JPH01200233A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPH01200233A
JPH01200233A JP2286088A JP2286088A JPH01200233A JP H01200233 A JPH01200233 A JP H01200233A JP 2286088 A JP2286088 A JP 2286088A JP 2286088 A JP2286088 A JP 2286088A JP H01200233 A JPH01200233 A JP H01200233A
Authority
JP
Japan
Prior art keywords
waveguide
layer
waveguides
type
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2286088A
Other languages
Japanese (ja)
Inventor
Kiyohide Wakao
若尾 清秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2286088A priority Critical patent/JPH01200233A/en
Publication of JPH01200233A publication Critical patent/JPH01200233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely separate and take out light signals by forming 1st and 2nd waveguides into vertical juxtaposition constitution where optical coupling is efficiently executed and the shorter waveguides are necessitated and isolating output ports in a horizontal direction, then coupling optical fibers thereto. CONSTITUTION:A groove 1A is provided on an n-type InP substrate and an InGaAsP layer 2, an InP layer 4, an InGaAsP layer 5, an n-type InP layer 6, a p-type InP layer 7, and a p-type InGaAsP layer 8 are superposed thereon. An SiO2 mask of about 1.4 deg. intersection angle with the groove 1A and about 5mum width is then applied on the surface and the layers are chemically etched by a CVD method and a photomechanical process to form the mesa arriving at the n-type InP layer 6. A TiPt electrode 9 is deposited on the surface of the waveguide WG 2 intersecting with the waveguide WG 1 and an AuSn elec trode 10 is deposited on the rear of the substrate while the SiO2 mask is re moved. The 1st, 2nd waveguides are diagonally intersected by maintaining the intersected part necessary for optical coupling and the output ports are isolated in the horizontal direction. The light signals are surely separated and taken out when the optical fibers are coupled thereto.

Description

【発明の詳細な説明】 〔概要〕 光通信システム或いは光情報処理システムなどに用いて
好適な方向性結合型光スィッチに関し、集積性が良好で
あると共に複数の出力ポートからそれぞれ確実且つ容易
に光信号を取り出すことができるようにすることを目的
とし、 半導体基板に形成された溝に依って方向が定められる第
一の導波路と、該第一の導波路上方に光結合可能な範囲
に積層され且つ表面側に在って該第一の導波路と斜めに
交わって延在するよう形成されたメサ部分に依って方向
が定められる第二の導波路とを備えてなるよう構成する
[Detailed Description of the Invention] [Summary] A directional coupling type optical switch suitable for use in an optical communication system or an optical information processing system, etc., has good integration properties and can reliably and easily transmit light from each of a plurality of output ports. A first waveguide whose direction is determined by a groove formed in a semiconductor substrate, and a layer laminated above the first waveguide in an area where optical coupling is possible, for the purpose of making it possible to extract a signal. and a second waveguide whose direction is determined by a mesa portion formed on the surface side and extending diagonally across the first waveguide.

〔産業上の利用分野〕[Industrial application field]

本発明は、光通信システム或いは光情報処理システムな
どに用いて好適な方向性結合型光スィッチに関する。
The present invention relates to a directional coupling type optical switch suitable for use in optical communication systems, optical information processing systems, and the like.

〔従来の技術〕[Conventional technology]

一般に、光通信システム或いは光情報処理システムなど
の高性能化の為には、光信号を電気信号に置換すること
なく、時間的及び空間的に処理できるようにしなければ
ならない。
Generally, in order to improve the performance of optical communication systems or optical information processing systems, it is necessary to be able to process optical signals temporally and spatially without replacing them with electrical signals.

これには、当然のことながら、光スィッチが必要となり
、現在、L i N b O3材料や半導体材料を主体
に研究・開発が進められている。
Naturally, this requires an optical switch, and research and development is currently underway mainly on L i N b O3 materials and semiconductor materials.

第3図は方向性結合型光スィッチと呼ばれている従来例
の要部切断斜面図を表している。
FIG. 3 shows a cut-away oblique view of essential parts of a conventional example called a directional coupling type optical switch.

図に於いて、21はn+型1nP基板、21A並びに2
1Bは基板21に形成された溝、22はn−型! n 
Q a A、 3 p層、23はn−型1nP層、24
はp+型1nP層、25A並びに25Bは相互に独立し
たn側電極、26はn側電極、PINは人力ボート、P
out+並びにP。o7□は出力ポートをそれぞれ示し
ている。
In the figure, 21 is an n+ type 1nP substrate, 21A and 2
1B is a groove formed in the substrate 21, and 22 is an n-type! n
Q a A, 3 p layer, 23 is n-type 1nP layer, 24
is a p+ type 1nP layer, 25A and 25B are mutually independent n-side electrodes, 26 is an n-side electrode, PIN is a human-powered boat, and P
out+ and P. o7□ each indicates an output port.

この光スィッチでは、入カポ−)Pusから入力された
光信号は、P側電極25A並びに25Bに印加する電圧
の如何で導波路の屈折率を実効的に変化させ、出力ポー
トP。UT+或いはP。UT□の何れかにスイッチング
して光信号を出力することが可能である。
In this optical switch, the optical signal input from the input port (Pus) effectively changes the refractive index of the waveguide depending on the voltage applied to the P-side electrodes 25A and 25B. UT+ or P. It is possible to output an optical signal by switching to either UT□.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第3図について説明した従来の光スィッチに於いては、
二つの導波路の結合力が、それ等の間隔に依存し、狭く
なるほど強くなる。
In the conventional optical switch explained with reference to FIG.
The coupling force between two waveguides depends on the distance between them, and becomes stronger as the waveguide becomes narrower.

然しなから、第3図に見られる構成では二つの導波路を
充分に接近させることが困難であり、結合力が弱い為、
二つの導波路間で光を充分に結合させるには、それら導
波路を長くすることが必要になるが、これでは、集積性
が低下し、光集積回路(optoelectronic
  integrated  circuit:0EI
C)を構成するには不都合である。
However, in the configuration shown in Figure 3, it is difficult to bring the two waveguides close enough together, and the coupling force is weak.
In order to sufficiently couple light between two waveguides, it is necessary to make them longer, but this reduces the integration efficiency and increases the number of optoelectronic integrated circuits.
integrated circuit:0EI
It is inconvenient to configure C).

このような問題を解消する為、二つの導波路を水平方向
に並設するのに代えて、垂直方向に並設、即ち、二つの
導波路を近接して積層することが試みられている。
In order to solve this problem, attempts have been made to arrange the two waveguides in parallel in the vertical direction instead of in parallel in the horizontal direction, that is, to stack the two waveguides in close proximity.

然しなから、そのようにしたのでは、二つの出力ポート
にそれぞれ光ファイバなどを結合して光信号を確実に取
り出すことが困難である旨の問題がある。
However, with this arrangement, there is a problem in that it is difficult to connect optical fibers to the two output ports and reliably extract optical signals.

本発明は、集積性が良好であると共に複数の出力ポート
からそれぞれ確実且つ容易に光信号を取り出すことがで
きる光スィッチを提供しようとする。
The present invention aims to provide an optical switch that has good integration and can reliably and easily extract optical signals from each of a plurality of output ports.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光スィッチでは、半導体基板(例えばn型1n
P基板l)に形成された溝(例えば溝IA)に依って方
向が定められる第一の導波路(例えば第一の導波路WG
I)と、該第一の導波路上方に光結合可能な範囲に積層
され且つ表面側に在って該第一の導波路と斜めに交わっ
て延在するよう形成されたメサ部分に依って方向が定め
られる第二の導波路(第二の導波路WG2)とを備えて
なるよう構成する。
In the optical switch of the present invention, a semiconductor substrate (for example, an n-type 1n
A first waveguide (e.g. first waveguide WG) whose direction is determined by a groove (e.g. groove IA) formed in the P substrate l)
I), and a mesa portion that is laminated above the first waveguide in an area where optical coupling is possible, is on the surface side, and is formed so as to extend diagonally across the first waveguide. A second waveguide (second waveguide WG2) whose direction is determined.

〔作用〕[Effect]

前記手段を採ることに依り、第一の導波路と第二の導波
路とは、光結合が効率良く行われ且つ短くて済む形式で
あるとされている縦方向に並設された構成を採りながら
、その出力ポートは横方向に離隔されているので、そこ
に光ファイバを結合するなどして光信号を確実に分離し
て取り出すことが容易である。
By adopting the above-mentioned means, the first waveguide and the second waveguide are arranged in parallel in the vertical direction, which is said to be a form in which optical coupling is efficiently performed and can be shortened. However, since the output ports are separated laterally, it is easy to reliably separate and extract the optical signals by coupling an optical fiber thereto.

〔実施例〕〔Example〕

第1図は本発明一実施例を説明する為の要部平面図を表
し、第3図に於いて用いた記号と同記号は同部分を示す
か或いは同じ意味を持つものとする。
FIG. 1 shows a plan view of essential parts for explaining one embodiment of the present invention, and the same symbols as those used in FIG. 3 indicate the same parts or have the same meanings.

図に於いて、WFはウェハ、WGIは第一の導波路、W
O2は第二の導波路、ELは電極、PINI及びp+N
zは入力ボート、11は導波路WGI及びWO2が交差
している実効的な長さ、12は出力ポート中心間の長さ
、θは導波路WGI及びWO2の交差角度をそれぞれ示
している。
In the figure, WF is the wafer, WGI is the first waveguide, and W
O2 is the second waveguide, EL is the electrode, PINI and p+N
z is the input port, 11 is the effective length where the waveguides WGI and WO2 intersect, 12 is the length between the centers of the output ports, and θ is the intersection angle of the waveguides WGI and WO2, respectively.

本実施例に於いて、 11:約400cμm〕 I!、:20(μm〕 θ;1.4゜ としである。尚、11は導波路WGI及びWO2を積層
して形成した際の光の結合長と同程度にするものである
In this example, 11: about 400 cμm] I! , :20 (μm) θ: 1.4°. Note that 11 is approximately the same as the optical coupling length when the waveguides WGI and WO2 are stacked.

さて、ここで、入カポ−1−P、□から例えば波長1.
55 (μm〕の光信号を人力すると、導波路WGIを
伝播する光信号は交差部分で導波路WG2に結合されて
伝播し、出力ポートP。uT□から送出される。
Now, from input capo-1-P, □, for example, wavelength 1.
When an optical signal of 55 (μm) is input manually, the optical signal propagating through the waveguide WGI is coupled to the waveguide WG2 at the intersection, propagates, and is sent out from the output port P.uT□.

また、前記の諸条件に加えて、電極ELに負電圧を印加
した場合、pn接合からの空乏層が拡がることで屈折率
が変化するから、導波路WG2に結合した光は、再度、
導波路WGIに結合し、出カポートP。uy+から送出
される。
In addition to the above conditions, when a negative voltage is applied to the electrode EL, the depletion layer from the pn junction expands and the refractive index changes, so the light coupled to the waveguide WG2 is again
Coupled to waveguide WGI and output port P. Sent from uy+.

本実施例に於いては、前記したように、出力ボートP。In this embodiment, as described above, the output boat P.

LITI及びP。Uア2間の距離が20〔μm〕も在る
ので、光ファイバを接続するにしても、充分な余裕があ
り、光信号を分離して取り出すことは極めて容易である
。尚、導波路WGIとWO2とは、垂直方向に近接して
積層されている為、光の結合は短い距離で充分に行われ
る。
LITI and P. Since the distance between U and A2 is 20 [μm], there is sufficient margin even when connecting optical fibers, and it is extremely easy to separate and extract optical signals. Note that since the waveguides WGI and WO2 are stacked close to each other in the vertical direction, light is sufficiently coupled over a short distance.

第2図は第1図に見られる実施例を線A−Aに沿って切
断した要部切断側面図を表している。
FIG. 2 shows a side view of the main part of the embodiment shown in FIG. 1 taken along line A--A.

図に於いて、■はn型1nP基板、IAは第二の導波路
を形成する為の溝、2はl nGaAs P層、3はI
 n Q a A S P層、4はInP層、5はI 
nGaAsP層、6はn型InP層、7はp型InP層
、8はp型1nGaAsP層、9はp側電極、10はn
側電極、Wlは溝IAの幅、W2はメサ部分の幅をそれ
ぞれ示している。
In the figure, ■ is an n-type 1nP substrate, IA is a groove for forming the second waveguide, 2 is an l nGaAs P layer, and 3 is an I
n Q a A S P layer, 4 is InP layer, 5 is I
nGaAsP layer, 6 is n-type InP layer, 7 is p-type InP layer, 8 is p-type 1nGaAsP layer, 9 is p-side electrode, 10 is n
In the side electrode, Wl indicates the width of the groove IA, and W2 indicates the width of the mesa portion.

前記各部分に関する主要データを例示すると次の通りで
ある。
Examples of main data regarding each part are as follows.

(1)基板1について 面指数:(100) 不純物濃度: 2 X 10I8[cm−”)+2)l
/ilAについて 幅W1:5(μm〕 深さ:0.3Cμm〕 方向:<Qll> (3)  I n G a A s P層2について組
成(波長換算):1.15 Cμm〕厚さ:0.ICμ
m〕 ノン・ドープ 不純物濃度: 2 X 10” (cm−ff)f4)
  T n G a A s P層3について組成(波
長換算):1.3Cμm〕 厚さ:0.5Cμm〕 ノン・ドープ 不純物濃度: 2 X 1016 (cm−’)(51
InP層4について 厚さ:0.6Cμm〕 ノン・ドープ 不純物濃度:2×l016〔Cffl−3〕(6)I 
n G a A s P N 5について組成(波長換
算):1.3Cμm〕 厚さ:0.5(μm) ノン・ドープ 不純物濃度: 2 X 10” (cm−’)(6)n
型1nP層6について 厚さ:1 〔μm〕 不純物濃度: 5 X I Q10(cm−’)(7)
p型InP層7について 厚さ:0.5Cμm〕 不純物濃度: I X 10”  (am−”)(8)
p型InGaAsP層8について組成(波長換算):1
.3Cμm〕 厚さ:0.4Cμm〕 不純物濃度:lX10菫9(Cm −’ )(9)p側
電極9について 材料: T i P を 厚さ:0.1Cμm〕 00)n側電極10について 材料:AuSn 厚さ:0.1  〔μm〕 0υ メサ部分について 幅W2:5(μm〕 高さ:1.4Cμm)(除n側電極9)第1図及び第2
図に見られる光スィッチを製造するのは筒車である。
(1) Surface index for substrate 1: (100) Impurity concentration: 2 × 10I8 [cm-”) + 2)l
/ilA Width W1: 5 (μm) Depth: 0.3 Cμm] Direction: <Qll> (3) In Ga As P layer 2 Composition (wavelength conversion): 1.15 Cμm] Thickness: 0 .ICμ
m] Non-doped impurity concentration: 2 X 10” (cm-ff) f4)
Composition (wavelength conversion) of T n Ga As P layer 3: 1.3 C μm Thickness: 0.5 C μm Non-doped impurity concentration: 2 x 1016 (cm-') (51
Thickness of InP layer 4: 0.6 Cμm] Non-doped impurity concentration: 2×l016 [Cffl-3] (6) I
Composition (wavelength conversion) for n Ga As P N 5: 1.3 Cμm] Thickness: 0.5 (μm) Non-doped impurity concentration: 2 X 10"(cm-') (6) n
Thickness of type 1nP layer 6: 1 [μm] Impurity concentration: 5 X I Q10 (cm-') (7)
Thickness of p-type InP layer 7: 0.5 Cμm] Impurity concentration: I x 10” (am-”) (8)
Composition (wavelength conversion) of p-type InGaAsP layer 8: 1
.. 3Cμm] Thickness: 0.4Cμm] Impurity concentration: lX10 violet 9 (Cm −' ) (9) Material for p-side electrode 9: T i P Thickness: 0.1Cμm] 00) Material for n-side electrode 10: AuSn Thickness: 0.1 [μm] 0υ Width W2 of mesa part: 5 (μm) Height: 1.4Cμm) (excluding n-side electrode 9) Figures 1 and 2
It is the hour wheel that produces the light switch seen in the figure.

即ち、通常のフォト・リソグラフィ技術を適用すること
に依って、基板1に溝IAを形成し、次いで、液相エピ
タキシャル成長(liquidphase  epit
axy:LPE)法を通用することに依って、InGa
AsPnGaAsP層nGaAsP層8を連続的に成長
させ、次いで、化学気相成長(chemical  v
apordeposition:CVD)法及びフォト
・リソグラフィ技術を適用することに依って、溝IAに
対し、交差角度θ=1.4°であって、幅が5Cμm〕
である二酸化シリコン(SiOz)からなるマスク膜を
形成し、次いで、化学的エツチング法を適用することに
依り、表面からn型In2層6に達するエツチングを行
い、段差が1.4〔μm〕であるメサを形成し、次いで
、前記マスク膜を除去してから、導波路WGIと交差す
る導波路WG2の表面に電極9を、また、基板lの裏面
に電極10をそれぞれ形成して完成させる。
That is, the groove IA is formed in the substrate 1 by applying a normal photolithography technique, and then liquid phase epitaxial growth (liquidphase epitaxial growth) is performed.
axy:LPE) method, InGa
AsPnGaAsP layer The nGaAsP layer 8 is grown continuously, and then chemical vapor deposition (chemical vapor deposition) is performed.
By applying apordeposition (CVD) method and photolithography technology, a cross angle θ=1.4° and a width of 5 C μm with respect to the groove IA]
A mask film made of silicon dioxide (SiOz) is formed, and then, by applying a chemical etching method, etching is performed from the surface to reach the n-type In2 layer 6, with a step difference of 1.4 [μm]. After forming a certain mesa and then removing the mask film, an electrode 9 is formed on the surface of the waveguide WG2 intersecting with the waveguide WGI, and an electrode 10 is formed on the back surface of the substrate 1 to complete the process.

〔発明の効果〕〔Effect of the invention〕

本発明に依る光スィッチに於いては、第一の導波路及び
その上方に積層された第二の導波路は、光結合を行うの
に必要な交差部分を維持して斜めに交わっている。
In the optical switch according to the present invention, the first waveguide and the second waveguide laminated above the first waveguide intersect diagonally while maintaining the intersection necessary for optical coupling.

前記構成を採ることに依り、第一の導波路と第二の導波
路とは、光結合が効率良(行われ且つ短くて済む形式で
あるとされている縦方向に並設された構成を採りながら
、その出力ポートは横方向に離隔されているので、そこ
に光ファイバを結合するなどして光信号を確実に分離し
て取り出すことが容易である。
By employing the above configuration, the first waveguide and the second waveguide are arranged in parallel in the vertical direction, which is considered to be a type of optical coupling that is efficient (and short). However, since the output ports are spaced apart laterally, it is easy to reliably separate and extract the optical signals by coupling an optical fiber thereto.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例を説明する為の要部平面図、第
2図は第1図に於ける線A−Aに沿う要部切断側面図、
第3図は従来例を説明する為の要部切断斜面図をそれぞ
れ表している。 図に於いて、WFはウェハ、WGIは第一の導波路、W
O2は第二の導波路、ELは電極、PIN+及びPIN
□は入力ボート、pout+並びにP。UT□は出力ポ
ート、x、は導波路WGl及びWO2が交差している実
効的な長さ、12は出力ボート中心間の長さ、θは導波
路WGI及びWO2の交差角度、■はn型1nP基板、
IAは第二の導波路を形成する為の溝、2はInGaA
sPN、3はInGaAsP層、4はInP層、5はI
nGaAsP層、6はn型1nP層、7はp型1nP層
、8はp型In G a A s P N% 9はp側
電極、10はn側電極、Wlは溝IAの幅、W2はメサ
部分の幅をそれぞれ示している。 特許出願人   富士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 一 実施例を説明する為の要部平面図 第1図 第2図
FIG. 1 is a plan view of the main part for explaining one embodiment of the present invention, FIG. 2 is a cutaway side view of the main part along line A-A in FIG. 1,
FIG. 3 each shows a cutaway slope view of the main part for explaining the conventional example. In the figure, WF is the wafer, WGI is the first waveguide, and W
O2 is the second waveguide, EL is the electrode, PIN+ and PIN
□ is the input port, pout+ and P. UT□ is the output port, x is the effective length where the waveguides WGI and WO2 intersect, 12 is the length between the centers of the output boats, θ is the intersection angle of the waveguides WGI and WO2, and ■ is the n-type 1nP substrate,
IA is a groove for forming the second waveguide, 2 is InGaA
sPN, 3 is InGaAsP layer, 4 is InP layer, 5 is I
nGaAsP layer, 6 is n-type 1nP layer, 7 is p-type 1nP layer, 8 is p-type In Ga As P N%, 9 is p-side electrode, 10 is n-side electrode, Wl is the width of trench IA, W2 is The width of each mesa portion is shown. Patent Applicant: Fujitsu Ltd. Representative Patent Attorney: Akira Aitani Representative Patent Attorney: Hiroshi Watanabe Plan view of essential parts to explain one embodiment Figure 1 Figure 2

Claims (1)

【特許請求の範囲】  半導体基板に形成された溝に依って方向が定められる
第一の導波路と、 該第一の導波路上方に光結合可能な範囲に積層され且つ
表面側に在って該第一の導波路と斜めに交わって延在す
るよう形成されたメサ部分に依って方向が定められる第
二の導波路と を備えてなることを特徴とする光スイッチ。
[Claims] A first waveguide whose direction is determined by a groove formed in a semiconductor substrate; An optical switch comprising: a second waveguide whose direction is determined by a mesa portion formed to extend diagonally across the first waveguide.
JP2286088A 1988-02-04 1988-02-04 Optical switch Pending JPH01200233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2286088A JPH01200233A (en) 1988-02-04 1988-02-04 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2286088A JPH01200233A (en) 1988-02-04 1988-02-04 Optical switch

Publications (1)

Publication Number Publication Date
JPH01200233A true JPH01200233A (en) 1989-08-11

Family

ID=12094469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2286088A Pending JPH01200233A (en) 1988-02-04 1988-02-04 Optical switch

Country Status (1)

Country Link
JP (1) JPH01200233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065207A (en) * 1990-05-28 1991-11-12 Siemens Aktiengesellschaft Optoelectronic circuit with diodes and waveguides
DE19849862C1 (en) * 1998-10-29 2000-04-06 Alcatel Sa Thermo-optical switch has polymer light conductor with temperature control arrangement at coupling points with two optical glass conductors in parallel plane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065207A (en) * 1990-05-28 1991-11-12 Siemens Aktiengesellschaft Optoelectronic circuit with diodes and waveguides
DE19849862C1 (en) * 1998-10-29 2000-04-06 Alcatel Sa Thermo-optical switch has polymer light conductor with temperature control arrangement at coupling points with two optical glass conductors in parallel plane

Similar Documents

Publication Publication Date Title
JP5879633B2 (en) Monolithic electro-optic TWE component structure
US9280004B2 (en) Method for manufacturing semiconductor modulator and semiconductor modulator
US7295366B2 (en) Optical integrated device and optical module
JPH08248248A (en) Segment-type optical waveguide especially suitable for being built in semiconductor element
CN111244227A (en) Silicon-based photonic integrated module and preparation method thereof
WO2007107782A1 (en) Monolithically integrated optoelectronic components
US20040052491A1 (en) Optical modulator and method of manufacturing the same
JP2003152264A (en) Optical integration device including nitride-based semiconductor laser
US20230194911A1 (en) Heterogeneous integration and electro-optic modulation of iii-nitride photonics on a silicon photonic platform
JPH01200233A (en) Optical switch
JPH03228032A (en) Optical directional coupler
KR0174303B1 (en) Semiconductor device and method of manufacturing the same
US20230251417A1 (en) Semiconductor optical integrated element
CN115167015A (en) Waveguide modulator and waveguide modulator manufacturing method
JP2662059B2 (en) Integrated semiconductor device having photoelectric switch element
JP2009038120A (en) Semiconductor optical integrated device and manufacturing method thereof
JP2011077329A (en) Semiconductor optical integrated element and method of manufacturing the same
AU611612B2 (en) Optical switching element between two optical guides and optical switching matrix constituted by these switching elements
CN110537302A (en) The manufacturing method of semiconductor device, semiconductor device
US20230073881A1 (en) Mach-zehnder interferometric optical modulator with shallow ridge waveguide structure and method for manufacturing the same
WO2023058216A1 (en) Semiconductor device and method for producing same
JPH02246268A (en) Photoreceptor
US20230275399A1 (en) Semiconductor optical device and method of manufacturing the same
JP2009128694A (en) Optical switching element
JPH05307200A (en) Waveguide type optical switch and its manufacture