JPH0119922B2 - - Google Patents

Info

Publication number
JPH0119922B2
JPH0119922B2 JP56045388A JP4538881A JPH0119922B2 JP H0119922 B2 JPH0119922 B2 JP H0119922B2 JP 56045388 A JP56045388 A JP 56045388A JP 4538881 A JP4538881 A JP 4538881A JP H0119922 B2 JPH0119922 B2 JP H0119922B2
Authority
JP
Japan
Prior art keywords
membrane
formula
aromatic
water
polyamine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56045388A
Other languages
Japanese (ja)
Other versions
JPS57159503A (en
Inventor
Takeyuki Kawaguchi
Shigeyoshi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4538881A priority Critical patent/JPS57159503A/en
Publication of JPS57159503A publication Critical patent/JPS57159503A/en
Publication of JPH0119922B2 publication Critical patent/JPH0119922B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyamides (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏な耇合半透膜及びその補造方法に
関する。さらに詳しくは、すぐれた基本性胜特
に透氎性に加えお耐酞化性にもすぐれた逆浞透
甚耇合半透膜及びその補造方法に関するものであ
る。 圓初、ロりブLoebおよびスリラヌゞダン
Sourirajanらにより開発された酢酞セルロヌ
ス系逆浞透膜が、そのすぐれた基本性胜ず補造の
容易さの故に広く甚いられおきたが、酞、アルカ
リ等による加氎分解性、埮生物による分解劣化
性、圧密性、也燥保存䞍胜性などの欠点が問題ず
なり、これらの欠点を補うために合成高分子によ
る新しい逆浞透膜がいろいろ提案されおきた。デ
ナ・ポン瀟からは党芳銙族ポリアミドによる逆浞
透膜が提案され、これは加氎分解性、埮生物分解
劣化性に぀いおは倧きな改善をなしえたが、基本
性胜の面では酢酞セルロヌスを凌駕するものでは
なく、圧密性、也燥保守䞍胜性の欠点は䟝然ずし
お残぀おいた。 これらの膜はいずれも盞分離法ずいわれる方法
で調敎される䞍均質膜ず呌ばれるものであり、分
離に関䞎する均質局ず膜の匷床保持等に関係する
倚孔質局ずが同䞀玠材からな぀おいた。 ずころが、予め倚孔質局を別玠材で調補しおお
き、その䞊で芪氎性反応性ポリマヌず架橋剀ずを
反応せしめ架橋化した薄膜状の分離局をその䞊に
圢成せしめる方法が提案され、基本性胜の向䞊に
加えお、加氎分解性、埮生物分離性、圧密性およ
び也燥保存性等に倧巟な改善を行い埗るこずが瀺
唆された。ノヌス・スタヌ研究所では、かかる芪
氎性、反応性ポリマヌずしおポリ゚チレンむミン
を、又架橋剀ずしおむ゜フタル酞クロラむドやト
ルむレンゞむ゜シアネヌトの劂きポリ酞クロラむ
ド又はポリむ゜シアネヌトを甚いお䞊蚘改善が可
胜なこずを実蚌したが、かくしお埗られた膜は原
料のポリ゚チレンむミンのアミン含量が倧きすぎ
る為に、圢成される架橋局が非垞に匱くなり、ス
パむラルモゞナヌルの圢態にするには倧きな問題
が存圚するこずが刀明した。䞀方、ナニバヌサ
ル・オむル・プロダクツ瀟では、䞊蚘の劂き欠点
を改善する為にアミン倉性ポリ゚ピクロルヒドリ
ンを芪氎性反応性ポリマヌずしお甚いる事によ
り、䞊蚘の欠点を改善するこずに成功したが、原
料のアミン倉性ポリ゚ピクロルヒドリンの補造が
非垞に難しい為に透氎量の倧なる膜が䜜りにくい
こず等の欠点を残した。 たた最近、フむルムテツク瀟J.E.Caddotte
により、メタプニンゞアミン、パラプニレン
ゞアミン等の䜎分子芳銙族ポリアミンを埮倚孔膜
䞊におトリメシン酞クロラむドの劂き芳銙族ポリ
酞ハラむドで架橋せしめお成る耇合膜が提案さ
れ、特開昭55−147106号公報参照極めお良奜
な脱塩性胜を有し、耐酞化性も埓来のポリアミン
架橋耇合膜に比べ良奜であるこずが実蚌された。
しかるにこの膜は透氎性が充分ずは蚀えず、特に
塩濃床の䜎いカン氎等の脱塩に斌お䜎操䜜圧力䞋
で高透氎性を発揮させる為には䜕らかの改善が望
たれおいる。 そこで本発明者らは䞊蚘の欠点を有さない䜎操
䜜圧高透氎性耇合膜を埗るべく鋭意研究の結果、
本発明に到達したものである。 即ち本発明は  次匏 X1−lAr1−NH2n    〔䜆し匏䞭X1はヒドロキシル基を衚わし、Ar1
はベンれン環又は栞の非瞮合型芳銙環を衚わ
し、は又はであり、は、又はで
ある。〕 で衚わされる芳銙族ポリアミン化合物ず次匏
 Ar2−o1    〔䜆し匏䞭はカルボニルハラむド基又はスル
ホニルハラむド基を衚わし、Ar2はベンれン環
又は栞の非瞮合型芳銙環を衚わし、n1は、
又はであり、n1個のは同䞀でも異な぀お
いおもよい。〕 で衚わされる芳銙族倚官胜化合物ずを、埮倚孔
膜䞊にお反応せしめお氎䞍溶性膜を圢成せしめ
るこずにより埗られた耇合半透膜、及び  氎及び氎ず自由に混和しうる沞点120℃以䞋
の溶媒よりなる矀から遞ばれた少くずも皮か
らなる溶媒に宀枩にお少くずも0.1重量可溶
な次匏 X1−lAr1−n    〔䜆し、匏䞭X1はヒドロキシル基を衚わし、
Ar1はベンれン環又は栞の非瞮合型芳銙環を
衚わし、は−NH2又は−H31を衚わし、
1はハロゲンむオン、SO4 --、NO3 -、PO4 3-、
CH3COO-又はHCOO-を衚わし、は又は
であり、は、又はである。〕 で衚わされる芳銙族ポリアミン化合物を溶液状
態で埮倚孔膜に塗垃する工皋 該芳銙族ポリアミン化合物がアミン塩の圢で
ある堎合は、該埮倚孔膜に塗垃した芳銙族ポリ
アミン化合物を100〜150℃で加熱又は脱酞剀で
凊理する工皋 䞊蚘芳銙族ポリアミン化合物の溶液が塗垃さ
れた埮倚孔膜を必芁に応じお也燥凊理したのち
次匏 Ar2−o1   〔〕 〔䜆し匏䞭はカルボニルハラむド基又はスル
ホニルハラむド基を衚わし、Ar2はベンれン環
又は栞の非瞮合型芳銙環を衚わし、n1は、
又はであり、n1個のは同䞀でも異な぀お
いおもよい。〕 で衚わされる芳銙族倚官胜化合物の溶液ず接觊
させる工皋及び かく接觊凊理された耇合膜を颚也し、必芁に
応じお曎に加熱凊理する工皋 からなる耇合半透膜の補造方法である。 本発明に甚いられる可溶性芳銙族ポリアミン化
合物はベンれン環又は栞の非瞮合型芳銙環を骚
栞ずし、該骚栞に〜個のアミノ基及び〜
個のヒドロキシル基を眮換基ずしお有するもので
ある。 この芳銙族ポリアミン化合物は氎及び氎ず自由
に混合しうる沞点120℃以䞋の有機溶媒に宀枩に
お少くずも0.1重量、奜たしくは0.5重量溶解
するものであらねばならない。 たたこれらの芳銙族ポリアミン化合物は、䞊蚘
の眮換基以倖にも埌述の芳銙族酞ハラむドずの反
応に関䞎しない眮換基ずしお䟋えば䜎玚アルキル
基、ハロゲン原子、シアノ基、ニトロ基、䜎玚ア
ルキル゚ヌテル基等の官胜基を有するこずができ
る。 たた、該芳銙族ポリアミン化合物は、その溶解
性を改良するため有機又は無機酞ず予め反応させ
おアミン塩ずなした埌、本発明に䜿甚するこずも
可胜である。 その様な有機酞ずしおは酢酞、ギ酞等の䜎玚カ
ルボン酞が奜適に甚いられる。たた無機酞ずしお
は塩化氎玠、臭化氎玠、ペり化氎玠等のハロゲン
化氎玠、硝酞、硫酞、リン酞等の鉱酞等が奜適に
甚いられる。かかる芳銙族ポリアミン化合物及び
その塩ずしお本発明に奜適に䜿甚されるものずし
おは、 −ゞアミノプノヌル
The present invention relates to a novel composite semipermeable membrane and a method for manufacturing the same. More specifically, the present invention relates to a composite semipermeable membrane for reverse osmosis that has excellent basic performance (particularly water permeability) and excellent oxidation resistance, and a method for manufacturing the same. Initially, the cellulose acetate-based reverse osmosis membrane developed by Loeb and Sourirajan was widely used due to its excellent basic performance and ease of manufacture. Disadvantages such as degradability, deterioration by microorganisms, compactability, and inability to be stored dry have become problems, and various new reverse osmosis membranes using synthetic polymers have been proposed to compensate for these drawbacks. DuPont proposed a reverse osmosis membrane made of fully aromatic polyamide, and although this achieved significant improvements in terms of hydrolyzability and microbial deterioration resistance, it did not surpass cellulose acetate in terms of basic performance. However, the disadvantages of compactability and dry maintainability still remained. All of these membranes are called heterogeneous membranes that are prepared using a method called phase separation, and the homogeneous layer involved in separation and the porous layer that maintains the strength of the membrane are made of the same material. Ta. However, a method has been proposed in which a porous layer is prepared in advance from another material, and then a hydrophilic reactive polymer is reacted with a crosslinking agent to form a crosslinked thin film-like separation layer thereon. In addition to improved performance, it was suggested that significant improvements could be made in hydrolyzability, microbial isolation, compaction, dry storage, etc. North Star Laboratories has demonstrated that the above improvements are possible by using polyethyleneimine as the hydrophilic, reactive polymer and polyacid chlorides or polyisocyanates such as isophthalic acid chloride and toluylene diisocyanate as the crosslinking agent. However, because the amine content of the raw material polyethyleneimine in the membrane thus obtained was too high, the crosslinked layer formed was extremely weak, and it was found that there was a major problem in forming it into a spiral module form. . On the other hand, Universal Oil Products Co., Ltd. succeeded in improving the above-mentioned drawbacks by using amine-modified polyepichlorohydrin as a hydrophilic reactive polymer. Since polyepichlorohydrin is extremely difficult to produce, it has the disadvantage that it is difficult to create a membrane with a large amount of water permeation. Recently, Filmtech Co., Ltd. (JECaddotte)
proposed a composite membrane consisting of a low-molecular weight aromatic polyamine such as metaphenylene diamine or paraphenylene diamine crosslinked with an aromatic polyacid halide such as trimesic acid chloride on a microporous membrane (Japanese Patent Application Laid-Open No. 55-147106)) It was demonstrated that it has extremely good desalting performance and also has better oxidation resistance than conventional polyamine crosslinked composite membranes.
However, this membrane cannot be said to have sufficient water permeability, and some kind of improvement is desired in order to exhibit high water permeability under low operating pressures, especially when desalting water with low salt concentration. Therefore, the present inventors conducted extensive research to obtain a low operating pressure, high water permeability composite membrane that does not have the above drawbacks.
This has led to the present invention. That is, the present invention provides a primary formula [I] (X 1 ) -l Ar 1 (-NH 2 ) n ... [I] [wherein X 1 represents a hydroxyl group, and Ar 1
represents a benzene ring or a dinuclear non-fused aromatic ring, l is 1 or 2, and m is 2, 3 or 4. ] An aromatic polyamine compound represented by the following formula [] Ar 2 (-Z) o1 ... [] [However, in the formula, Z represents a carbonyl halide group or a sulfonyl halide group, and Ar 2 represents a benzene ring or a dinuclear non-containing group. Represents a fused aromatic ring, n 1 is 2,
3 or 4, and n 1 Z's may be the same or different. ] A composite semipermeable membrane obtained by reacting an aromatic polyfunctional compound represented by the following on a microporous membrane to form a water-insoluble membrane, and 2. Water and a boiling point of 120 that is freely miscible with water. The following formula [ ] (X 1 ) -l Ar 1 (-Y) n ...[ ] [However, in the formula, X 1 represents a hydroxyl group,
Ar 1 represents a benzene ring or a dinuclear non-fused aromatic ring, Y represents -NH 2 or -NH 3 Y 1 ,
Y1 is a halogen ion, SO4 -- , NO3- , PO43- ,
It represents CH 3 COO - or HCOO - , l is 1 or 2, and m is 2, 3 or 4. ] A step of applying an aromatic polyamine compound represented by the following to a microporous membrane in a solution state; When the aromatic polyamine compound is in the form of an amine salt, the aromatic polyamine compound applied to the microporous membrane is Step of heating at °C or treatment with a deoxidizing agent; After drying the microporous membrane coated with the solution of the aromatic polyamine compound as necessary, the following formula [] Ar 2 (-Z) o1 ...[] [However, in the formula, Z represents a carbonyl halide group or a sulfonyl halide group, Ar 2 represents a benzene ring or a dinuclear non-fused aromatic ring, n 1 is 2,
3 or 4, and n 1 Z's may be the same or different. ] This is a method for producing a composite semipermeable membrane, comprising the steps of: contacting with a solution of an aromatic polyfunctional compound represented by; and air-drying the contact-treated composite membrane, and further heat-treating as necessary. The soluble aromatic polyamine compound used in the present invention has a benzene ring or a dinuclear non-fused aromatic ring as a core, and has 2 to 4 amino groups and 1 to 2 amino groups in the core.
It has 2 hydroxyl groups as a substituent. The aromatic polyamine compound must be soluble at room temperature in an amount of at least 0.1% by weight, preferably 0.5% by weight, in water and an organic solvent which is freely miscible with water and has a boiling point below 120°C. In addition to the above-mentioned substituents, these aromatic polyamine compounds also contain substituents that do not participate in the reaction with the aromatic acid halide described below, such as lower alkyl groups, halogen atoms, cyano groups, nitro groups, and lower alkyl ether groups. can have a functional group of Further, the aromatic polyamine compound can be used in the present invention after being reacted with an organic or inorganic acid to form an amine salt in order to improve its solubility. As such organic acids, lower carboxylic acids such as acetic acid and formic acid are preferably used. As the inorganic acid, hydrogen halides such as hydrogen chloride, hydrogen bromide, and hydrogen iodide, and mineral acids such as nitric acid, sulfuric acid, and phosphoric acid are preferably used. Such aromatic polyamine compounds and salts thereof preferably used in the present invention include 3,5-diaminophenol.

【匏】 −ゞアミノプノヌル
[Formula] 2,4-diaminophenol

【匏】 −ゞアミノプノヌルのゞアミン塩 4′−ゞアミノ−3′−ゞヒドロキシゞプ
ニルアミン 3′−ゞアミノ−4′−ゞヒドロキシゞプ
ニルスルホン などが䟋瀺される。これらのアミンは単独でも或
いは皮以䞊組合せお甚いるこずも可胜である。
さらに、これらのアミンず他のポリアミノ化合物
ずを組合せお甚いるこずにより、所望の塩排陀特
性を有する耇合膜を埗るこずも本発明の範囲内に
斌お可胜である。 その様なポリアミノ化合物ずしおは次のものが
䟋瀺される。 (1) 芳銙族ポリアミン メタプニレンゞアミン
[Formula] Diamine salt of 3,5-diaminophenol 4,4'-diamino-3,3'-dihydroxydiphenylamine 3,3'-diamino-4,4'-dihydroxydiphenyl sulfone Examples include. These amines can be used alone or in combination of two or more.
Furthermore, by using these amines in combination with other polyamino compounds, it is possible within the scope of the present invention to obtain composite membranes having desired salt exclusion properties. Examples of such polyamino compounds include the following. (1) Aromatic polyamine: metaphenylenediamine

【匏】 パラプニレンゞアミン
[Formula] Paraphenylenediamine

【匏】 4′−ゞアミノゞプニルアミン 4′−ゞアミノゞプニル゚ヌテル 4′−ゞアミノゞプニル゚ヌテル 3′−ゞアミノゞプニルアミン (2) 脂肪族ポリアミン ゚チレンゞアミンH2NCH2CH2NH2 ゞ゚チレントリアミン
H2NCH2CH2NHCH2CH2NH2 トリ゚チレンテトラミン〔H2N−
CH2CH2NH−3H〕 テトラ゚チレンペンタミン〔H2N−
CH2CH2NH−4H〕 ペンタ゚チレンヘキサミン〔H2N−
CH2CH2NH−5H〕 ヘキサメチレンゞアミン〔H2N−CH2−
6NH2〕 N′−ゞメチル゚チレンゞアミン
CH3NHCH2CH2NHCH3 ωω′−ゞアミノ゚チル゚ヌテル
H2NCH2CH2OCH2CH2NH2 (3) 脂環匏ポリアミン −ゞアミノシクロヘキサン
[Formula] 4,4'-diaminodiphenylamine 4,4'-diaminodiphenyl ether 3,4'-diaminodiphenyl ether 3,3'-diaminodiphenylamine (2) Aliphatic polyamines: Ethylenediamine (H 2 NCH 2 CH 2 NH 2 ) Diethylenetriamine (H 2 NCH 2 CH 2 NHCH 2 CH 2 NH 2 ) Triethylenetetramine [H 2 N(−
CH 2 CH 2 NH)− 3 H〕 Tetraethylenepentamine [H 2 N(−
CH 2 CH 2 NH)− 4 H〕 Pentaethylenehexamine〔H 2 N(−
CH 2 CH 2 NH)− 5 H〕 Hexamethylene diamine [H 2 N(−CH 2 )−
6 NH 2 ] N,N'-dimethylethylenediamine (CH 3 NHCH 2 CH 2 NHCH 3 ) ω, ω'-diaminoethyl ether (H 2 NCH 2 CH 2 OCH 2 CH 2 NH 2 ) (3) Alicyclic polyamine : 1,4-diaminocyclohexane

【匏】 −ゞアミノシクロヘキサン
[Formula] 1,3-diaminocyclohexane

【匏】 (4) 環状ポリアミン ピペラゞン【formula】 (4) Cyclic polyamine: piperazine

【匏】 −ゞメチルピペラゞン
[Formula] 2,5-dimethylpiperazine

【匏】 ゞピペリゞルプロパン
[Formula] Dipiperidylpropane

【匏】 これらのポリアミノ化合物の内、芳銙族ポリア
ミン及び環状ポリアミンが特に奜適に本発明に甚
いるこずができる。これらのポリアミンを前蚘の
芳銙族ポリアミン化合物ず組合せお甚いる堎合、
その䜿甚割合は、埌者100重量郚に察しお前者を、
〜200重量郚、奜たしくは10〜100重量郚甚いる
のが䞀般的に有利である。 前蚘のポリアミン化合物を甚いお本発明の耇合
膜を埗る為には、これらのアミン化合物の溶液を
埌述の埮倚孔膜䞊に塗垃しなければならない。こ
の塗垃方法ずしおは浞挬法、ロヌルコヌテむング
法、りむツクコヌテむング法、スプレヌコヌテむ
ング法等劂䜕なる方法でも良いが塗垃されたポリ
アミン局の厚みが0.01〜2Ό、奜たしくは0.02〜
1Ό、さらに奜たしくは0.05〜0.7Όずなるように塗
垃条件をコントロヌルすべきである。該ポリアミ
ン局の塗垃厚が䞊蚘䞋限倀すなわち0.01Όよ
りも小さいず最終的に埗られる耇合膜の掻性局が
薄くなりすぎ機械的匷床が䜎䞋する。たた、該塗
垃厚が2Όよりも厚いず掻性局の膜厚が厚くなり
すぎ、耇合膜の透氎性を損ねる傟向が倧きくな
る。前蚘ポリアミン化合物をアミン塩の圢で埮倚
孔膜に塗垃する堎合には埌述の酞ハラむドずの反
応に先立぀お或はこの反応ず同時に、該アミン塩
をフリヌアミンに倉換させねばならない。この倉
換の為には100〜150℃での加熱凊理又は脱酞剀に
よる凊理が有効である。 かかるポリアミノ化合物は可溶性でなければな
らないが、特に氎、メタノヌル、゚タノヌル、む
゜プロパノヌル、メチルセロ゜ルブ、ゞオキサン
或いはテトラヒドロフラン又はこれら皮以䞊の
混合溶媒に0.5g100ml以䞊、奜たしくは1g100
ml以䞊可溶であるこずが奜たしい。特に氎に察し
お0.5g100ml以䞊曎には1g100ml以䞊の溶解性
を有するものが奜たしい。これらの溶媒矀より遞
ばれた少くずも皮の溶媒特に奜たしくは氎
に少くずも0.1溶解せしめた本発明のポリアミ
ン化合物溶液は、埮倚孔性を有する基材に塗垃又
は含浞せしめられる。 かかる基材ずしお、ガラス質倚孔材、焌結金
属、セラミツクスずかセルロヌス゚ステル、ポリ
スチレン、ビニルブチラヌル、ポリスルホン、塩
化ビニル等の有機ポリマヌが挙げられる。 ポリスルホン膜は本発明の基材ずしお特にすぐ
れた性胜を有するものであり、ポリビニルクロラ
むドも又有効である。ポリスルホン倚孔質基材の
補造法は、米囜塩氎局レポヌトOSW Report
No.359にも蚘茉されおいる。 かかる基材は衚面の孔の倧きさが䞀般に玄100
〜1000オングストロヌムの間にあるものが奜たし
いが、これに限られるものではなく、最終の膜の
甚途などに応じお、衚面の孔の倧きさは50Å〜
5000Åの間で倉化しうる。これらの基材は察称構
造でも非察称構造でも䜿甚できるが、望たしくは
非察称構造のものがよい。しかしながら、これら
の基材は膜定数が10-4gcm2・sec・atm以䞋の堎
合は透氎量が䜎くなりすぎ、たた1gcm2・sec・
atm以䞊の堎合は脱塩率が極めお䜎くなりやすく
奜たしくない。埓぀お奜たしい支持膜定数ずしお
は〜10-4gcm2・sec・atm、特に奜たしくは
10-1〜10-3gcm2・sec・atmの範囲のものが最も
奜たしい結果を䞎える。なお、ここでいら膜定数
ずは、Kgcm2の圧力䞋での玔氎の透過量を衚わ
す倀で、単䜍はcm2・sec・atmである。 このような基材は、裏偎を織垃又は䞍織垃など
で補匷した圢態で䜿甚するのが奜たしい。かかる
織垃又は䞍織垃ずしおは、ポリ゚チレンテレフタ
レヌト、ポリスチレン、ポリプロピレン、ナむロ
ン又は塩化ビニル等によるものが奜適な䟋ずしお
挙げられる。 䞊述のポリアミノ化合物の薄局が圢成せしめら
れた基材は、アミノ基を含有する所の前蚘ポリア
ミノ化合物䞭のアミノ基ず反応しお、カルボンア
ミド、又はスルホンアミド結合のいずれかを圢成
しうる官胜基を少くずも個含有する化合物を甚
いる界面重瞮合反応に付され、基材䞊においお、
前蚘のポリアミン化合物の薄い擬䌌膜が氎䞍溶化
せしめられる。 この氎䞍溶化は、通垞該ポリアミン化合物の擬
䌌膜の衚面ず反応性を有する倚官胜性化合物ずの
界面重瞮合反応によ぀お行なわれ、その結果、基
材の衚面に遞択透過性を有する薄い膜が圢成せし
められる。 本発明に甚いうる界面反応剀ずしおの倚官胜性
化合物が有する官胜基は酞ハラむド基−
COX、スルホニルハラむド基−SO2X、のい
ずれかが奜適であり、分子䞭にこれら官胜基を
少くずも個、奜たしくは又は個含むこずが
できる。特に奜適な官胜基は酞クロラむド基及び
スルホニルクロラむド基である。これら分子䞭
に存圚する耇数個の官胜基は同䞀皮のものであ぀
おもよく或いは互に異なるものであ぀おもかたわ
ない。たた、倚官胜性化合物は䞀般に環状構造を
有し、すなわち芳銙族、耇玠環族又は脂環族のい
ずれかの構造のものであるこずができるが、本発
明の目的に察しおは䞭でも芳銙族性を有する倚官
胜性化合物が特に有効であるこずが刀明した。 而しお、本発明においお有利に䜿甚し埗る芳銙
族倚官胜化合物ずしおは、芳銙栞に結合した少く
ずも個、奜たしくは〜個の官胜基をもち、
そしお炭玠原子を〜20個、奜たしくは〜15個
を含むものであれば、単栞又は栞のいずれのも
のでも奜適に䜿甚できる。たた芳銙栞䞊には前蚘
官胜基以倖に眮換基を存圚しないこずが奜たしい
が、䟋えば䜎玚アルキル基、䜎玚アルコキシ基、
ハロゲン原子等の架橋反応に実質的に圱響を䞎え
ない基を〜個有しおいおも支障はない。かか
る芳銙族倚官胜化合物の特に望たしい矀には、䞋
蚘匏 〔匏䞭、Ar1はベンれン環、ナフタリン環又は匏
[Formula] Among these polyamino compounds, aromatic polyamines and cyclic polyamines can be particularly preferably used in the present invention. When these polyamines are used in combination with the above-mentioned aromatic polyamine compounds,
The ratio of the former to 100 parts by weight of the latter is
It is generally advantageous to use from 5 to 200 parts by weight, preferably from 10 to 100 parts by weight. In order to obtain the composite membrane of the present invention using the polyamine compounds described above, a solution of these amine compounds must be applied onto the microporous membrane described below. The coating method may be any method such as dipping, roll coating, wick coating, spray coating, etc., but the thickness of the applied polyamine layer is 0.01 to 2Ό, preferably 0.02 to 2Ό.
Coating conditions should be controlled so that the thickness is 1Ό, more preferably 0.05 to 0.7Ό. If the coating thickness of the polyamine layer is smaller than the above lower limit (ie, 0.01Ό), the active layer of the final composite membrane will be too thin and its mechanical strength will decrease. In addition, if the coating thickness is greater than 2 Όm, the active layer becomes too thick, which tends to impair the water permeability of the composite membrane. When the polyamine compound is applied to the microporous membrane in the form of an amine salt, the amine salt must be converted into a free amine prior to or simultaneously with the reaction with the acid halide described below. For this conversion, heat treatment at 100 to 150°C or treatment with a deoxidizer is effective. Such a polyamino compound must be soluble, especially in water, methanol, ethanol, isopropanol, methyl cellosolve, dioxane or tetrahydrofuran or a mixed solvent of two or more thereof at a concentration of 0.5 g/100 ml or more, preferably 1 g/100
It is preferable that it is soluble in ml or more. Particularly preferred are those having a solubility in water of 0.5 g/100 ml or more, and further 1 g/100 ml or more. At least one solvent selected from these solvent groups (especially preferably water)
A solution of the polyamine compound of the present invention dissolved in at least 0.1% of the polyamine compound is applied to or impregnated onto a microporous substrate. Examples of such substrates include porous glass materials, sintered metals, ceramics, and organic polymers such as cellulose esters, polystyrene, vinyl butyral, polysulfone, and vinyl chloride. Polysulfone membranes have particularly excellent performance as substrates in the present invention, and polyvinyl chloride is also effective. The manufacturing method for polysulfone porous substrates is published in the U.S. Office of Salt Water Report (OSW Report)
It is also listed in No.359. Such substrates generally have a surface pore size of about 100
The surface pore size is preferably between ~1000 angstroms, but is not limited to this, depending on the final membrane application etc.
It can vary between 5000 Å. These substrates can be used in either symmetrical or asymmetrical structures, but asymmetrical structures are preferable. However, when the membrane constant of these base materials is less than 10 -4 g/cm 2 sec atm, the water permeability becomes too low;
If it is higher than atm, the desalination rate tends to be extremely low, which is not preferable. Therefore, the preferred supporting membrane constant is 1 to 10 -4 g/cm 2 sec atm, particularly preferably
A range of 10 -1 to 10 -3 g/cm 2 ·sec·atm gives the most favorable results. It should be noted that the irritating membrane constant here is a value representing the permeation amount of pure water under a pressure of 2 Kg/cm 2 , and the unit is g/cm 2 ·sec·atm. It is preferable to use such a base material in a form in which the back side is reinforced with a woven fabric or non-woven fabric. Suitable examples of such woven or nonwoven fabrics include those made of polyethylene terephthalate, polystyrene, polypropylene, nylon, or vinyl chloride. The base material on which the thin layer of the polyamino compound described above is formed has a functional group that can react with an amino group in the polyamino compound containing an amino group to form either a carbonamide or a sulfonamide bond. subjected to an interfacial polycondensation reaction using a compound containing at least two groups, on a substrate,
A thin pseudo-film of the polyamine compound described above is rendered water insolubilized. This water insolubilization is usually carried out by an interfacial polycondensation reaction between the surface of the polyamine compound pseudo-film and a reactive polyfunctional compound, and as a result, a thin film with selective permselectivity is formed on the surface of the base material. is formed. The functional group possessed by the polyfunctional compound as a surface reactant that can be used in the present invention is an acid halide group (-
COX) or a sulfonyl halide group ( -SO2X ) is suitable, and one molecule can contain at least two, preferably two or three, of these functional groups. Particularly preferred functional groups are acid chloride groups and sulfonyl chloride groups. The plurality of functional groups present in one molecule may be of the same type or may be different from each other. Additionally, polyfunctional compounds generally have a cyclic structure, i.e. they can be of either aromatic, heterocyclic or alicyclic structure, although for the purposes of the present invention aromatic It has been found that polyfunctional compounds with properties are particularly effective. Therefore, aromatic polyfunctional compounds that can be advantageously used in the present invention have at least 2, preferably 2 to 3 functional groups bonded to an aromatic nucleus,
As long as it contains 6 to 20 carbon atoms, preferably 6 to 15 carbon atoms, either mononuclear or dinuclear carbon atoms can be suitably used. Further, it is preferable that no substituents other than the above-mentioned functional groups exist on the aromatic nucleus, such as lower alkyl groups, lower alkoxy groups,
There is no problem even if one or two groups, such as halogen atoms, do not substantially affect the crosslinking reaction. A particularly desirable group of such aromatic polyfunctional compounds includes the following formula: [In the formula, Ar 1 is a benzene ring, a naphthalene ring, or a

【匏】の環〔匏䞭は−CH2 −、The ring of [formula] [wherein Q is -CH 2 -,

【匏】−−、SO2−or−CO〕を衚わし、 Z1、Z2、Z3及びZ4はそれぞれ独立に酞ハラむド
基、又はスルホニルハラむド基を衚わし、その䞭
の又はは氎玠原子であ぀おもよい。〕 で瀺されるものが包含される。芳銙族倚官胜化合
物の代衚䟋には次のものが挙げられる。
[Formula] -O-, SO 2 -or-CO], Z 1 , Z 2 , Z 3 and Z 4 each independently represent an acid halide group or a sulfonyl halide group, and 1 or 2 of them represent It may also be a hydrogen atom. ] Those shown are included. Representative examples of aromatic polyfunctional compounds include the following.

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】 【匏】【formula】

【匏】【formula】

䜆し、 (However, R:

【匏】−CH2−、−−、−SO2 特に有利な芳銙族倚官胜性化合物は、む゜フタ
ル酞クロラむド、テレフタル酞クロラむド、トリ
メシン酞クロラむド及び−クロロスルホニルむ
゜フタル酞クロラむドである。 䞊蚘した芳銙族の倚官胜性化合物はそれぞれ単
独で甚いるこずができ或いは皮又はそれ以䞊混
合しお甚いおもよい。 本発明によれば、倚官胜性化合物ずしお、単独
で甚いる堎合には官胜性のものよりも官胜性
のものを䜿甚するこずにより、そしおさらに有利
には、皮以䞊䜵甚する堎合には官胜性のもの
ず官胜性のものずの組合せで䜿甚するこずによ
り、最終的に埗られる膜の塩排陀率及び又は透
氎性が䞀局改善されるこずが刀明した。かくし
お、本発明においお特に奜適な倚官胜性化合物
は、官胜芳銙族化合物又は官胜芳銙族化合物
ず官胜芳銙族化合物ずの混合物である。官胜
性化合物ず官胜性化合物ずの混合物を甚いる堎
合における䞡者の混合比率は臚界的ではないが、
䞀般には−−官胜性化合物の重量比で10
乃至、奜たしくは乃至の範
囲内で混合するこずが有利である。 本発明のポリアミン化合物の界面重瞮合反応
は、通垞該ポリアミン化合物を塗垃した膜を䞊蚘
した倚官胜性化合物の溶液ず接觊させるこずによ
り行うこずができる。倚官胜性化合物の溶解に䜿
甚する溶媒は、該ポリアミン化合物及び基材物質
を実質的に溶解しないものであり、䟋えば、−
ヘキサン、−ヘプタン、−オクタン、シクロ
ヘキサン、−ノナン、−デカン等の炭化氎玠
系溶媒などが挙げられる。溶媒䞭の奜適な倚官胜
性化合物濃床は該化合物の皮類、溶媒、基材、そ
の他の条件によ぀お倉化しうるが、実隓により最
適倀を決定するこずができる。しかし、䞀般的に
箄0.5〜5.0、奜たしくは1.0〜3.0重量で十分効
果を発揮しうる。 倚官胜性化合物によるポリアミン化合物の界面
重瞮合反応は奜適には該ポリアミン化合物を塗垃
した膜を倚官胜性化合物の溶液に浞挬するこずに
より、膜ず溶液ずの界面においお達成される。そ
の際、この界面重瞮合反応を促進させるために前
述のポリアミン化合物䞭に或は䞊蚘倚官胜性化合
物溶液䞭に界面反応促進剀を予め含たせるこずも
可胜である。その様な促進剀ずしおは、カ性アル
カリ、リン酞゜ヌダ、ピリゞン、界面掻性剀、酢
酞゜ヌダなどが奜適に甚いられる。 膜衚面ず倚官胜性化合物ずのかかる界面重瞮合
反応は宀枩乃至玄100℃、奜たしくは20〜50℃の
枩床においお10秒−10分、奜たしくは30秒〜分
間行うこずができる。この界面反応は膜の衚面に
䞻ずしお集䞭されるように行うこずができ、膜の
内郚の察氎掻性を枛退する必芁はない。 次いで、基材に支持された膜は必芁に応じお䜙
分の倚官胜性化合物溶液を10秒〜分間ドレンし
た埌、宀枩にお或は必芁に応じお40〜130℃、奜
たしくは50〜80℃の枩床においお、玄〜30分
間、奜たしくは玄〜20分間の間加熱凊理する。
これにより、該界面重瞮合反応を完結せしめるこ
ずができ䞔぀前蚘ポリアミノ化合物の氎䞍溶性化
が達成される。 かくしお埮倚孔性基材面䞊に、遞択透過性を有
する氎䞍溶化された重瞮合䜓の薄い膜を有する耇
合膜が埗られる。 かくの劂くしお埗られる本発明の耇合膜掻性局
を圢成しうるポリアミドの䟋を以䞋に瀺す。 前述の劂くしお埗られる本発明の耇合膜は、そ
の優れた塩排陀性、耐薬品性、耐PH性及び耐熱性
等に加えお䜎圧操䜜においおも極めお高い透氎性
ならびに耐塩玠性を有しおおり、特にこの点に
斌お埓来提案されおきた耇合膜ずは党く異な぀た
有利性、及び特長を有するものず蚀える。 以䞋、実斜䟋により本発明をさらに詳しく説明
する。 参考䟋  逆浞透詊隓法 通垞の連続匏ポンプ型逆浞透装眮を甚い、PH
6.0〜6.5、25℃にお、1500ppmのNaCl氎溶液を原
液ずしお行な぀た。 なお、実斜䟋䞭の塩排陀率ずは次匏により求め
られる倀である。 塩排陀率 −透過氎䞭のNaCl濃床原液䞭のNaCl濃床×
100 参考䟋  ポリスルホン倚孔質支持膜の補造 密に織぀たダクロンDacron補䞍織垃目
付量180gm2をガラス板䞊に固定した。次い
で、該䞍織垃䞊にポリスルホン12.5wt、メチル
セロ゜ルブ125wt、および残郚ゞメチルホルム
アミドを含む溶液を厚さ玄0.2Όの局状にキダスト
し、盎ちにポリスルホン局を宀枩の氎济䞭におゲ
ル化させるこずにより、䞍織垃補匷倚孔性ポリス
ルホン膜をえた。 この様にしお埗られた倚孔性ポリスルホン局は
厚みが玄40〜70Όであり、非察称構造を有しおお
り、か぀衚面には玄50〜600Åの埮孔が倚数存圚
するこずが電子顕埮鏡写真により芳察された。た
たこれらの倚孔性基材はKgcm3における玔氎
の透過量膜定数が玄3.0〜7.0×10-2gcm2・
sec・atmであ぀た。 実斜䟋  −ゞアミノプノヌル・塩酞塩2g、
カセむ゜ヌダ0.5g及び蒞留氎100mlを混ぜ合せ均
䞀氎溶液ずなした。この氎溶液䞭ぞ、参考䟋に
より埗たポリスルホン埮倚孔膜を分間浞挬した
のち、膜を氎溶液より取出し、垂盎に立おお分
間宀枩におドレむンした。かくドレむン凊理され
た膜は次でトリメシン酞クロラむド及びむ゜フタ
ル酞クロラむドの重量比混合物の0.5wt
−ヘキサン溶液䞭に分間浞挬したのち、溶
液よりずり出し、宀枩にお玄30分間也燥を行な぀
た。 この様にしお埗られた耇合膜を参考䟋の条件
䞋0.2wtNaCl氎、18Kgcm2、25℃にお逆浞
透詊隓した凊、脱塩率94.1、透氎量32.7
m2hrずいう初期性胜を瀺した。この膜の耐塩玠
性を調べる為に原液をPH6.0〜6.5で掻性塩玠濃床
〜5ppmになる様に原液䞭に塩酞及び次亜塩玠
酞゜ヌダを加えお逆浞透詊隓を250時間継続させ
た凊、脱塩率94.3及び透氎量29.8m2hrず
安定した性胜を瀺した。 実斜䟋 〜 実斜䟋に斌お架橋剀ずしおトリメシン酞クロ
ラむドずむ゜フタル酞クロラむドの混合物を甚い
る代りに衚−に瀺す劂くトリメシン酞クロラむ
ド単独実斜䟋、む゜フタル酞クロラむド単
独実斜䟋、テレフタル酞クロラむド単独
実斜䟋及びテレフタル酞クロラむドずトリ
メシン酞クロラむドの重量比混合物を
甚いる他は党く同様にしお耇合膜をえた。これら
の耇合膜を実斜䟋ず同様の方法で逆浞透テスト
した凊、衚−に瀺すような結果がえられた。
Particularly preferred aromatic polyfunctional compounds are isophthalic acid chloride , terephthalic acid chloride, trimesic acid chloride and 3-chlorosulfonylisophthalic acid chloride. The aromatic polyfunctional compounds described above can be used alone or in combination of two or more. According to the invention, the polyfunctional compound is trifunctional rather than difunctional when used alone, and even more advantageously when two or more are used in combination. It has been found that by using a combination of difunctional and trifunctional materials, the salt rejection rate and/or water permeability of the final membrane can be further improved. Thus, particularly suitable polyfunctional compounds in the present invention are trifunctional aromatic compounds or mixtures of difunctional and trifunctional aromatic compounds. When using a mixture of a bifunctional compound and a trifunctional compound, the mixing ratio of the two is not critical, but
Generally, the weight ratio of 2-/3-functional compounds is 10:
It is advantageous to mix in the range 1 to 1:3, preferably 5:1 to 1:1. The interfacial polycondensation reaction of the polyamine compound of the present invention can usually be carried out by bringing a membrane coated with the polyamine compound into contact with a solution of the above-mentioned polyfunctional compound. The solvent used for dissolving the polyfunctional compound is one that does not substantially dissolve the polyamine compound and the base material, for example, n-
Examples include hydrocarbon solvents such as hexane, n-heptane, n-octane, cyclohexane, n-nonane, and n-decane. Although the suitable concentration of the polyfunctional compound in the solvent may vary depending on the type of the compound, the solvent, the substrate, and other conditions, the optimal value can be determined by experiment. However, generally about 0.5 to 5.0% by weight, preferably 1.0 to 3.0% by weight can exhibit sufficient effects. The interfacial polycondensation reaction of a polyamine compound with a polyfunctional compound is preferably achieved at the interface between the membrane and the solution by immersing a membrane coated with the polyamine compound in a solution of the polyfunctional compound. At this time, it is also possible to previously include an interfacial reaction accelerator in the polyamine compound or the polyfunctional compound solution in order to promote this interfacial polycondensation reaction. As such a promoter, caustic alkali, sodium phosphate, pyridine, surfactant, sodium acetate, etc. are suitably used. Such an interfacial polycondensation reaction between the membrane surface and the polyfunctional compound can be carried out at a temperature of room temperature to about 100°C, preferably 20 to 50°C, for 10 seconds to 10 minutes, preferably 30 seconds to 5 minutes. This interfacial reaction can be carried out so that it is mainly concentrated on the surface of the membrane, and there is no need to reduce the anti-water activity inside the membrane. The membrane supported on the substrate is then heated at room temperature or at 40-130°C, preferably at 50-80°C, after draining excess polyfunctional compound solution for 10 seconds to 2 minutes, if necessary. The heat treatment is carried out at a temperature of 0.degree. C. for a period of about 1 to 30 minutes, preferably about 5 to 20 minutes.
This makes it possible to complete the interfacial polycondensation reaction and to make the polyamino compound water-insoluble. In this way, a composite membrane having a thin membrane of a water-insolubilized polycondensate having permselectivity on the surface of a microporous substrate is obtained. Examples of polyamides that can form the composite membrane active layer of the present invention obtained in this way are shown below. The composite membrane of the present invention obtained as described above has excellent salt exclusion properties, chemical resistance, PH resistance, heat resistance, etc., as well as extremely high water permeability and chlorine resistance even in low pressure operation. Especially in these two points, it can be said that it has advantages and features that are completely different from those of conventionally proposed composite membranes. Hereinafter, the present invention will be explained in more detail with reference to Examples. Reference example 1 Reverse osmosis test method Using a regular continuous pump type reverse osmosis device, PH
6.0 to 6.5 at 25°C using a 1500 ppm NaCl aqueous solution as a stock solution. Note that the salt rejection rate in the examples is a value determined by the following formula. Salt rejection rate (%) = (1 - NaCl concentration in permeated water / NaCl concentration in stock solution) x
100 Reference Example 2 Manufacture of polysulfone porous support membrane A densely woven Dacron nonwoven fabric (fabric weight 180 g/m 2 ) was fixed on a glass plate. Next, a solution containing 12.5 wt% polysulfone, 125 wt% methyl cellosolve, and the remainder dimethylformamide was cast on the nonwoven fabric in a layer having a thickness of about 0.2 ÎŒm, and the polysulfone layer was immediately gelled in a water bath at room temperature. , a nonwoven reinforced porous polysulfone membrane was obtained. Electron micrographs show that the porous polysulfone layer obtained in this way has a thickness of about 40 to 70ÎŒ, has an asymmetric structure, and has many micropores of about 50 to 600Å on the surface. observed. In addition, these porous substrates have a pure water permeation rate (membrane constant) of approximately 3.0 to 7.0×10 -2 g/cm 2 at 2 Kg/cm 3 G.
It was sec/atm. Example 1 2,4-diaminophenol dihydrochloride 2g,
0.5 g of caustic soda and 100 ml of distilled water were mixed to form a homogeneous aqueous solution. After immersing the polysulfone microporous membrane obtained in Reference Example 2 in this aqueous solution for 5 minutes, the membrane was taken out from the aqueous solution, stood vertically, and drained at room temperature for 7 minutes. The thus drained membrane was then treated with 0.5wt of a 1:3 (weight ratio) mixture of trimesoyl chloride and isophthaloyl chloride.
% n-hexane solution for 2 minutes, then taken out from the solution and dried at room temperature for about 30 minutes. The thus obtained composite membrane was subjected to a reverse osmosis test under the conditions of Reference Example 1 (0.2wt% NaCl water, 18Kg/cm 2 , 25°C), and the salt removal rate was 94.1%, and the water permeation rate was 32.7%.
m2  It showed an initial performance of hr. In order to investigate the chlorine resistance of this membrane, hydrochloric acid and sodium hypochlorite were added to the stock solution at a pH of 6.0 to 6.5 and an active chlorine concentration of 3 to 5 ppm, and a reverse osmosis test was continued for 250 hours. desalination rate of 94.3% and water permeability of 29.8/ m2 . hr and showed stable performance. Examples 2 to 5 Instead of using a mixture of trimesic acid chloride and isophthalic acid chloride as the crosslinking agent in Example 1, as shown in Table 1, trimesic acid chloride alone (Example 2) and isophthalic acid chloride alone (Example 3) Composite membranes were obtained in exactly the same manner except that terephthalic acid chloride alone (Example 4) and a 1:1 (weight ratio) mixture of terephthalic acid chloride and trimesic acid chloride were used. When these composite membranes were subjected to a reverse osmosis test in the same manner as in Example 1, the results shown in Table 1 were obtained.

【衚】【table】

【衚】 実斜䟋  実斜䟋に斌お−ゞアミノプノヌル
塩酞塩のみを甚いる代りにメタプニレンゞアミ
ンず−ゞアミノプノヌルを組合せお
重量比甚いるこずにより耇合膜をえた。 このものの逆浞透性胜は、初期透氎量35.7
m2hr、脱塩率98.1、200時間埌には30.9
m2hr、99.3であ぀た。 実斜䟋、及び参考䟋、 実斜䟋に斌お−ゞアミノプノヌル・
塩酞塩を甚いる代りに衚−に瀺すようなアミ
ノ化合物を甚い、たた、該アミノ化合物の氎䞍溶
化反応剀ずしお、む゜フタル酞クロラむド又はト
リメシン酞クロラむドを甚いる他は実斜䟋ず党
く同様にしお耇合膜を埗た。 これらの耇合膜性胜も合せお衚−に瀺した。
[Table] Example 6 In Example 1, 2,4-diaminophenol 2
A composite membrane was obtained by using metaphenylene diamine and 2,4-diaminophenol in combination (1:1 weight ratio) instead of using hydrochloride alone. The reverse osmosis performance of this product is the initial water permeability of 35.7/
m2  hr, desalination rate 98.1%, 30.9/ after 200 hours
m2  hr, 99.3%. Examples 7 and 8 and Reference Examples 1 and 2 In Example 1, 2,4-diaminophenol
Example 1 was carried out in exactly the same manner as in Example 1, except that an amino compound as shown in Table 2 was used instead of the dihydrochloride, and isophthalic acid chloride or trimesic acid chloride was used as the water-insolubilizing reaction agent for the amino compound. A composite membrane was obtained. The performance of these composite membranes is also shown in Table 2.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  次匏 X1−lAr1−NH2n    〔䜆し匏䞭X1はヒドロキシル基を衚わし、Ar1は
ベンれン環又は栞の非瞮合型芳銙環を衚わし、
は又はであり、は、又はである。〕 で衚わされる芳銙族ポリアミン化合物ず次匏
 Ar2−o1    〔䜆し匏䞭はカルボニルハラむド基又はスルホ
ニルハラむド基を衚わし、Ar2はベンれン環又は
栞の非瞮合型芳銙環を衚わし、n1は、又は
である。䜆しn1個のは同䞀でも異な぀おいお
もよい。〕 で衚わされる芳銙族倚官胜化合物ずを、埮倚孔膜
䞊にお反応せしめお氎䞍溶性膜を圢成せしめるこ
ずにより埗られた耇合半透膜。  氎及び氎ず自由に混和しうる沞点120℃以䞋
の溶媒よりなる矀から遞ばれた少くずも皮から
なる溶媒に宀枩にお少くずも0.1重量可溶な次
匏 X1−lAr1−n    〔䜆し、匏䞭X1はヒドロキシル基を衚わし、Ar1
はベンれン環又は栞の非瞮合型芳銙環を衚わ
し、は−NH2又は−NH3Y1を衚わし、Y1はハ
ロゲンむオン、SO4 --、NO3 -、PO4 3-、
CH3COO-又はHCOO-を衚わし、は又は
であり、は、又はである。〕 で衚わされる芳銙族ポリアミン化合物を溶液状態
で埮倚孔膜に塗垃する工皋 該芳銙族ポリアミン化合物がアミン塩の圢であ
る堎合は、該埮倚孔膜に塗垃した芳銙族ポリアミ
ン化合物を100〜150℃で加熱又は脱酞剀で凊理す
る工皋 䞊蚘芳銙族ポリアミン化合物の溶液が塗垃され
た埮倚孔膜を必芁に応じお也燥凊理したのち次匏
 Ar2−o1    〔䜆し匏䞭はカルボニルハラむド基又はスルホ
ニルハラむド基を衚わし、Ar2はベンれン環又は
栞の非瞮合型芳銙環を衚わし、n1は、又は
であり、n1個のは同䞀でもよく異な぀おいお
もよい。〕 で衚わされる芳銙族倚官胜化合物の溶液ず接觊さ
せる工皋及び かく接觊凊理された耇合膜を颚也し、必芁に応
じお曎に加熱凊理する工皋 からなる耇合半透膜の補造方法。
[Claims] Primary formula [I] (X 1 ) -l Ar 1 (-NH 2 ) n ...[I] [However, in the formula, X 1 represents a hydroxyl group, and Ar 1 represents a benzene ring or 2 represents a non-fused aromatic ring of the nucleus,
l is 1 or 2 and m is 2, 3 or 4. ] An aromatic polyamine compound represented by the following formula [] Ar 2 (-Z) o1 ... [] [However, in the formula, Z represents a carbonyl halide group or a sulfonyl halide group, and Ar 2 represents a benzene ring or a dinuclear non-containing group. It represents a fused aromatic ring, and n 1 is 2, 3 or 4. However, n 1 Z's may be the same or different. ] A composite semipermeable membrane obtained by reacting an aromatic polyfunctional compound represented by the following on a microporous membrane to form a water-insoluble membrane. 2 The following formula [ ] (X 1 ) soluble at room temperature at least 0.1% by weight in at least one solvent selected from the group consisting of water and solvents with a boiling point of 120°C or less that are freely miscible with water. - l Ar 1 (-Y) n ... [] [However, in the formula, X 1 represents a hydroxyl group, and Ar 1
represents a benzene ring or a dinuclear non-fused aromatic ring, Y represents -NH2 or -NH3Y1 , Y1 is a halogen ion, SO4- , NO3- , PO43- ,
CH 3 COO - or HCOO - , l is 1 or 2
and m is 2, 3 or 4. ] A step of applying an aromatic polyamine compound represented by the following to a microporous membrane in a solution state; When the aromatic polyamine compound is in the form of an amine salt, the aromatic polyamine compound applied to the microporous membrane is Step of heating or treating with a deoxidizing agent at °C; After drying the microporous membrane coated with the solution of the aromatic polyamine compound as necessary, the following formula [] Ar 2 (-Z) o1 ... [] [However, in the formula, Z represents a carbonyl halide group or a sulfonyl halide group, Ar 2 represents a benzene ring or a dinuclear non-fused aromatic ring, n 1 is 2, 3 or 4, and n 1 Z represents They may be the same or different. ] A method for producing a composite semipermeable membrane, comprising: contacting with a solution of an aromatic polyfunctional compound represented by; and air-drying the contact-treated composite membrane, and further heat-treating as necessary.
JP4538881A 1981-03-30 1981-03-30 Composite semi-permeable membrane and preparation thereof Granted JPS57159503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4538881A JPS57159503A (en) 1981-03-30 1981-03-30 Composite semi-permeable membrane and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4538881A JPS57159503A (en) 1981-03-30 1981-03-30 Composite semi-permeable membrane and preparation thereof

Publications (2)

Publication Number Publication Date
JPS57159503A JPS57159503A (en) 1982-10-01
JPH0119922B2 true JPH0119922B2 (en) 1989-04-13

Family

ID=12717879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4538881A Granted JPS57159503A (en) 1981-03-30 1981-03-30 Composite semi-permeable membrane and preparation thereof

Country Status (1)

Country Link
JP (1) JPS57159503A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150806A (en) * 1984-01-20 1985-08-08 Agency Of Ind Science & Technol Preparation of polyimide hollow yarn membrane
JPS62121603A (en) * 1985-08-05 1987-06-02 Toray Ind Inc Composite semipermeable membrane and preparation thereof
US5091216A (en) * 1988-04-13 1992-02-25 E. I. Du Pont De Nemours And Company Reactive post treatment for gas separation membranes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942579A (en) * 1972-08-30 1974-04-22
JPS55147106A (en) * 1979-02-22 1980-11-15 Filmtec Corp Osmotic membrane synthesized on interface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942579A (en) * 1972-08-30 1974-04-22
JPS55147106A (en) * 1979-02-22 1980-11-15 Filmtec Corp Osmotic membrane synthesized on interface

Also Published As

Publication number Publication date
JPS57159503A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
US4259183A (en) Reverse osmosis membrane
US4769148A (en) Novel polyamide reverse osmosis membranes
US4859384A (en) Novel polyamide reverse osmosis membranes
JPS6322843B2 (en)
JPS5824303A (en) Oxidation resistant composite semipermeable membrane
JPS6127083B2 (en)
JPS6111642B2 (en)
JP2005505406A (en) Composite nanofiltration membranes and reverse osmosis membranes and methods for producing the same
EP1013337B1 (en) Highly permeable composite reverse osmosis membrane and method of producing the same
KR100211338B1 (en) Producing method of the polyamide type crosslinked reverse osmosis separation membrane
JPH0119921B2 (en)
JPH0119922B2 (en)
JP4923913B2 (en) Composite semipermeable membrane and method for producing the same
JPS6240041B2 (en)
JPS6332482B2 (en)
JPH0214087B2 (en)
JPH0239299B2 (en)
JPS5926101A (en) Composite semipermeable membrane, preparation and use thereof
JPH11226367A (en) Reverse osmosis composite membrane
JPH04200622A (en) Treatment of composite semipermeable membrane
JP2866980B2 (en) Composite semipermeable membrane and method for producing the same
JPH04267938A (en) Dual semipermeable membrane and preparation thereof
JP3045200B2 (en) Composite semipermeable membrane
JP3168567B2 (en) Method for producing composite semipermeable membrane
JP2866970B2 (en) Composite semipermeable membrane and method for producing the same