted downward. The thermosetting resin 2 is injected into the other upper enclosing member 8 and refilled to the middle height.

この状態の萼体貞連装置を直ちに、第2図のように加圧
容器20に入れて密閉し、窒素ガスを圧入して加圧し、
上方の充てん樹脂2を刃口熱硬化処理する。
Immediately, the calyx-body connection device in this state is placed in a pressurized container 20 as shown in FIG. 2, sealed, and pressurized with nitrogen gas.
The upper filling resin 2 is subjected to a heat curing treatment at the cutting edge.

このように半製品状態になった導体X通装置を圧力容器
20から取出し、上記第6図の装置と同様に導体13の
両端にケーブル14を接続処理し、両側の囲い部材8内
の残りの端部側の空所に、硬化性樹脂16を注入し、加
熱硬化する処理を順に行う。この樹脂16は、気密性は
重要でないので、加圧容器20内に入れる必要はない。
The semi-finished conductor The curable resin 16 is injected into the space on the end side and heat-cured in this order. Since airtightness is not important for this resin 16, there is no need to put it in the pressurized container 20.

なお、加圧するガスは窒素ガスでなくてもよく、また、
加圧容器20の形状は、第1図に示す形状に限らない。
Note that the gas to be pressurized does not need to be nitrogen gas, and
The shape of the pressurized container 20 is not limited to the shape shown in FIG.

第3図はこの発明の池の実施例を示し、加圧容器2oを
用いなくて加圧する方法である。一方の囲い部材8の中
間部高さまで注入されたsh化性樹脂2上に、所要重量
の加圧用円板26を載せる。
FIG. 3 shows an embodiment of the pond according to the present invention, which is a method of pressurizing the pond without using a pressurizing container 2o. A pressurizing disk 26 of a required weight is placed on the shrunkable resin 2 injected to the middle height of one of the enclosure members 8.

この円板26には各導性13を逃がす孔26aが設けら
れである。こうして、未硬化状態の樹脂2に軸方向の圧
力を加えた状態で、加熱硬化処理をすもこの側の樹脂2
による気密封止処理が終ると、導体貫通装置を反転し、
上方になった他方の囲い部材8内に、上記と同様な工程
により、樹脂2による気密封止処理をする。
This disk 26 is provided with a hole 26a through which each conductor 13 escapes. In this way, while applying pressure in the axial direction to the uncured resin 2, heat curing treatment is performed on the resin 2 on the side of the plume.
After completing the hermetic sealing process, turn the conductor penetration device over and
The other upper enclosure member 8 is hermetically sealed with resin 2 in the same process as above.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、環状ヘッダの両側の
管状囲い部材内の英側に熱硬化性樹脂を注入し、この充
てんされた樹脂を上方から軸方向に加圧をし、熱硬化処
理するようにしたので、樹脂が硬化により軸方向に収細
し、半径方向には収縮せず、囲い部材内面に気密長着し
内部にされつを生じることなく、気密封止が維持され、
従来のような環状封止シュラウドを省くことができる。
As described above, according to the present invention, a thermosetting resin is injected into the outer side of the tubular enclosing members on both sides of the annular header, and the filled resin is pressurized from above in the axial direction to cure the thermosetting resin. As the resin is cured, it contracts in the axial direction, does not contract in the radial direction, and adheres to the inner surface of the enclosure member in an airtight manner for a long time to maintain an airtight seal without causing any cracks inside.
A conventional annular sealing shroud can be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はこの発明による格納容器導体貫通装
置の製造方法を工程順に示す縦断面図、第3図はこの発
明の他の実施例による導体貫通装置の製造方法を示す岐
Ffr面図、第4図及び化5図は従来の金践外筒と熱硬
化性樹脂との気密制止方法の各側を示す縦Vr面図、第
6図は池の従来の導体貫通装置を示す一半部を断面にし
た側面図である0 2・・・熱硬化性樹脂、5・・・環状ヘッダ、8・・・
管状囲い部材、9・・・絶縁円板、13・・・導体、2
0・・・加圧容器、23・・・窒素ボンベ、26・・・
加圧用円板なお、図中同一符号は同−又は相当部分を示
す。
1 and 2 are vertical cross-sectional views showing a method for manufacturing a containment vessel conductor penetrating device according to the present invention in the order of steps, and FIG. 3 is a cross-sectional view showing a method for manufacturing a conductor penetrating device according to another embodiment of the present invention. Figures 4 and 5 are vertical Vr plane views showing each side of the conventional airtight sealing method between a metal outer cylinder and a thermosetting resin, and Figure 6 is a half view showing a conventional conductor penetration device. 0 2...Thermosetting resin, 5... Annular header, 8...
Tubular enclosure member, 9... Insulating disc, 13... Conductor, 2
0... Pressurized container, 23... Nitrogen cylinder, 26...
Pressurizing disk Note that the same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 環状ヘッダの両側に管状囲い部材を固着し、この環状ヘ
ッダの内部に挿入固着した絶縁円板に導体を貫通させ、
上記一方の管状囲い部材側を上方にし、熱硬化性樹脂を
その中間部まで注入し、この充てんされた樹脂を上方か
ら加圧手段により加圧しつつ加熱硬化させ、つづいて、
上記他方の管状囲い部材側を上方に反転し、熱硬化性樹
脂をその中間部まで圧入し、この充てんされた樹脂を上
方から加圧手段で加圧しつつ加熱硬化させ、上記導体の
貫通部を気密封止する格納容器導体貫通装置の製造方法
A tubular enclosing member is fixed to both sides of the annular header, and a conductor is passed through an insulating disc inserted and fixed inside the annular header.
With the above-mentioned one tubular enclosing member side facing upward, thermosetting resin is injected to the middle part thereof, and the filled resin is heated and cured while being pressurized from above by a pressure means, and then,
The other tubular enclosure member side is turned upward, thermosetting resin is press-fitted up to the middle part, and the filled resin is heated and cured while being pressurized from above with a pressure means, and the through-hole of the conductor is sealed. A method for manufacturing a containment vessel conductor penetration device for airtight sealing.
JP63026008A 1988-02-05 1988-02-05 Manufacture of penetrating device for accommodation vessel conductor Pending JPH01200586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026008A JPH01200586A (en) 1988-02-05 1988-02-05 Manufacture of penetrating device for accommodation vessel conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026008A JPH01200586A (en) 1988-02-05 1988-02-05 Manufacture of penetrating device for accommodation vessel conductor

Publications (1)

Publication Number Publication Date
JPH01200586A true JPH01200586A (en) 1989-08-11

Family

ID=12181669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026008A Pending JPH01200586A (en) 1988-02-05 1988-02-05 Manufacture of penetrating device for accommodation vessel conductor

Country Status (1)

Country Link
JP (1) JPH01200586A (en)

Similar Documents

Publication Publication Date Title
US5641713A (en) Process for forming a room temperature seal between a base cavity and a lid using an organic sealant and a metal seal ring
US20040113525A1 (en) Method of assembling an actuator arrangement
JP3180794B2 (en) Semiconductor device and manufacturing method thereof
JPH1038735A (en) Pressure sensor package and production thereof
CN103296990A (en) Base member, manufacturing method for electronic device, and electronic apparatus
JPH01200586A (en) Manufacture of penetrating device for accommodation vessel conductor
AU2014361093B2 (en) Corrosion sensor having double-encapsulated wire connections and manufacturing method for it
US3986201A (en) High output wafer-shaped semiconductor component with plastic coating
US10994989B2 (en) Method for producing a microelectromechanical component and wafer system
JPH05332865A (en) Assembling method of oil-sealed type semiconductor pressure sensor
US3198877A (en) Pothead closure sealed with bismuth-tin alloy
US6071760A (en) Solid-state image sensing device
JP2604925B2 (en) Wire penetration module structure
SU1560852A1 (en) Method of sealing permanent joints
JP2007115491A (en) Method of manufacturing organic el device
JPH0626016Y2 (en) Electrical conductor penetration device
JPS5852855A (en) Cap bonding
JPH0568316A (en) Cable through part module and its manufacturing method
JPS63121285A (en) Manufacture of surge absorber
JPS6129035A (en) Display tube and method of manufacturing same
JP2023007453A (en) Heating assembly and method for repairing insulation system of power cable
JPH03145708A (en) Resin-molded coil
JPS62128537A (en) Flat type semiconductor device
JPS6258135B2 (en)
CN114755088A (en) Packaging device and method for tubular sample in fretting corrosion research