JPH01200004A - Method for welding erosion control plate of turbin moving blade - Google Patents

Method for welding erosion control plate of turbin moving blade

Info

Publication number
JPH01200004A
JPH01200004A JP2211088A JP2211088A JPH01200004A JP H01200004 A JPH01200004 A JP H01200004A JP 2211088 A JP2211088 A JP 2211088A JP 2211088 A JP2211088 A JP 2211088A JP H01200004 A JPH01200004 A JP H01200004A
Authority
JP
Japan
Prior art keywords
welding
titanium alloy
turbine rotor
turbin
moving blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2211088A
Other languages
Japanese (ja)
Inventor
Takehide Sayama
佐山 武英
Tetsuro Watanabe
渡辺 哲朗
Kazuyuki Kimura
木村 一幸
Masaru Kishimoto
勝 岸本
Tadayoshi Endo
遠藤 忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2211088A priority Critical patent/JPH01200004A/en
Publication of JPH01200004A publication Critical patent/JPH01200004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve erosion resistance by making an erosion control plate containing an age hardening titanium alloy into contact with the vapor inlet part of a turbin moving blade containing a titanium alloy, and irradiating the circumference thereof with laser beams to weld each other by partial joint penetration. CONSTITUTION:Prior to welding, an erosion control plate 5 in which a metastable beta type titanium alloy piece is subjected to an age hardening treatment is made into contact with a concave part formed in the vapor inlet part of a turbin moving blade 1 composed of a titanium alloy. The welding part 7 is irradiated with laser beams 8 with shielding the circumference thereof with argon gas 6. In this case, one side is first welded by partial joint penetration, and after removing scales on the opposite side, this surface is welded by partial joint penetration to form the welding part 7. Hence, the erosion resistance of the turbin moving blade 1 is improved without losing its strength, while surpressing the deformation in welding.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐エロージヨン性の優れたタービン動翼が得ら
れ′るチタン合金を含むタービン動翼のエロージョン防
止板溶接方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for welding an erosion prevention plate for a turbine rotor blade containing a titanium alloy, by which a turbine rotor blade with excellent erosion resistance can be obtained.

〔従来の技術〕[Conventional technology]

蒸気タービンの動翼には12%Crステンレス鋼や、1
7−4PHステンレス鋼が使用されているが、低圧段に
はチタン合金から成る動翼も使用されはじめてきた。
Steam turbine rotor blades are made of 12% Cr stainless steel or 1
Although 7-4PH stainless steel is used, rotor blades made of titanium alloys are also beginning to be used in low pressure stages.

蒸気タービンの低圧段に使用されるタービン動翼は、タ
ービン運転中に蒸気中の水滴によって蒸気入口部にエロ
ージョンが発生することがあった。12%Crステンレ
ス鋼や、17−4PHステンレス鋼のタービン動翼では
エロージョンを防止するためにステライト合金を肉盛溶
接したシ、ステライト合金から成るエロージヨン防止片
を電子ビーム溶接したシ、あるいはステライト合金から
成る薄いエロージョン防止板をろう付けしたシしている
In turbine blades used in the low-pressure stage of a steam turbine, erosion may occur at the steam inlet due to water droplets in the steam during turbine operation. Turbine rotor blades made of 12% Cr stainless steel or 17-4PH stainless steel are made of stellite alloy overlay welded to prevent erosion, erosion prevention pieces made of stellite alloy that are electron beam welded, or made of stellite alloy. It consists of a thin erosion-prevention plate that is brazed to the top.

チタン合金から成るタービン動翼においても、1210
rステンレス鋼や17−4PHステンレス鋼から成るタ
ービン動翼と同様に蒸気入口部にエロージョンの発生す
るおそれがある。
Even in turbine rotor blades made of titanium alloy, 1210
Similar to turbine rotor blades made of stainless steel or 17-4PH stainless steel, erosion may occur at the steam inlet.

この対策として、タービン動翼と同じチタン合金であっ
て、溶接が可能であシ、かつ硬い準安定β型チタン合金
片(ri−xsMo−szr)を電子ビーム溶接によっ
て接合することが考えられている。(実開昭62〜67
902号公報参照)第5図は従来のタービン動翼1にβ
型チタン合金片2を電子ビーム3によって完全連込みの
貫通溶接を実施している状況を示す図である。
As a countermeasure to this problem, it has been considered to join pieces of a metastable β-type titanium alloy (ri-xsMo-szr), which is the same titanium alloy as the turbine rotor blades but is also weldable and hard, by electron beam welding. There is. (Actual development from 1986 to 1983)
(Refer to Publication No. 902) Figure 5 shows a conventional turbine rotor blade 1 with β
FIG. 2 is a diagram showing a state in which complete penetration welding of a type titanium alloy piece 2 is performed using an electron beam 3.

この場合には入熱を多くする必要があシ溶接部4の幅は
広くなり、冷却速度が遅くなって溶接部の強度、延性が
劣る。
In this case, it is necessary to increase the heat input, and the width of the welded part 4 becomes wide, and the cooling rate becomes slow, resulting in poor strength and ductility of the welded part.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

チタン合金(Ti−sAn−4V)の電子ビーム溶接に
関する報告 (昭和60年3月4日発行「鉄と鋼JttkL5゜Vo
l 71  PdAR1985日本鉄鋼協会第109会
講演大会、講演概要集■) から知られているようくいチタン合金は入熱量が多くな
シ、溶接部の幅が広くなると強度および延性が低下する
。このため、入熱量を制限して部分溶込みとし、次いで
反対側からもビーム金照射し、2回の照射によって全体
を接合することが考えられる。しかしながら、チタン合
金は活性金属であるため一回目の照射で溶接部周辺にス
ケール(酸化皮膜)が発生し、スケールの付着した状態
で反対面から溶接すると、ピンホール、ポロシティ等の
溶接欠陥が発生しやすい。−回目の溶接で発生したスケ
ールを除去しようとすれば、電子ビーム溶接であれば、
真空チャンバー内の高真空雰囲気を一旦大気圧に戻して
、スケール除去を行った後、再びチャンバの真空引きを
行なう必要があシ、工数がか\多年経済であるという問
題点があった。本発明はかかる現状に鑑みなされたもの
で、容易にかつ動翼の強度を損なうことなく、また溶接
時の変形が少なく、耐エロージヨン性の優れたタービン
動翼を得ることができるタービン動翼のエロージヨン防
止板溶接方法を提供することを目的とするものである。
Report on electron beam welding of titanium alloy (Ti-sAn-4V) (published on March 4, 1985, “Tetsu to Hagane JttkL5°Vo
71 PdAR 1985 Japan Iron and Steel Institute 109th Conference, Collection of Lecture Abstracts ■) The titanium alloy known from Japan has a large amount of heat input, and as the width of the weld increases, the strength and ductility decrease. For this reason, it is conceivable to limit the amount of heat input to achieve partial penetration, then irradiate the gold beam from the opposite side as well, and join the entire structure by two irradiations. However, since titanium alloy is an active metal, scale (oxide film) is generated around the welded area by the first irradiation, and when welding from the opposite side with scale attached, welding defects such as pinholes and porosity will occur. It's easy to do. - If you are trying to remove the scale generated during the first welding, if you use electron beam welding,
After the high vacuum atmosphere in the vacuum chamber is once returned to atmospheric pressure and scale removed, it is necessary to evacuate the chamber again, which poses a problem in that it requires a lot of man-hours and costs money over many years. The present invention has been made in view of the current situation, and it is possible to easily obtain a turbine rotor blade with excellent erosion resistance, without deteriorating the strength of the rotor blade, and with less deformation during welding. The object of the present invention is to provide a method for welding plates to prevent erosion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、電子ビーム溶接とほぼ同等の高エネルギー密
度を有し、かつ、大気の雰囲気で、アルゴンガスのよう
な不活性ガスでシールドして実施できるレーザビーム溶
接に着目したものであり、チタン合金を含むタービン動
翼の蒸気入口部に時効硬化盤のチタン合金を含むエロー
ジヨン防止板を当着した後、前記当着部忙レーザビーム
を照射して3ms以下の溶接幅で部分溶込みを行ない接
合することを特徴とするタービン動翼のエロージョン防
止板溶接方法を提案するものである。
The present invention focuses on laser beam welding, which has almost the same high energy density as electron beam welding and can be performed in an atmospheric atmosphere while shielding with an inert gas such as argon gas. After attaching an erosion prevention plate containing a titanium alloy of an age-hardened plate to the steam inlet part of a turbine rotor blade containing an alloy, the abutment area is irradiated with a laser beam to perform partial penetration with a welding width of 3 ms or less. The present invention proposes a welding method for erosion prevention plates for turbine rotor blades, which is characterized by joining.

〔作用〕[Effect]

チタン合金を含むタービン動翼の蒸気入口部に、時効硬
化型のチタン合金を含むエロージョン防止板をレーザビ
ームで溶接幅の狭い3m以下の溶接幅で部分溶込みを行
なうために1溶接人熱量が少なく溶接部は従来の溶接部
が広い溶接方法の場合とは異なシ、強度や延性の低下が
なく母材よシ硬く、母材と同等かそれ以上の機械的性質
を示しくなお、溶接幅が3襲以上では溶接金属の硬さは
母材より低い)低コストで高品質の溶接ができ、タービ
ン動翼の蒸気入口部の耐エロージヨン性が高められる。
In order to partially penetrate an erosion prevention plate containing an age-hardened titanium alloy into the steam inlet of a turbine rotor blade containing a titanium alloy with a narrow welding width of 3 m or less using a laser beam, the amount of heat consumed by one welder is required. Unlike conventional welding methods where the weld area is wider, the weld area is harder than the base metal without any loss in strength or ductility, and exhibits mechanical properties equal to or better than the base metal. However, if the weld metal has three or more strokes, the hardness of the weld metal is lower than that of the base metal), high-quality welding can be performed at low cost, and the erosion resistance of the steam inlet of the turbine rotor blade is improved.

〔実施例〕〔Example〕

第1図〜第4図により本発明の実施例について説明する
Embodiments of the present invention will be described with reference to FIGS. 1 to 4.

第1図は本発明の1実施例の説明図で、第1図において
、Ti−6AJ−4Vのチタン合金から成るタービン動
翼1の蒸気入口部忙形成した凹部にTi−15Mo−5
Zrの準安定β型チタン合金片で時効硬化処理を施した
エロージョン防止板5を当着しアルゴンガス6で溶接部
7周辺をシールドしつつレーザビーム8を照射しまず、
6KJ/IL以下の入熱で片面よシ部分溶込みをさせて
溶接し、次いで反対面のスケールを除去した後、この面
を前記同様に部分溶込みで溶接して、幅が3m以下の溶
接部7を形成する。
FIG. 1 is an explanatory diagram of one embodiment of the present invention. In FIG. 1, a Ti-15Mo-5 is placed in a recess formed in the steam inlet of a turbine rotor blade 1 made of a titanium alloy of Ti-6AJ-4V.
An erosion prevention plate 5 made of a Zr metastable β-type titanium alloy piece subjected to an age hardening treatment is applied, and while the periphery of the welding part 7 is shielded with argon gas 6, a laser beam 8 is irradiated.
Weld with partial penetration on one side with a heat input of 6KJ/IL or less, then remove the scale on the opposite side, and then weld this side with partial penetration in the same manner as above to weld a width of 3m or less. Section 7 is formed.

第2図は本発明の第2実施例の説明図である。FIG. 2 is an explanatory diagram of a second embodiment of the present invention.

第2図において、チタン合金から成るタービン動翼1の
蒸気入口側の一部に(a)図に示すように開先成形加工
により切欠部10を形成する。この切欠部10の形状に
相応するべく曲げ加工した時効硬化型のチタン合金から
成るエロージョン防止板11をΦ)図に示すように切欠
部10に当着する。
In FIG. 2, a notch 10 is formed in a part of the steam inlet side of the turbine rotor blade 1 made of a titanium alloy by groove forming as shown in FIG. 2(a). An erosion prevention plate 11 made of an age-hardening titanium alloy and bent to correspond to the shape of the notch 10 is brought into contact with the notch 10 as shown in FIG.

次に(C)図に示すようにエロージョン防止板11の上
面よシエロージョン防止板11の周囲の合わせ部12に
不活性のアルゴンガス6の雰囲気でレーザビーム8を照
射してエロージョン防止板11をタービン動翼1に溶接
することによシ、耐エロージヨン性の優れたタービン動
翼1が得られる。
Next, as shown in the figure (C), the erosion prevention plate 11 is irradiated with a laser beam 8 from the upper surface of the erosion prevention plate 11 to the mating portion 12 around the erosion prevention plate 11 in an atmosphere of inert argon gas 6. By welding to the turbine rotor blade 1, the turbine rotor blade 1 with excellent erosion resistance can be obtained.

レーザビーム8はエネルギー密度が高いので狭い範囲を
瞬間的に溶かし、かつ入熱を少なくできるので、熱影響
部の少ない高品質の溶接ができる。また電子ビーム溶接
のように高真空のチャンバーに入れる必要がないので、
低コストで実施できる有利さがある。タービン動翼の蒸
気入口部の厚さは薄いので、レーザビーム溶接てはCO
!レーザの他にYAGレーザも適用できる。
Since the laser beam 8 has a high energy density, it can instantaneously melt a narrow area and reduce heat input, so high-quality welding with a small heat-affected zone can be performed. Also, unlike electron beam welding, there is no need to put the material in a high vacuum chamber.
It has the advantage of being able to be implemented at low cost. Since the thickness of the steam inlet of the turbine rotor blade is thin, laser beam welding requires CO
! In addition to lasers, YAG lasers can also be used.

レーザビームの照射はエロージヨン防止板の全周に実施
しなくても、その一部に実施することによってでも充分
な接合強さに達し、同様の耐エロージョン効果が得られ
る。また、溶接によるタービン動翼の強度低下を抑える
ために、溶接部13はタービン動翼1の厚さを超えない
ようにすること、すなわち部分溶込みとすることが肝要
である。
Even if the laser beam irradiation is not applied to the entire circumference of the erosion prevention plate, even if it is applied to a part of it, sufficient bonding strength can be achieved and the same erosion prevention effect can be obtained. Furthermore, in order to suppress a decrease in the strength of the turbine rotor blade due to welding, it is important that the welded portion 13 does not exceed the thickness of the turbine rotor blade 1, that is, that it has partial penetration.

レーザビーム8の照射に先立ち、エロージョン防止板1
1を当着した時点で、T工G溶接で仮付けすればレーザ
ビーム8での溶接中にエロージョン防止板11が切欠部
10から外れることがなく、確実に溶接できる。
Prior to irradiation with the laser beam 8, the erosion prevention plate 1 is
1, if it is temporarily attached by T welding, the erosion prevention plate 11 will not come off from the notch 10 during welding with the laser beam 8, and welding can be performed reliably.

タービン動翼1の厚さの薄い部分にエロージョン防止板
11を当着するには、第3図の第3実施例のようにエロ
ージョン防止板11を折り曲げて当着してもよく、また
第4図の第4実施例のように曲げ加工を施さずに当着し
、溶接後に端部(刃先部)14を切削加工してもよい。
In order to abut the erosion prevention plate 11 on the thin part of the turbine rotor blade 1, the erosion prevention plate 11 may be bent and abutted as in the third embodiment shown in FIG. As in the fourth embodiment shown in the figure, the ends (blade edges) 14 may be cut without being bent and then welded.

時効硬化型のチタン合金を含むエロージョン防止板11
は、チタン合金を含むタービン動翼1に溶接できるよう
にチタンを主成分とするものであって、時効硬化処理に
よって著しく硬くできる性質のTi−15Mo−5Zr
+ Ti−15Mo−5Zr−31合金がよく、さらに
これの表層部の全部もしくは一部にレーザ焼入れ(急冷
)や窒化処理のような表面硬化処理を施して一層硬くし
たものであってもレーザビームだよって溶接でき、同様
の効果が得られる。
Erosion prevention plate 11 containing age-hardening titanium alloy
Ti-15Mo-5Zr is a material whose main component is titanium so that it can be welded to the turbine rotor blade 1 containing a titanium alloy, and which can be made extremely hard by age hardening treatment.
+Ti-15Mo-5Zr-31 alloy is good, and even if the surface layer is made even harder by performing surface hardening treatment such as laser hardening (quenching) or nitriding treatment on all or part of the surface layer, the laser beam will not work. Therefore, it can be welded and the same effect can be obtained.

上記の実施例の方法によれば、タービン動翼の強度およ
び延性を損うことなく溶接時の変形が少なく、耐エロー
ジヨン性の優れたタービン動翼が得られる。
According to the method of the above embodiment, a turbine rotor blade with less deformation during welding and excellent erosion resistance can be obtained without impairing the strength and ductility of the turbine rotor blade.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、チタン合金を含むタービン動翼
の蒸気入口部に時効硬化型のチタン合金を含むエロージ
ョン防止板を当着し、周囲をレーザビーム溶接で部分溶
込みさせて溶接するため、タービン動翼の強さを損なう
ことなく、また溶接時の変形を極力少なく抑えた上で、
耐エロージヨン性の優れたタービン動翼が得られる。
According to the method of the present invention, an erosion prevention plate containing an age-hardening titanium alloy is attached to the steam inlet part of a turbine rotor blade containing a titanium alloy, and the surrounding area is partially penetrated and welded by laser beam welding. , without compromising the strength of the turbine rotor blades and minimizing deformation during welding.
A turbine rotor blade with excellent erosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の説明図、第2図は本発明
の第2実施例の説明図、第3図は本発明の第3実施例の
説明図、第4図は本発明の第4実施例の説明図、第5図
は従来のタービン動翼のエロージョン防止板溶接方法の
説明図である。 1・・・タービン動翼、2・・・β型チタン合金片、3
・・・電子ビーム、4・・・溶接部、5・・・エロージ
ョン防止板、6・・・アルゴンガス、7・・・溶接部、
8・・・レーザビーム、10・・・切欠部、11・・・
エロージョン防止板、12・・・合せ部、13・・・溶
接部14・・・端部 代理人 弁理士  坂 間    暁     外2名
萬1区 CC) 納3(3)          fiA関痢5m
Fig. 1 is an explanatory diagram of the first embodiment of the present invention, Fig. 2 is an explanatory diagram of the second embodiment of the invention, Fig. 3 is an explanatory diagram of the third embodiment of the invention, and Fig. 4 is an explanatory diagram of the present invention. FIG. 5 is an explanatory diagram of a fourth embodiment of the invention, and FIG. 5 is an explanatory diagram of a conventional erosion prevention plate welding method for a turbine rotor blade. 1...Turbine rotor blade, 2...β-type titanium alloy piece, 3
... Electron beam, 4... Welded part, 5... Erosion prevention plate, 6... Argon gas, 7... Welded part,
8... Laser beam, 10... Notch, 11...
Erosion prevention plate, 12... Joining part, 13... Welding part 14... Edge Agent Patent attorney Akira Sakama 2 people 1st Ward CC) 3 (3) fiA 5m

Claims (1)

【特許請求の範囲】[Claims] チタン合金を含むタービン動翼の蒸気入口部に時効硬化
型のチタン合金を含むエロージヨン防止板を当着した後
、前記当着部にレーザビームを照射して3mm以下の溶
接幅で部分溶込みを行ない接合することを特徴とするタ
ービン動翼のエロージヨン防止板溶接方法。
After attaching an erosion prevention plate containing an age-hardening titanium alloy to the steam inlet of a turbine rotor blade containing a titanium alloy, the abutment area is irradiated with a laser beam to achieve partial penetration with a welding width of 3 mm or less. A method for welding erosion prevention plates for turbine rotor blades, the method comprising welding erosion prevention plates for turbine rotor blades.
JP2211088A 1988-02-03 1988-02-03 Method for welding erosion control plate of turbin moving blade Pending JPH01200004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2211088A JPH01200004A (en) 1988-02-03 1988-02-03 Method for welding erosion control plate of turbin moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2211088A JPH01200004A (en) 1988-02-03 1988-02-03 Method for welding erosion control plate of turbin moving blade

Publications (1)

Publication Number Publication Date
JPH01200004A true JPH01200004A (en) 1989-08-11

Family

ID=12073744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2211088A Pending JPH01200004A (en) 1988-02-03 1988-02-03 Method for welding erosion control plate of turbin moving blade

Country Status (1)

Country Link
JP (1) JPH01200004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780187A1 (en) 1995-12-22 1997-06-25 Gec Alsthom Electromecanique Sa Manufacturing process of a blade comprising alpha-beta titanium with an insert at metastable beta titanium and a blade manufactured by such a process
EP1649970A1 (en) * 2004-10-25 2006-04-26 Siemens Aktiengesellschaft Method of manufacturing a turbine blade made of titanium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780187A1 (en) 1995-12-22 1997-06-25 Gec Alsthom Electromecanique Sa Manufacturing process of a blade comprising alpha-beta titanium with an insert at metastable beta titanium and a blade manufactured by such a process
US5795412A (en) * 1995-12-22 1998-08-18 Gec Alsthom Electromecanique S.A. Method of manufacturing and repairing a blade made of α-β titanium
EP1649970A1 (en) * 2004-10-25 2006-04-26 Siemens Aktiengesellschaft Method of manufacturing a turbine blade made of titanium

Similar Documents

Publication Publication Date Title
US6596411B2 (en) High energy beam welding of single-crystal superalloys and assemblies formed thereby
EP0249579B1 (en) Method for butt welding two pieces of medium or high carbon content steel, with a laser beam
JP5725723B2 (en) High power laser beam welding and its assembly
GB1295573A (en)
JP2019025545A (en) Method of welding superalloys
ES375462A1 (en) Turbine bucket erosion shield attachment
GB1468302A (en) Method of joining members of dissimilar metals
JPH01200004A (en) Method for welding erosion control plate of turbin moving blade
US4527040A (en) Method of laser welding
JP5948435B2 (en) Welding materials and welded joints
JPH0523920A (en) Junction of corrosion protective piece of turbine rotor blade
Cottrell Electron beam welding—a critical review
CN112692432A (en) Joint structure
JP3181157B2 (en) Repair method of gas turbine blade
JPH03271352A (en) Method for bonding ti-alloy turbine blade and ti alloy
Ferro et al. Experimental and numerical analysis of TIG-dressing applied to a steel weldment
JPS6326285A (en) Welding and assembling method for impeller
JPH06320280A (en) Butt welding method for both-side clad plural layer steels
JPH0520192B2 (en)
JP4505076B2 (en) Electron beam welding method for obtaining weld metal with excellent low temperature toughness
JPH02165878A (en) Electron beam welding method for low alloy steels
JPS6394001A (en) Turbine movable vane made of ti alloy
JP3912491B2 (en) Laser welded joint of steel
JPH01104901A (en) Buildup welding method for turbine rotor blade
JPS58197403A (en) Turbine blade and method of manufacturing thereof