JPH01200066A - Horizontal rotary wind mill - Google Patents

Horizontal rotary wind mill

Info

Publication number
JPH01200066A
JPH01200066A JP63024964A JP2496488A JPH01200066A JP H01200066 A JPH01200066 A JP H01200066A JP 63024964 A JP63024964 A JP 63024964A JP 2496488 A JP2496488 A JP 2496488A JP H01200066 A JPH01200066 A JP H01200066A
Authority
JP
Japan
Prior art keywords
propeller
wind
shaft
horizontal
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63024964A
Other languages
Japanese (ja)
Inventor
Eiji Shinno
新野 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63024964A priority Critical patent/JPH01200066A/en
Publication of JPH01200066A publication Critical patent/JPH01200066A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PURPOSE:To improve the utilization efficiency of wind energy by supporting a horizontal rotary shaft at the upper edge of a longitudinal rotary shaft and installing a pair of propellers with which a thrust acts in the same turning direction on a truning orbit, at the both edges of the horizontal rotary shaft. CONSTITUTION:A horizontal rotary shaft 20 at the upper edge of a longitudinal rotary shaft as output shaft is supported at the center part in the axial direction, and propeller devices 30 and 40 are arranged at the both edges of the horizontal rotary shaft 20. In other words, bevel gears 23 and 24 are fixed at the both edges of the horizontal rotary shaft 20, and the bevel gears 35 and 45 meshed with the bevel gears 23 and 24 are fixed onto the propeller shafts 32 and 42 having propellers 31 and 41 at the top edges, and the both propellers 31 and 41 are interlocking-revolved. Each propeller 31, 41 is formed into a shape which permits the efficient revolution for a head wind and does not permit the reverse revolution for a tail wind and with which the wind pressure resistance is increased. Therefore, the horizontal rotary shaft 20 is revolved by the thrust of the propeller which receives the head wind and the propeller which receives the tail wind.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は風車に関するもので、主として風力を機械エネ
ルギーに変換するための風車に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wind turbine, and mainly relates to a wind turbine for converting wind power into mechanical energy.

(従来の技術) 従来の風車は、オランダの風車に見られるように風車の
回転軸方向を風向方向に向けて回転するものである。こ
の種の風車は、風向きが風車の回転軸方向から外れると
著しく効率が下がるという欠点をもっている。そして、
この欠点を補うには、風車の回転軸方向を風向に合せる
ための首振り機構等を必要としていた。
(Prior Art) A conventional wind turbine rotates with the rotation axis direction of the wind turbine facing the direction of the wind, as seen in Dutch wind turbines. This type of wind turbine has the disadvantage that efficiency decreases significantly when the wind direction deviates from the direction of the wind turbine's rotation axis. and,
To compensate for this drawback, a swing mechanism or the like is required to align the direction of the wind turbine's rotation axis with the direction of the wind.

又、この種の風車は、弱い風力からでも効率良くエネル
ギーを得るため、一般に風を受ける羽根の面積が大きく
とられている。
In addition, in order to efficiently obtain energy even from weak wind power, this type of wind turbine generally has a large blade area that receives the wind.

しかし、羽根の面積が大きいことは、逆に不使用時にお
ける管理上、最大の欠点となっている。
However, the large area of the blades is the biggest drawback in terms of management when not in use.

というのは1羽根が大きい程、大きな風圧を受けてしま
うからである。従って、例えば1台風、暴風雨等の天候
異変に対して極めて弱い存在となる。又、普通の天候で
あっても、風車を意のままに、運転させたり、停止させ
たりすることが簡単にできない、意のままに運転するた
めには、大間りで複雑な機構を必要とするし、これを備
えようとしても経済効果等の面から実際的でないからで
ある。 本発明は、上記の問題に鑑みてなされたもので
、風力が小さくても効率的にエネルギーが得られ、しか
も、不使用時に於ける風圧の影響を最小にした風車の提
供を目的とするものである。
This is because the larger the blade, the greater the wind pressure it will receive. Therefore, it is extremely vulnerable to weather events such as a typhoon or rainstorm. Furthermore, even in normal weather, wind turbines cannot be easily started and stopped at will; in order to operate at will, a large and complex mechanism is required. However, even if we tried to provide this, it would be impractical in terms of economic effects and other factors. The present invention was made in view of the above problems, and aims to provide a wind turbine that can efficiently obtain energy even when the wind power is small, and that minimizes the influence of wind pressure when not in use. It is.

(発明の構成) 第1の発明は、出力軸として垂直に立てられた縦回動軸
に、水平回動軸を直交させた状態で回動可能)こ担持さ
せ、当該水平軸の両端には、水平軸の軸端が縦回動軸を
中心にして描く旋回軌道上を同一旋回方向に推力が働く
ようにプロペラを設け、当該左右のプロペラをその回転
方向が同一となるように連結し、向い風を受ける一方の
プロペラの回転力によって追い風を受ける他方のプロペ
ラを回転させ、向い風を受ける一方のプロペラと追い風
を受ける他方のプロペラとの推力とにより、水平回動軸
を介して縦回動軸を回転せしめて出力を得る構成のもの
である。
(Structure of the Invention) The first invention has a vertically erected vertically rotating shaft as an output shaft, which is rotatable with a horizontally rotating shaft orthogonal to each other. , a propeller is provided so that thrust is exerted in the same turning direction on a turning trajectory drawn by the end of the horizontal shaft around the vertical rotation axis, and the left and right propellers are connected so that their rotation directions are the same, The rotational force of one propeller receiving a headwind rotates the other propeller receiving a tailwind, and the thrust of one propeller receiving a headwind and the other propeller receiving a tailwind rotates the vertical rotation axis via the horizontal rotation axis. The structure is such that the output is obtained by rotating the

第2の発明は、出力軸として垂直に立てられた縦回動軸
に、水平回動軸を直交させた状態で回動可能に担持させ
、当該水平軸の両端には、水平軸の軸端が縦回動軸を中
心にして描く旋回軌道上を同一旋回方向に推力が働くよ
うにプロペラを設け、当該左右のプロペラをその回転方
向が同一となるように連結し、向い風を受ける一方のプ
ロペラの回転力によって追い風を受ける他方のプロペラ
を回転させ、向い風を受ける一方のプロペラと追い風を
受ける他方のプロペラとの推力とにより、水平回動軸を
介して縦回動軸を回転せしめて出力を得ると共に、 両端に風受はカップを有する回動軸を上記の水平回動軸
又は縦軸に直交するように担持させることにより、風受
はカップの受ける風圧で上記水平軸の回転力を高めた構
成としたものである。
In the second invention, a vertical rotation shaft vertically erected as an output shaft is rotatably supported with a horizontal rotation axis perpendicular to the horizontal rotation shaft, and the shaft ends of the horizontal shaft are attached to both ends of the horizontal shaft. Propellers are installed so that thrust acts in the same direction on a turning trajectory drawn around the vertical rotation axis, and the left and right propellers are connected so that their rotation directions are the same, so that one propeller receives a headwind. The rotational force of the propeller rotates the other propeller that receives a tailwind, and the thrust of one propeller that receives a headwind and the other propeller that receives a tailwind rotates the vertical rotation axis via the horizontal rotation axis to generate output. At the same time, by supporting a rotating shaft having a cup at both ends perpendicular to the horizontal rotating axis or the vertical axis, the wind receiver increases the rotational force of the horizontal axis using the wind pressure received by the cup. The structure is as follows.

第3の発明は、出力軸として垂直に立てられた縦回動軸
に、水平回動軸を直交させた状態で回動可能に担持させ
、当該水平軸の両端には、水平軸の軸端が縦回動軸を中
心にして描く旋回軌道上を同−旋回方向に推力が働くよ
うにプロペラを設け、出線左右のプロペラをその回転方
向が同一となるように連結し、向い風を受ける一方のプ
ロペラの回転力によって追い風を受ける他方のプロペラ
を回転させ、向い風を受ける一方のプロペラと追い風を
受ける他方のプロペラとの推力とにより、水平回動軸を
介して縦回動軸を回転せしめて出力を得ると共に、 両端に風受はカップを有する回動軸を上記の水平回動軸
又は縦軸に直交するように担持させることにより、風受
はカップの受ける風圧で上記水平軸の回転力を高め、 更に、上記水平回動軸の回転中心の左右側に。
In the third invention, a vertically erected vertically rotating shaft as an output shaft is rotatably supported with a horizontally rotating shaft perpendicular to the horizontally rotating shaft, and a shaft end of the horizontal shaft is provided at both ends of the horizontal shaft. The propellers are installed so that thrust acts in the same direction on the turning trajectory drawn by the vertical rotation axis, and the left and right propellers are connected so that their rotational directions are the same, and the propellers are connected so that they rotate in the same direction. The rotational force of one propeller rotates the other propeller, which receives a tailwind, and the thrust of one propeller, which receives a headwind, and the other propeller, which receives a tailwind, rotates the vertical rotation axis via the horizontal rotation axis. In addition to obtaining an output, by supporting a rotating shaft having a cup at both ends so as to be orthogonal to the horizontal rotating axis or the vertical axis, the wind receiver absorbs the rotational force of the horizontal axis using the wind pressure received by the cup. and further to the left and right sides of the center of rotation of the horizontal rotation axis.

水平に閉じ且つ上下方向に開く一対の羽根から成る開閉
翼を、当該水平回動軸の回転方向と逆方向に向けて各々
取り付け1両開閉翼を一方が開くと他方が閉じ、他方が
開くと一方が閉じる関係に連結し、追い風を受ける側に
回った開閉翼を風圧で開かせる構成としたことを特徴と
する水平回転風車。
A pair of opening/closing wings consisting of a pair of blades that close horizontally and open in the vertical direction are each attached in a direction opposite to the rotational direction of the horizontal rotation axis.When one of the opening/closing wings opens, the other closes, and when the other opens, the opening/closing wing is attached. A horizontal rotating wind turbine characterized in that one side of the wind turbine is connected in a closed relationship, and the opening/closing blades are rotated to the side receiving the tail wind and are opened by wind pressure.

(作用) 第1の発明は、向い風を受ける一方のプロペラと追い風
を受ける他方のプロペラとの推力とにより、水平回転軸
の回転力が高められて出力が得られる。
(Operation) In the first invention, the rotational force of the horizontal rotating shaft is increased by the thrust of one propeller receiving a headwind and the other propeller receiving a tailwind, thereby obtaining an output.

第2の発明は、向い風を受ける一方のプロペラと追い風
を受ける他方のプロペラとの推力、及び風受はカップが
受ける風圧とにより、水平回転軸の回転力が高められて
出力が得られる。
In the second invention, the rotational force of the horizontal rotating shaft is increased by the thrust of one propeller receiving a head wind and the other propeller receiving a tail wind, and the wind pressure received by the cup of the wind receiver, and output is obtained.

第3の発明は、向い風を受ける一方のプロペラと追い風
を受ける他方のプロペラとの推力、及び風受はカップが
受ける風圧とに加え、追い風を受ける側に回った開閉翼
が受ける風圧とにより、水平回転軸の回転力が高められ
て出力が得られる。
The third invention is based on the thrust of one propeller receiving a head wind and the other propeller receiving a tail wind, and in addition to the wind pressure that the cup receives, the wind receiver uses the wind pressure that the opening and closing blades that turn to receive the tail wind receive. The rotational force of the horizontal rotating shaft is increased and output is obtained.

(実施例) 以下、本発明を図面に示す実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第1図乃至第3図に於て、10は出力軸として縦に立設
された縦回動軸、20は縦回動軸lOの上端に左右の均
衡を保つように横架された水平回動軸、30と40は水
平回動軸20の画先端側に配設されたプロペラ装置であ
る。
In FIGS. 1 to 3, 10 is a vertical rotation shaft installed vertically as an output shaft, and 20 is a horizontal rotation shaft suspended horizontally at the upper end of the vertical rotation axis IO so as to maintain left and right balance. The moving axes 30 and 40 are propeller devices arranged on the front end side of the horizontal rotating shaft 20.

水平回動軸20は縦回動軸10に回動可能に担持され、
且つ、水平回動軸20が縦回動軸lOを中心に回転しよ
うとすると、縦回動軸10が回動されるように取り付け
られている。
The horizontal rotation shaft 20 is rotatably supported on the vertical rotation shaft 10,
Moreover, when the horizontal rotation shaft 20 attempts to rotate about the vertical rotation axis IO, the vertical rotation shaft 10 is attached so as to rotate.

水平回動軸20の両端には、傘歯車23、傘歯車24が
夫々固定されており、これらの傘歯車23、傘歯車24
は水平回動軸20の回動と一体に回動される。
A bevel gear 23 and a bevel gear 24 are fixed to both ends of the horizontal rotation shaft 20, respectively.
is rotated together with the rotation of the horizontal rotation shaft 20.

プロペラ装置30.40は、それぞれ、向い風を受けて
回転するプロペラ31.41及びプロペラ軸32.42
と、プロペラ軸32.42を支承する基体33.44と
から成る。このプロペラ装置30.40は、そのプロペ
ラ軸32.42が水平回動軸20と水平面に於て直角と
なるよう配置されている。当該プロペラ軸32.42に
は、水平回動軸20の両端に取り付けられている傘歯車
23、傘歯車24と直角に歯合する傘歯車35.45が
ある。従って、第3図の矢印に示すように、プロペラ3
1とプロペラ41とは同方向回転という関係で連動され
ている。このプロペラ31.41は、向い風に対しては
効率良く回転(正回転)するが、追い風に対しては、逆
回転しにくく、風圧への抵抗が大きくなる形状となって
いる。
The propeller devices 30.40 each include a propeller 31.41 and a propeller shaft 32.42, which rotate in response to a headwind.
and a base body 33.44 supporting a propeller shaft 32.42. This propeller device 30.40 is arranged so that its propeller shaft 32.42 is perpendicular to the horizontal rotation axis 20 in the horizontal plane. The propeller shaft 32.42 has a bevel gear 35.45 that meshes at right angles with the bevel gears 23 and 24 attached to both ends of the horizontal rotation shaft 20. Therefore, as shown by the arrow in Fig. 3, the propeller 3
1 and the propeller 41 are interlocked so that they rotate in the same direction. The propellers 31, 41 rotate efficiently (forward rotation) against headwinds, but are difficult to rotate backwards against tailwinds, and have a shape that increases resistance to wind pressure.

第3図に示すように、停止している風車に対して矢印F
の方向からの風があると、左右に配されたプロペラ装置
30.40の一方(30)は向い風を受け、他方(40
)は、追い風を受ける。向い風側のプロペラ31は、追
い風側のプロペラ41よりも、受風効率が良く、強い回
転力(推力)が得られるので、追い風側のプロペラ41
を回転させる。この結果、追い風側のプロペラ41は風
向に対して逆に風を吹き出すようになると共に、そのプ
ロペラ41の回転面が、風圧を受けることになるため、
当該プロペラ装置40側が、風下方向に押され、水平回
動軸20が縦回動軸10を中心に、図面上時計回り方向
に回転(公転)し始めて起動する。
As shown in Figure 3, arrow F points to a stopped windmill.
When there is wind from the direction, one side (30) of the propeller devices 30.
) receives a tailwind. The propeller 31 on the headwind side has better wind reception efficiency and can obtain stronger rotational force (thrust) than the propeller 41 on the tailwind side.
Rotate. As a result, the propeller 41 on the tailwind side blows out wind in the opposite direction to the wind direction, and the rotating surface of the propeller 41 receives wind pressure.
The propeller device 40 side is pushed in the leeward direction, and the horizontal rotation shaft 20 begins to rotate (revolution) in the clockwise direction in the drawing around the vertical rotation shaft 10 and is activated.

水平回動軸20が、回転の勢いで1図示の風向ラインF
−Flを越えると、こんどは、風下側に回り込んだ、プ
ロペラ41が向い風を受け、風上側に回り込んだプロペ
ラ31が追い風を受けるようになる。向い風を受けるプ
ロペラ41の回転力は高まり、これにともなって、追い
風を受けるプロペラ31もその回転力が高まり、プロペ
ラ31後方への風吹き出し量が多くなる。従って、プロ
ペラ31の推進方向へ向けての風圧も高められる。この
繰返しによって、水平回動軸20の回転が持続され、縦
回動軸10からの出力が得られる。
The horizontal rotation shaft 20 moves along the wind direction line F as shown in the figure with the force of rotation.
-Fl, the propeller 41 that has turned to the leeward side will now receive a headwind, and the propeller 31 that has turned to the windward side will receive a tailwind. The rotational force of the propeller 41 receiving a headwind increases, and accordingly, the rotational force of the propeller 31 receiving a tailwind also increases, and the amount of wind blown toward the rear of the propeller 31 increases. Therefore, the wind pressure in the direction of propulsion of the propeller 31 is also increased. By repeating this, the horizontal rotation shaft 20 continues to rotate, and an output from the vertical rotation shaft 10 is obtained.

第4図乃至第5図は、プロペラ31とプロペラ41とを
同方向に同期回転させる連動機構の他の実施例を示す。
4 and 5 show other embodiments of an interlocking mechanism for rotating the propeller 31 and the propeller 41 in the same direction synchronously.

第4図は、水平回動軸20の中央を断った両端部に、向
い合せに傘歯車51.52を取り付け、この雨傘歯車5
1.52を今一つの傘歯車50を介して連結したもので
ある。
In FIG. 4, bevel gears 51 and 52 are mounted facing each other on both ends of the horizontal rotation shaft 20 cut off at the center.
1.52 are connected via another bevel gear 50.

第5図は、水平回動軸20の中央を断って、平歯車53
.54を両端部に取り付け、この子音歯車53.54を
直接歯合させて連結したものである。
FIG. 5 shows a spur gear 53 cut through the center of the horizontal rotation shaft 20.
.. 54 are attached to both ends, and these consonant gears 53 and 54 are directly meshed and connected.

第6図は、チェーン55の一方をプロペラ軸32に、今
一つのチェーン56を他方ノブロペラ軸42にそれぞれ
掛は回し1両チェーン55.56を歯合させた一対の平
歯車57.58の軸にそれぞれ掛は回して、連結したも
のである。
In FIG. 6, one chain 55 is connected to the propeller shaft 32, and the other chain 56 is connected to the other propeller shaft 42, respectively, and the two chains 55 and 56 are connected to the shafts of a pair of spur gears 57 and 58 in mesh. Each hook is turned and connected.

第7図は、プロペラ軸32と42とを、油圧ポンプ59
を介して連動させたものである。
FIG. 7 shows propeller shafts 32 and 42 connected to a hydraulic pump 59.
It is linked via .

第8図に於て、上述した構成の風車に、風車の回転始動
を適確になさしめると共に、風車の回転力従って縦回動
軸10から効率良く出力を得るための、補助翼60を設
けた例を説明する。
In FIG. 8, the wind turbine having the above-described configuration is provided with auxiliary blades 60 in order to properly start the rotation of the wind turbine and to efficiently obtain output from the rotational force of the wind turbine and hence from the vertical rotation shaft 10. Let me explain an example.

図は、補助翼60として、風受はカップ61゜62を有
する回動軸63を上記の水平回動軸20又は縦軸10と
直交させている。
In the figure, as an aileron blade 60, the wind receiver has a rotating shaft 63 having cups 61 and 62, which is perpendicular to the horizontal rotating shaft 20 or the vertical axis 10.

実施例の補助翼60は、−木の回動軸63と、その両端
に取り付けた風受はカップ61.62とから成っている
The aileron 60 of the embodiment is composed of a wooden rotation shaft 63 and wind receiving cups 61 and 62 attached to both ends thereof.

回動軸63は、水平回転軸20と直角で互いに反対方向
に向けて、水平回動軸20に回動可能に担持させており
1両端に取り付けられた風受はカップ61.62に当た
る風圧で水平回動軸20を回転始動させる。勿論、始動
後に於ては、風受はカップの受ける風力も機械エネルギ
ーに変換される。この風受はカップ61.62は、回動
軸63を適当な手段で回動することによって、受ける風
圧が最小となる伏せられた第1状態と受ける風圧が最大
となる起こされた第2状態とに転換する。
The rotation shaft 63 is rotatably supported by the horizontal rotation shaft 20 so as to be perpendicular to the horizontal rotation shaft 20 and facing in opposite directions. The horizontal rotation shaft 20 is started to rotate. Of course, after starting, the wind bridge also converts the wind force received by the cup into mechanical energy. By rotating the rotation shaft 63 by an appropriate means, the wind receiver can be placed in a first state where it is face down, where the wind pressure it receives is the minimum, and a second state where it is raised, where the wind pressure it receives is the maximum. Convert to.

このような風受はカップ61.62を設けることによっ
て、風車を回転させる際には、左右の風受はカップ61
.62を共に起した第2状態に変換することにより、当
該風受はカップ61.62に当る風圧で風車を容易に回
転始動することができる。
By providing such a wind receiver with cups 61 and 62, when rotating the windmill, the left and right wind receivers are provided with cups 61 and 62.
.. By converting the cups 61 and 62 into the second state in which both the cups 61 and 62 are raised, the wind receiver can easily start rotation of the wind turbine with the wind pressure applied to the cups 61 and 62.

又、風車の停止状態に於ては1回動軸63を回動して左
右の風受はカップ61.62を共に伏せた第1状態とす
る。これによって、風圧を避けることができる。
When the windmill is in a stopped state, the rotation shaft 63 is rotated to bring the left and right wind receivers into a first state with the cups 61 and 62 both facing down. This allows you to avoid wind pressure.

第9図及び第10図に於て、図は、上記水平回動軸20
の回転中心の左右側に、水平に閉じ且つ上下方向に開く
一対の羽根から成る開閉翼70.80を、当該水平回動
軸20の回転方向と逆方向に向けて各々取り付け、両開
閉翼70.80を一方が開くと他方が閉じ、他方が開く
と一方が閉じる関係に連結し、追い風を受ける側に回っ
た開閉翼80を風圧で開かせるように構成した風車の例
である。
In FIG. 9 and FIG. 10, the illustration shows the horizontal rotation shaft 20.
Opening/closing wings 70.80 each consisting of a pair of blades that close horizontally and open in the vertical direction are attached to the left and right sides of the center of rotation, facing in a direction opposite to the rotational direction of the horizontal rotation shaft 20. Both opening/closing wings 70 This is an example of a wind turbine configured so that when one side opens, the other side closes, and when the other side opens, the other side closes, and the opening/closing blades 80 turned to the side receiving the tail wind are opened by wind pressure.

第10図に於て、水平回動軸20は中央で分断され、軸
線が水平方向に平行にズラされた左水平回動軸20Aと
右水平回動軸20Bとから成っている。左右に分断され
た左水平回動軸20Aと右水平回動軸20Bとは、一対
の平歯車53.54とによって、左右のプロペラ装置3
0.40のプ0ペラJj#、i、41が同方向に回転す
るように連動されている。
In FIG. 10, the horizontal rotation shaft 20 is divided at the center and consists of a left horizontal rotation shaft 20A and a right horizontal rotation shaft 20B whose axes are shifted parallel to the horizontal direction. The left horizontal rotation shaft 20A and the right horizontal rotation shaft 20B, which are divided into left and right parts, are connected to the left and right propeller devices 3 by a pair of spur gears 53 and 54.
0.40 propellers Jj#, i, 41 are interlocked to rotate in the same direction.

このように構成された水平回動軸20(20A、20B
)の上下に、当該水平回動軸20と平行に主翼軸71.
72を配している。主翼軸71には、縦回動軸10を中
央にした一方側に主翼70Aが水平に寝かされた状態に
取り付けられ、他方側には、主180Aが垂直上方に立
てられた状態に取り付けられている。
The horizontal rotation shafts 20 (20A, 20B) configured in this way
) above and below, parallel to the horizontal rotation axis 20, the main wing axis 71.
72 is arranged. On the main wing shaft 71, the main wing 70A is attached to one side lying horizontally with the vertical rotation axis 10 in the center, and the main wing 180A is attached vertically upward to the other side. ing.

今一つの主翼軸72には、同じく縦回動軸10を中央に
した一方側に主翼70Bが水平に寝かされた状態に取り
付けられ、他方側には、主翼80Bが垂直下方に垂らさ
れた状態に取り付けられている。
On the other main wing shaft 72, a main wing 70B is attached horizontally on one side with the vertical rotation axis 10 in the center, and a main wing 80B is attached vertically downward on the other side. is attached to.

左側に位置する主翼70A及び70Bは、予定されてい
る水平回転軸20の回転方向と逆向きに、それぞれの主
翼軸71.72に固定され、図示のように互いに水平に
重なり合って、風圧を最も受は難い所謂「閉じた状態」
となっている、以下、この左側の一対の主170Aと主
j(70Bとを「開閉左翼」と称す。
The main wings 70A and 70B located on the left side are fixed to their respective main wing axes 71 and 72 in the opposite direction to the planned rotational direction of the horizontal rotation axis 20, and are horizontally overlapped with each other as shown in the figure to maximize wind pressure. The so-called “closed state” that is difficult to accept
Hereinafter, the left pair of main 170A and main j (70B) will be referred to as the "opening/closing left wing."

他方、右側に位置する主翼80A及び80Bは、互いに
垂直上下方向に向き、風圧を最も受は易い所謂「開いた
状態」に展開している。以下、この一対の主180Aと
主翼80Bとを「開閉右翼」と称す。
On the other hand, the main wings 80A and 80B located on the right side are oriented vertically to each other in the up-and-down direction and are deployed in the so-called "open state" in which they can most easily receive wind pressure. Hereinafter, this pair of main wing 180A and main wing 80B will be referred to as an "opening/closing right wing."

このように、主170Aと主翼80A並びに主翼70B
と主yt80Bは、夫々の主翼軸71.72の軸線を中
心にして90度程ズした位置にある。そして、主31(
70Aと主31i(80Aとを有する主翼軸71と、主
翼70Bと主翼80Bを有する主翼@72とは、平歯車
91と92及び平歯車93と94を介して互いに相反す
る方向に回わるように連動されている。
In this way, the main wing 170A, the main wing 80A, and the main wing 70B
and the main yt80B are located at positions shifted by about 90 degrees with respect to the axes of the respective main wing axes 71 and 72. And Lord 31 (
The main wing shaft 71 having the main wing 70A and the main wing 31i (80A) and the main wing @72 having the main wing 70B and the main wing 80B rotate in opposite directions through spur gears 91 and 92 and spur gears 93 and 94. It is linked.

従って、今、閉じられている開閉左翼が垂直上下方向に
開くと、開かれていた右翼は逆に閉じ、開閉左翼が垂直
上下方向に開き切ったときには。
Therefore, when the currently closed left wing opens vertically in the vertical direction, the right wing that was open will close, and when the left wing fully opens vertically.

開閉右翼はその主翼が平行に重なり合って閉じた状態と
なる。
The retractable right wing is in a closed state with its main wings overlapping in parallel.

この開閉左翼及び開閉右翼の開閉は翼に作用する風圧に
よって自動的に行なわれる。
The opening and closing of the opening/closing left wing and the opening/closing right wing are automatically performed by wind pressure acting on the wings.

これを第11図に於て説明すると、開いている開閉右翼
が追い風を受けているとき、その風圧によって開閉右翼
には開く方向の力が作用し、他方の開閉左翼にはその力
が閉じ方向の力として作用する。この開閉右翼が風に押
されて風下に回り込み、その回転の勢いで風向きライン
F1番を越えると、開かれていた開閉右翼はその回転方
向との逆方向の向い風を受ける。開閉右翼への向い風は
閉じ方向の力として作用して、開閉右翼は閉じられる。
To explain this in Figure 11, when the open right wing is receiving a tailwind, the wind pressure acts on the open right wing in the direction of opening, and on the other left wing, the force is applied in the closing direction. Acts as a force. When the right wing is pushed by the wind and turns downwind, and the force of its rotation crosses the wind direction line F1, the open right wing, which was open, receives a headwind in the opposite direction to the direction of rotation. The headwind toward the opening and closing right wing acts as a force in the closing direction, and the opening and closing right wing is closed.

このとき、開閉右翼への閉じ方向の力は他方の開閉左翼
の開き方向の力となり、然も、当該開閉左翼は風上側の
風方向ラインを越えて追い風が当る状態となっているの
で、その風圧により開かれる。この一連のサイクルの繰
返しで風車はより速く且つ強く回転する。
At this time, the force in the closing direction on the opening/closing right wing becomes the force in the opening direction on the other opening/closing left wing, and since the opening/closing left wing is in a state where it is hit by a tailwind beyond the wind direction line on the windward side, Opened by wind pressure. By repeating this series of cycles, the windmill rotates faster and stronger.

尚、風受はカップ61.62は、相応する回動軸63を
回動せしめることによって、受ける風圧が最小となる伏
せられた第1状態と受ける風圧が最大となる起こされた
第2状態とに転換するようになっている。
Note that the wind receiver cups 61 and 62 can be set in a first state where the wind pressure received is the lowest, in which they are laid down, and a second state in which they are raised, where the wind pressure they receive is maximum, by rotating the corresponding rotation shafts 63. It is expected to be converted to

従って、風車を回転させる際には、風受はカップ61.
62を設けることによって、左右の風受はカップ61.
62を共に起した第2状態に変換することにより、当該
風受はカップ61.62に当る風圧で風車を容易に回転
始動することができる。
Therefore, when rotating the windmill, the wind receiver is placed in the cup 61.
By providing the cup 61.62, the left and right wind receivers become the cup 61.
By converting the cups 61 and 62 into the second state in which they are both raised, the wind receiver can easily start the wind turbine by using the wind pressure applied to the cups 61 and 62.

又、風車の停止の際には、回動軸63を回動して左右の
風受はカップ61.62を共に伏せた第1状態として、
風圧を避けることができる。
When the windmill is stopped, the rotation shaft 63 is rotated so that the left and right wind receivers are placed in the first state with the cups 61 and 62 both facing down.
Wind pressure can be avoided.

図中の符合73は回動軸63を回動させるためのりンク
レバーである。
Reference numeral 73 in the figure is a link lever for rotating the rotation shaft 63.

次に、第12図乃至第15図に示す実施例を説明する。Next, the embodiment shown in FIGS. 12 to 15 will be described.

この実施例は、上記の第10図に示す実施例の更に変形
例であって、第10図の実施例と異なるところは、左右
の開閉翼70と開閉翼80との連動機構にある。
This embodiment is a further modification of the embodiment shown in FIG. 10, and differs from the embodiment shown in FIG. 10 in the interlocking mechanism between the left and right opening/closing wings 70 and 80.

即ち、第10図では、左右の開閉翼7oと開閉翼80と
を結合する2木の主翼軸71.72が上下平行にして、
左右の開閉翼70と開閉翼8oまで、夫々延在されてい
る。
That is, in FIG. 10, the two main wing shafts 71 and 72 connecting the left and right opening/closing wings 7o and the opening/closing wings 80 are vertically parallel,
It extends to the left and right opening/closing wings 70 and 8o, respectively.

そして、開閉翼70を構成する一対の主5t170A、
70Bのうちの一方である主j(70Aと、開閉翼80
を構成する一対の主翼80A、80Bのうちの一方であ
る主翼80Aとが、1本の主翼軸71の両端に設けられ
、同様に、他方の主翼70Bと主翼80Bとが、今一つ
の主翼軸72の両単に設けられた構造となっている。
A pair of main 5t170A forming the opening/closing blade 70,
Main j (70A and opening/closing wing 80) which is one of 70B
The main wing 80A, which is one of the pair of main wings 80A and 80B constituting the main wing 80A, is provided at both ends of one main wing shaft 71, and similarly, the other main wing 70B and the main wing 80B are provided on the other main wing shaft 72. It has a structure in which both sides are simply provided.

これに対して、第12図乃至第15図の実施例では、上
記の主翼軸71.72が左右の開閉翼70と開閉翼80
まで延在されておらず、当該主翼軸71と72との回転
方向を逆向きに回転させるため、主翼軸71と72との
中央付近に間隔を置いて設けられたているところの、噛
合わされた平歯車91.92と平歯車93.94との間
の夫々の主翼軸71.72が分断されている。
On the other hand, in the embodiment shown in FIGS. 12 to 15, the main wing axes 71 and 72 are connected to the left and right opening and closing wings 70 and the opening and closing wings 80.
In order to rotate the rotation directions of the main wing shafts 71 and 72 in opposite directions, there is a meshing mesh provided at a distance near the center of the main wing shafts 71 and 72. The respective main wing shafts 71.72 between the spur gears 91.92 and 93.94 are separated.

この分断された主翼軸71.72の左右側、即ち、右の
開閉翼70側と左の開閉翼80側とは。
What are the left and right sides of the divided main wing shafts 71 and 72, that is, the right opening/closing wing 70 side and the left opening/closing wing 80 side?

夫々の主翼軸71.72は上下に平行のままであるが、
左右方向の軸線は筋違いとなっており、水平位置で平行
に配されている。
The respective main wing axes 71 and 72 remain vertically parallel, but
The left and right axes are staggered and are arranged in parallel in a horizontal position.

そして、筋違いに配された主翼軸72の右側(右の開閉
R70側)の軸72Aと左側の728軸(左の開閉翼8
0)側とは、当該左右の主軸が同方向に回転するように
、リンク機構95を介して、連結されている。
Then, the shaft 72A on the right side (right opening/closing R70 side) of the main wing shafts 72 arranged in a staggered manner and the 728 axis on the left side (left opening/closing wing 8
The left and right main shafts are connected to the 0) side via a link mechanism 95 so that they rotate in the same direction.

第14図はリンク機構95の構造を示すものであるが、
この構造に限らず、リンクされた当該左右の主翼軸72
Aと72Bとが同方向に回転するように連結されればよ
い、リンク機構95は図示の実線と破線に示すように作
動する。
FIG. 14 shows the structure of the link mechanism 95.
Not limited to this structure, the linked left and right main wing shafts 72
The link mechanism 95, which only needs to be connected so that A and 72B rotate in the same direction, operates as shown by solid lines and broken lines in the figure.

尚、その他の構造は、上記第1O図の構造とほぼ同様で
あるから、同一の符合を付している。
Note that the other structures are substantially the same as the structure shown in FIG. 1O above, so the same symbols are given.

(発明の効果) 本発明の風車は、風向き方向の如何を問わず、風があれ
ば、常にその風圧を受けることができるので、従来のよ
うに、風向が風車の回転軸方向から外れて効率が下がっ
たり、風車の回転が停止することがない。
(Effects of the Invention) The wind turbine of the present invention can always receive the wind pressure regardless of the wind direction. The windmill will not drop or the windmill will stop rotating.

従って又、風車の回転軸方向を風向に合せるための首振
り機構等を必要とせず、常に風エネルギーを機械エネル
ギーとして取り出すことができる。
Therefore, wind energy can always be extracted as mechanical energy without requiring a swinging mechanism or the like to align the direction of the wind turbine's rotation axis with the direction of the wind.

又、従来の風車では、弱い風力からでも効率良くエネル
ギーを得るため、一般に風を受ける羽根の面積が大きく
とられているが、本発明は、プロペラを採用しているの
で、風力が小さくても効率的にエネルギーが得られ、し
かも、不使用時に於ける風圧の影響を最小にすることが
できる。
In addition, in conventional wind turbines, the area of the blades that receive the wind is generally large in order to efficiently obtain energy even from weak wind power, but the present invention uses a propeller, so even if the wind power is small, the area of the blade is large. Energy can be obtained efficiently and the influence of wind pressure when not in use can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものにして、11図は、第
1の発明の外観を示す斜視図、第2図は、その機構を示
す平面図、 第3図は、その作用を示す説明図。 第4図乃至第7図は、それぞれ他の機構の例を示す平面
図である。 第8図は、第2の発明の外観を示す斜視図、第9図は、
第3の発明の外観を示す斜視図、第10図は、その機構
を示す斜視図、 第11図は、その作用を示す説明図である。 第12図乃至第15図は、更に別の実施例を示すものに
して。 第12図は正面図。 第13図はその平面図、 第14図は側面図、 第15図は斜視図である。 lO・・・縦回動軸    20・・・水平回動軸30
・・・プロペラ装W   40・・・プロペラ装置31
・・・プロペラ    41・・・プロペラ32・・・
プロペラ軸   42・・・プロペラ軸33・・・基体
      44・・・基体60・・・補助翼    
 61・・・風受はカップ62・・・風受はカップ  
63・・・回動軸70・・・開閉左翼    80・・
・開閉右翼70A・・・主翼     80A・・・主
翼70B・・・主翼     80B・・・主翼71・
・・主翼軸     72・・・主翼軸91〜94・・
・平歯車  95・・・リンク機構F・・・風向   
   Fl・・・風向ライン第1図 第4図 第5図 第6図 ζ=) 第8図 ムO
The drawings show embodiments of the present invention, and FIG. 11 is a perspective view showing the external appearance of the first invention, FIG. 2 is a plan view showing its mechanism, and FIG. 3 is an explanation showing its operation. figure. 4 to 7 are plan views showing examples of other mechanisms, respectively. FIG. 8 is a perspective view showing the external appearance of the second invention, and FIG.
FIG. 10 is a perspective view showing the external appearance of the third invention, FIG. 10 is a perspective view showing its mechanism, and FIG. 11 is an explanatory view showing its operation. 12 to 15 show still another embodiment. Figure 12 is a front view. FIG. 13 is a plan view, FIG. 14 is a side view, and FIG. 15 is a perspective view. lO...Vertical rotation axis 20...Horizontal rotation axis 30
...Propeller device W 40...Propeller device 31
...Propeller 41...Propeller 32...
Propeller shaft 42...Propeller shaft 33...Base 44...Base 60...Ailerons
61... The wind receiver is a cup 62... The wind receiver is a cup
63...Rotation axis 70...Opening/closing left wing 80...
・Opening/closing right wing 70A...Main wing 80A...Main wing 70B...Main wing 80B...Main wing 71・
・・Main wing axis 72 ・・Main wing axis 91 to 94 ・・
・Spur gear 95...Link mechanism F...Wind direction
Fl... Wind direction line Figure 1 Figure 4 Figure 5 Figure 6 ζ=) Figure 8 MuO

Claims (1)

【特許請求の範囲】 1、出力軸として垂直に立てられた縦回動軸に、水平回
動軸を直交させた状態で回動可能に担持させ、当該水平
軸の両端には、水平軸の軸端が縦回動軸を中心にして描
く旋回軌道上を同一旋回方向に推力が働くようにプロペ
ラを設け、当該左右のプロペラをその回転方向が同一と
なるように連結し、向い風を受ける一方のプロペラの回
転力によって追い風を受ける他方のプロペラを回転させ
、向い風を受ける一方のプロペラと追い風を受ける他方
のプロペラとの推力とにより、水平回動軸を介して縦回
動軸を回転せしめて出力を得ることを特徴とする水平回
転風車。 2、出力軸として垂直に立てられた縦回動軸に、水平回
動軸を直交させた状態で回動可能に担持させ、当該水平
軸の両端には、水平軸の軸端が縦回動軸を中心にして描
く旋回軌道上を同一旋回方向に推力が働くようにプロペ
ラを設け、当該左右のプロペラをその回転方向が同一と
なるように連結し、向い風を受ける一方のプロペラの回
転力によって追い風を受ける他方のプロペラを回転させ
、向い風を受ける一方のプロペラと追い風を受ける他方
のプロペラとの推力とにより、水平回動軸を介して縦回
動軸を回転せしめて出力を得ると共に、 両端に風受けカップを有する回動軸を上記の水平回動軸
又は縦軸に直交するように担持させることにより、風受
けカップの受ける風圧で上記水平軸の回転力を高めたこ
とを特徴とする水平回転風車。 3、出力軸として垂直に立てられた縦回動軸に、水平回
動軸を直交させた状態で回動可能に担持させ、当該水平
軸の両端には、水平軸の軸端が縦回動軸を中心にして描
く旋回軌道上を同一旋回方向に推力が働くようにプロペ
ラを設け、当該左右のプロペラをその回転方向が同一と
なるように連結し、向い風を受ける一方のプロペラの回
転力によって追い風を受ける他方のプロペラを回転させ
、向い風を受ける一方のプロペラと追い風を受ける他方
のプロペラとの推力とにより、水平回動軸を介して縦回
動軸を回転せしめて出力を得ると共に、 両端に風受けカップを有する回動軸を上記の水平回動軸
又は縦軸に直交するように担持させることにより、風受
けカップの受ける風圧で上記水平軸の回転力を高め、 更に、上記水平回動軸の回転中心の左右側に、水平に閉
じ且つ上下方向に開く一対の羽根から成る開閉翼を、当
該水平回動軸の回転方向と逆方向に向けて各々取り付け
、両開閉翼を一方が開くと他方が閉じ、他方が開くと一
方が閉じる関係に連結し、追い風を受ける側に回った開
閉翼を風圧で開かせることを特徴とする水平回転風車。
[Claims] 1. A vertically erected vertically rotating shaft as an output shaft is rotatably supported with a horizontally rotating shaft perpendicular to the horizontally rotating shaft. A propeller is provided so that thrust is exerted in the same turning direction on a turning trajectory whose shaft end is centered on the vertical rotation axis, and the left and right propellers are connected so that their rotation directions are the same, and one side that receives a headwind. The rotational force of one propeller rotates the other propeller, which receives a tailwind, and the thrust of one propeller, which receives a headwind, and the other propeller, which receives a tailwind, rotates the vertical rotation axis via the horizontal rotation axis. Horizontal rotating wind turbine characterized by obtaining output. 2. The output shaft is rotatably supported by a vertically rotating shaft that is erected vertically, with the horizontally rotating shaft perpendicular to the vertically rotating shaft. The propellers are installed so that thrust acts in the same direction on a turning trajectory drawn around the shaft, and the left and right propellers are connected so that their rotational directions are the same, and the rotational force of one propeller receiving a headwind is used to generate a propeller. The other propeller receiving a tailwind rotates, and the thrust of one propeller receiving a headwind and the other propeller receiving a tailwind rotates the vertical rotation axis via the horizontal rotation axis to obtain output, and A rotating shaft having a wind receiving cup is supported perpendicularly to the horizontal rotating shaft or the vertical axis, whereby the rotational force of the horizontal shaft is increased by the wind pressure received by the wind receiving cup. Horizontal rotating windmill. 3. The output shaft is rotatably supported by a vertically rotating shaft that is erected vertically with a horizontally rotating shaft orthogonal to it, and the shaft ends of the horizontal shaft are mounted on both ends of the horizontal shaft for vertically rotating. The propellers are installed so that thrust acts in the same direction on a turning trajectory drawn around the shaft, and the left and right propellers are connected so that their rotational directions are the same, and the rotational force of one propeller receiving a headwind is used to generate a propeller. The other propeller receiving a tailwind rotates, and the thrust of one propeller receiving a headwind and the other propeller receiving a tailwind rotates the vertical rotation axis via the horizontal rotation axis to obtain output, and By supporting a rotating shaft having a wind receiving cup so as to be perpendicular to the horizontal rotating shaft or the vertical axis, the rotational force of the horizontal shaft is increased by the wind pressure received by the wind receiving cup, and Opening/closing wings consisting of a pair of blades that close horizontally and open vertically are attached to the left and right sides of the rotation center of the rotating shaft, respectively, facing in the opposite direction to the rotational direction of the horizontal rotating shaft. A horizontal rotary wind turbine is characterized in that when one opens, the other closes, and when the other opens, one closes, and the opening/closing blades rotated to receive a tailwind are opened by wind pressure.
JP63024964A 1988-02-05 1988-02-05 Horizontal rotary wind mill Pending JPH01200066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63024964A JPH01200066A (en) 1988-02-05 1988-02-05 Horizontal rotary wind mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63024964A JPH01200066A (en) 1988-02-05 1988-02-05 Horizontal rotary wind mill

Publications (1)

Publication Number Publication Date
JPH01200066A true JPH01200066A (en) 1989-08-11

Family

ID=12152658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63024964A Pending JPH01200066A (en) 1988-02-05 1988-02-05 Horizontal rotary wind mill

Country Status (1)

Country Link
JP (1) JPH01200066A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050525A (en) * 2001-12-18 2003-06-25 원인호 Linked wind rotator
KR20030065747A (en) * 2002-01-30 2003-08-09 원인호 Gathering device
KR100717882B1 (en) * 2006-04-17 2007-05-14 김연조 Wind power plant
KR100839485B1 (en) * 2007-12-27 2008-06-19 제너럴로터(주) The vertical axis-wind power system having multiple rotor blade-type
KR100915381B1 (en) * 2008-09-23 2009-09-03 삼우플랜트(주) Wind power generator
PT106245A (en) * 2012-04-03 2013-10-03 Lino De Pina Almeida E Silva DEVICE FOR THE ENTRY OF WIND ENERGY AND MARITIME CURRENCY BY VARIABLE GEOMETRY POT ROTORS INTENDED FOR THE PRODUCTION OF ELECTRICAL ENERGY.
JP2013217333A (en) * 2012-04-11 2013-10-24 Ihi Corp Ocean current power generating equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050525A (en) * 2001-12-18 2003-06-25 원인호 Linked wind rotator
KR20030065747A (en) * 2002-01-30 2003-08-09 원인호 Gathering device
KR100717882B1 (en) * 2006-04-17 2007-05-14 김연조 Wind power plant
KR100839485B1 (en) * 2007-12-27 2008-06-19 제너럴로터(주) The vertical axis-wind power system having multiple rotor blade-type
WO2009084870A3 (en) * 2007-12-27 2009-09-24 General Rotor Co., Ltd. The vertical axis-wind power system having multiple rotor blade-type
KR100915381B1 (en) * 2008-09-23 2009-09-03 삼우플랜트(주) Wind power generator
PT106245A (en) * 2012-04-03 2013-10-03 Lino De Pina Almeida E Silva DEVICE FOR THE ENTRY OF WIND ENERGY AND MARITIME CURRENCY BY VARIABLE GEOMETRY POT ROTORS INTENDED FOR THE PRODUCTION OF ELECTRICAL ENERGY.
JP2013217333A (en) * 2012-04-11 2013-10-24 Ihi Corp Ocean current power generating equipment

Similar Documents

Publication Publication Date Title
US4428711A (en) Utilization of wind energy
US5193978A (en) Articulated blade with automatic pitch and camber control
US5126584A (en) Windmill
US20090180880A1 (en) Check valve turbine
CN107021223A (en) A kind of imitative birds multiple degrees of freedom flapping wing aircraft
US20080199314A1 (en) Wind driven power system
US20200191120A1 (en) Concentric Wing Turbines
JPH01200066A (en) Horizontal rotary wind mill
CN102109051A (en) One-way fluid permeation door and application thereof
CN206302372U (en) A kind of photovoltaic tracking system
CN114593009A (en) Power-adjusting typhoon-resisting framework and method for large-scale wind power equipment
WO2006131075A1 (en) Automatic sail type swing blade vertical axis wind mill
US20090257874A1 (en) Vertical axis windmill with weather vane positioning
US20110182733A1 (en) Square Rigged Sail Wind Turbine
EP2610483B1 (en) Windkraftanlage mit vertikaler Achse
CN208168072U (en) A kind of rotation high-efficiency photovoltaic glass curtain wall
US20090016882A1 (en) Apparatus for Capturing Kinetic Energy
CN206954508U (en) A kind of imitative birds multiple degrees of freedom flapping wing aircraft
RU84068U1 (en) WIND UNIT
CN87101493A (en) Wind power engine with planet phase type wind-sails
CN110382353A (en) Unmanned aerial vehicle rack and unmanned plane
CN201377384Y (en) Vertical axis wind turbine
JPH0712045A (en) Vertical shaft windmill to be layered and mounted on multistory tower
CN208502949U (en) A kind of small-sized wind power utilization device
JPH0617745A (en) Vertical shaft sail-wing windmill having laterally long blade