JPH01198658A - Flame-retardant epoxy resin composition - Google Patents

Flame-retardant epoxy resin composition

Info

Publication number
JPH01198658A
JPH01198658A JP2341088A JP2341088A JPH01198658A JP H01198658 A JPH01198658 A JP H01198658A JP 2341088 A JP2341088 A JP 2341088A JP 2341088 A JP2341088 A JP 2341088A JP H01198658 A JPH01198658 A JP H01198658A
Authority
JP
Japan
Prior art keywords
epoxy resin
particle size
filler
hydrated alumina
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2341088A
Other languages
Japanese (ja)
Inventor
Mitsuo Obara
小原 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2341088A priority Critical patent/JPH01198658A/en
Publication of JPH01198658A publication Critical patent/JPH01198658A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the above composition having excellent impregnation property into winding and effective in suppressing the lowering of the impregnation speed into winding caused by the long-term vacuum stirring especially in the case of using an automatic pouring machine, by compounding hydrated alumina having a specific particle size distribution as a filler. CONSTITUTION:(A) An epoxy resin is compounded with (B) 0.6-1.3 equivalent (based on 1 equivalent of epoxy group of the component A) of an acid anhydride hardener (e.g. methyltetrahydrophthalic anhydride), (C) 0.1-5pts.wt. (based on 100pts.wt. of the component B) of a cure accelerator (e.g. 2-ethyl-4- methylimidazole), (D) 5-20pts.wt. (based on 100pts.wt. of the component A) of red phosphorus and (E) 80-220pts.wt. (based on 100pts.wt. of the component A) of a filler consisting of hydrated alumina produced by precipitation wet classification process and having an average particle diameter of 6-10mum, cumulative wt.% of >=85wt.% corresponding to particle diameter of <=15mum, 15-35wt.% corresponding to the diameter of <=5mum and <=13wt.% corresponding to the diameter of <=3mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は難燃性エポキシ樹脂組成物に関し、さらに詳し
くは捲線間への含浸性に優れ、特に自動注入機を使用す
る際の長時間の真空攪拌にょる捲線間への含浸性の低下
を大幅に改善した難燃性エポキシ樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flame-retardant epoxy resin composition, and more specifically, it has excellent impregnation properties between windings, and is particularly suitable for long-term use when using an automatic injection machine. The present invention relates to a flame-retardant epoxy resin composition that has significantly improved impregnability between windings during vacuum stirring.

〔従来の技術〕[Conventional technology]

従来、エポキシ樹脂組成物は優れた電気特性、機械特性
および耐クラツク性を有するとともに、各種材料との接
着性にも優れているため、電気絶縁用、特に注型用とし
て多用されている。特に絶縁保護、高電圧特性(耐アー
ク、トラッキング性)、耐クラツク性および難燃性の向
上を目的として難燃性エポキシ樹脂組成物が高圧部品の
絶縁処理、すなわち含浸注型用として用いられ、例えば
酸無水物硬化型エポキシ樹脂に多量の充填剤および難燃
剤を含有させた組成物が用いられている。
Conventionally, epoxy resin compositions have excellent electrical properties, mechanical properties, and crack resistance, as well as excellent adhesion to various materials, and have therefore been widely used for electrical insulation, particularly for casting. In particular, flame-retardant epoxy resin compositions are used for insulation treatment of high-voltage parts, that is, impregnation casting, for the purpose of improving insulation protection, high voltage characteristics (arc resistance, tracking properties), crack resistance, and flame retardance. For example, a composition in which an acid anhydride-curing epoxy resin contains a large amount of a filler and a flame retardant is used.

しかしながら従来フライバックトランスの含浸、注型用
として使用されてきた難燃性エポキシ樹脂組成物は、極
細線、例えば0.05φのエナメル線が捲線されたコイ
ル内部に十分に含浸せず、ときには作動時にコロナが発
生し、レアーショートを起こす欠点があった。また従来
の樹脂組成物を短時間硬化させると、捲線間への含浸が
十分に行われないうちに樹脂が硬化して含浸不良を起こ
すという問題もあった。さらに合理化された自動注入装
置を使用してフライバックトランスを生産する場合には
、樹脂を十分に極細線間に含浸させるために高真空下に
注入を行うが、その際予め樹脂を攪拌しながら長時間真
空脱泡を行って樹脂中に含まれている気泡を十分に除去
しており、この真空脱泡時間が長いほどその効果は大き
い。しかしながらこのような長時間の攪拌により、配合
されている充填剤が再粉砕されやすく、微粒子成分が生
成し、極細線内部に樹脂が含浸する際この微粒子成分が
極細線上部に目づまりを起こし、含浸性を低下させる原
因となっている。
However, flame-retardant epoxy resin compositions conventionally used for impregnating and casting flyback transformers do not satisfactorily impregnate the inside of coils wound with ultra-fine wires, e.g. There was a drawback that corona sometimes occurred and caused a rare short circuit. Furthermore, when conventional resin compositions are cured for a short period of time, there is a problem in that the resin is cured before sufficient impregnation between the windings is achieved, resulting in poor impregnation. Furthermore, when producing flyback transformers using streamlined automatic injection equipment, injection is performed under high vacuum in order to sufficiently impregnate the resin between the ultra-fine wires, but at this time, the resin is stirred in advance. Vacuum defoaming is performed for a long time to sufficiently remove air bubbles contained in the resin, and the longer the vacuum defoaming time, the greater the effect. However, due to such long-term stirring, the blended filler is likely to be re-pulverized, producing fine particle components, and when the inside of the ultra-fine wire is impregnated with resin, this fine particle component will clog the upper part of the ultra-fine wire, causing impregnation. It causes a decline in sexual performance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、前記従来技術の欠点を除去し、捲線間
への含浸性に優れ、特に自動注入機を使用する際の長時
間の真空撹拌による捲線間への含浸性の低下を大幅に改
善した難燃性エポキシ樹脂組成物を提供することにある
An object of the present invention is to eliminate the drawbacks of the prior art, to provide excellent impregnating properties between the windings, and to significantly reduce the drop in impregnating properties between the windings due to long-term vacuum stirring, especially when using an automatic injection machine. An object of the present invention is to provide an improved flame-retardant epoxy resin composition.

〔課題を解決するための手段〕 本発明者らは鋭意研究の結果、特殊な方法により製造さ
れた、特定の粒度分布を有する水和アルミナを充填剤と
して使用することにより、前記の目的が達成されること
を見出して本発明に到達した。
[Means for Solving the Problem] As a result of intensive research, the present inventors have achieved the above object by using hydrated alumina produced by a special method and having a specific particle size distribution as a filler. The present invention was achieved by discovering that

本発明は、エポキシ樹脂、酸無水物硬化剤、硬化促進剤
、赤リンおよび充填剤を含有してなる難燃性エポキシ樹
脂組成物において、該充填剤として、析出湿式分級法に
より製造され、平均粒子径が6〜10μmで、かつ粒子
径が15μm以下の累積重量%が85%以上、粒子径が
5μm以下の累積重量%が15〜35%、粒子径が3μ
m以下の累積重量%が13%以下の粒度分布を有する水
和アルミナを用いる難燃性エポキシ樹脂組成物に関する
The present invention provides a flame-retardant epoxy resin composition containing an epoxy resin, an acid anhydride curing agent, a curing accelerator, red phosphorus, and a filler, which is produced by a precipitation wet classification method and has an average The particle size is 6 to 10 μm, and the cumulative weight percent of particles with a particle size of 15 μm or less is 85% or more, the cumulative weight percent of particles with a particle size of 5 μm or less is 15 to 35%, and the particle size is 3 μm.
The present invention relates to a flame retardant epoxy resin composition using hydrated alumina having a particle size distribution with a cumulative weight percent of m or less of 13% or less.

本発明に用いられるエポキシ樹脂は、分子内に1個より
多くのエポキシ基を有するもので、例えばビスフェノー
ルAとエピクロールヒドリンとから得られるビスフェノ
ールA型エポキシ樹脂、ビスフェノールFとエピクロー
ルヒドリンとから得られるビスフェノールF型エポキシ
樹脂、フタル酸、テトラヒドロフタル酸、ヘキサヒドロ
フタル、酸、セパチン酸、ドデカン酸等のポリカルボン
酸のグリシジルエステル、1.4−ブタジオール、1.
6−ヘキサンジオール、ポリエチレングリコール、ポリ
プロピレングリコール、トリメチロールプロパン等の多
価アルコールのグリシジルエーテル、3.4−エポキシ
シクロヘキシルメチル(3,4−エポキシシクロヘキサ
ン)カルボキシレート等の脂環式エポキシ樹脂、液状ポ
リブタジェンのエポキシ化物等が挙げられる。
The epoxy resin used in the present invention has more than one epoxy group in the molecule, for example, bisphenol A epoxy resin obtained from bisphenol A and epichlorohydrin, bisphenol A type epoxy resin obtained from bisphenol F and epichlorohydrin, etc. Bisphenol F type epoxy resin obtained from phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, glycidyl ester of polycarboxylic acids such as cepatic acid and dodecanoic acid, 1,4-butadiol, 1.
Glycidyl ethers of polyhydric alcohols such as 6-hexanediol, polyethylene glycol, polypropylene glycol, trimethylolpropane, alicyclic epoxy resins such as 3,4-epoxycyclohexylmethyl (3,4-epoxycyclohexane) carboxylate, liquid polybutadiene Examples include epoxidized products of.

本発明に用いられる酸無水物硬化剤としては、例えばメ
チルテトラヒドロ無水フタル酸、メチルへキサヒドロ無
水フタル酸、無水フタル酸、ヘキサヒドロfi水フタル
酸、エンドメチレンテトラヒドロ無水フタル酸、ドデセ
ニル無水コハク酸、オクテニル無水コハク酸、ポリアゼ
ライン酸ポリ無水物等が挙げられる。酸無水物硬化剤の
配合量は、前記エポキシ樹脂に含まれるエポキシ基1当
量当たり、0.6〜1.3当量が好ましい。
Examples of the acid anhydride curing agent used in the present invention include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, phthalic anhydride, hexahydrofihydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenylsuccinic anhydride, and octenyl Examples include succinic anhydride, polyazelaic acid polyanhydride, and the like. The blending amount of the acid anhydride curing agent is preferably 0.6 to 1.3 equivalents per equivalent of the epoxy group contained in the epoxy resin.

本発明に用いられる硬化促進剤は硬化反応を促進するた
めに用いられ、例えば2−エチル4−メチルイミダゾー
ル、■−シアノエチル4−メチルイミダゾール、1−ベ
ンジル2−エチルイミダゾール等のイミダゾールおよび
その誘導体、第3級アミン類などが挙げられる。硬化促
進剤の配合量は特に制限されないが、前記酸無水物硬化
剤100重量部当たり、0.1〜5.0重量部が好まし
い。
The curing accelerator used in the present invention is used to accelerate the curing reaction, and includes imidazoles such as 2-ethyl 4-methylimidazole, ■-cyanoethyl 4-methylimidazole, 1-benzyl 2-ethylimidazole, and derivatives thereof; Examples include tertiary amines. Although the amount of the curing accelerator is not particularly limited, it is preferably 0.1 to 5.0 parts by weight per 100 parts by weight of the acid anhydride curing agent.

本発明において赤リンは難燃剤として用いられ、例えば
難燃効果のある赤リンの他に、赤リンをフェノール樹脂
、フラン樹脂、フッ素樹脂、メラミン樹脂等の樹脂で表
面コートしたもの、さらにアルミニウム化合物、マグネ
シウム化合物、亜鉛化合物等の無機化合物で表面コート
した改質赤リン等が用いられる。赤リンの配合量は、前
記エポキシ樹脂100重量部当たり、5〜20重量部が
好ましく、10〜15重量部が特に好ましい。
In the present invention, red phosphorus is used as a flame retardant, for example, in addition to red phosphorus, which has a flame retardant effect, red phosphorus surface-coated with resins such as phenol resin, furan resin, fluororesin, and melamine resin, and aluminum compounds. Modified red phosphorus whose surface is coated with an inorganic compound such as , magnesium compound or zinc compound is used. The blending amount of red phosphorus is preferably 5 to 20 parts by weight, particularly preferably 10 to 15 parts by weight, per 100 parts by weight of the epoxy resin.

本発明に充填剤として用いられる水和アルミナは、析出
湿式分級法により製造され、平均粒子径が6〜10am
で、かつ後記の粒度分布を有する特定のものである。
The hydrated alumina used as a filler in the present invention is produced by a precipitation wet classification method and has an average particle size of 6 to 10 am.
and has the particle size distribution described below.

一般に水和アルミナは原料のボーキサイトをオ−トラレ
ープ中で水酸化ナトリウムと加圧加熱下に反応させ、得
られるアルミン酸ナトリウム液を析出槽中で加熱攪拌下
に所定の粒子径の水和アルミナの結晶を析出させ、次い
でシンフナ−中で重力分級し、得られる粒子径601I
mの水和アルミナの結晶を湿式または乾式粉砕にて粉砕
し、湿式分級または乾式分級法により所定の粒度分布を
有する水和アルミナを得、さらに水洗後、濾過、脱水し
て製造される。
Generally, hydrated alumina is produced by reacting the raw material bauxite with sodium hydroxide under pressure and heat in an autolape, and then the resulting sodium aluminate solution is heated and stirred in a precipitation tank to form hydrated alumina of a predetermined particle size. The crystals are precipitated and then classified by gravity in a thinner, resulting in a particle size of 601I.
The hydrated alumina crystals of m are pulverized by wet or dry pulverization, and hydrated alumina having a predetermined particle size distribution is obtained by wet classification or dry classification, which is then washed with water, filtered, and dehydrated.

一方、本発明に用いられる水和アルミナは、析出槽でア
ルミン酸ナトリウム液から水和アルミナを析出させる際
、所定の粒度分布にするため、析出槽へ添加する水和ア
ルミナの種子の添加量、析出温度および攪拌時間を適宜
調整して所定の平均粒子径と粒度分布とし、得られる結
晶を粉砕機で粉砕せず、湿式分級後に水洗、濾過、脱水
して製造される。このようにして析出湿式分級法により
製造される本発明に用いられる水和アルミナは、平均粒
子径が6〜10μmで、かつ粒子径が15μm以下の累
積重量%が85以上、粒子径が5μm以下の累積重量%
が15〜35%、粒子径が3μm以下の累積重量%が1
3%以下の粒度分布を有するものである。
On the other hand, when hydrated alumina used in the present invention is precipitated from a sodium aluminate solution in a precipitation tank, in order to obtain a predetermined particle size distribution, the amount of hydrated alumina seeds added to the precipitation tank, The precipitation temperature and stirring time are appropriately adjusted to obtain a predetermined average particle size and particle size distribution, and the resulting crystals are not crushed using a crusher, but are produced by wet classification followed by washing with water, filtration, and dehydration. The hydrated alumina used in the present invention produced by the precipitation wet classification method as described above has an average particle size of 6 to 10 μm, a cumulative weight percent of particles with a particle size of 15 μm or less is 85 or more, and a particle size of 5 μm or less. Cumulative weight% of
is 15 to 35%, and the cumulative weight% of particles with a particle size of 3 μm or less is 1
It has a particle size distribution of 3% or less.

平均粒子径が10μmを超える場合または粒子径が15
μm以下の累積重量%が85未満の場合には、組成物中
の水和アルミナの沈降性が大きくなる。一方粒子径が5
μm以下の累積重量%が15%未満の場合には、充填剤
中の微粒子分が少なくなると組成物の粘度が上昇する傾
向にある。平均粒子径が6μm未満または粒子径が5μ
m以下の累積重量%が35%を超える場合、あるいは粒
子径が3μm以下の累積重量%が13%を超える場合に
は組成物をコイルに注入処理した際のコイルへの含浸性
が低下する。
When the average particle size exceeds 10 μm or when the particle size is 15
If the cumulative weight % of micrometers or less is less than 85, the hydrated alumina in the composition will have a high settling tendency. On the other hand, the particle size is 5
When the cumulative weight % of micrometers or less is less than 15%, the viscosity of the composition tends to increase as the amount of fine particles in the filler decreases. Average particle size is less than 6μm or particle size is 5μm
If the cumulative weight % of particles having a diameter of 3 μm or less exceeds 35%, or if the cumulative weight % of particles having a particle diameter of 3 μm or less exceeds 13%, impregnating properties into the coil when the composition is injected into the coil decrease.

湿式または乾式粉砕機により粉砕した後、湿式または乾
式分級して製造される、従来用いられている水和アルミ
ナの形状が無定形であるのに対し、本発明に用いられる
析出湿式分級法により製造される水和アルミナは、球形
に近いものであるため、組成物中に分散された状態で強
制的に攪拌されても再粉砕が起こらず、微粒子成分の生
成が極めて少なくなるものと考えられる。
The shape of conventionally used hydrated alumina, which is produced by pulverizing with a wet or dry pulverizer and then wet or dry classification, is amorphous, whereas hydrated alumina is produced by the precipitation wet classification method used in the present invention. Since the hydrated alumina is almost spherical, re-grinding does not occur even if it is forcibly stirred while being dispersed in the composition, and it is thought that the generation of fine particle components is extremely reduced.

本発明において水和アルミナは、本発明の組成物を難燃
化し、さらに耐アーク性および耐トラツキング性を向上
させるのに効果がある0本発明においては、このように
析出湿式分級法により製造され、平均粒子径が6〜10
μmで、かつ前記特定の粒度分布を有する水和アルミナ
が用いられ、これにより得られる難燃性エポキシ組成物
は、UL94の試験において1/16インチ厚みで94
v−0という高難燃性を有し、かつ耐アーク性および耐
トラツキング性にも優れ、さらにコイルの捲線間への樹
脂の含浸性にも著しく優れたものである。
In the present invention, hydrated alumina is effective in making the composition of the present invention flame retardant and further improving arc resistance and tracking resistance. , average particle size is 6-10
µm and having the specified particle size distribution, the resulting flame retardant epoxy composition was tested to UL94 with a thickness of 1/16 inch.
It has a high flame retardancy of v-0, has excellent arc resistance and tracking resistance, and is also extremely excellent in impregnating the resin between the windings of the coil.

本発明の難燃性エポキシ樹脂組成物を使用して捲線され
たコイルに真空注入するに際しては、予め難燃性エポキ
シ樹脂組成物中の成分を、主剤(エポキシ樹脂、希釈剤
として反応性エポキシ樹脂、赤リン、水和アルミナ等)
と硬化剤(酸無水物硬化剤、硬化促進剤等)とに分け、
それぞれを攪拌羽根の付いた独立した容150〜200
1の2台のタンク内に入れ、到達真空度1〜3torr
、温度30〜60°Cで2時間以上、真空攪拌脱泡を行
う。次いで2〜10torrの真空中にセットしたコイ
ル中に、前記主剤および硬化剤を密封された定量吐出ポ
ンプを通して所定量ずつ計量混合してノズルより注入し
、常圧に戻したコイルを炉中に搬入して硬化させる。エ
ポキシ樹脂組成物は、65〜80℃で3〜6時間硬化後
、100〜120℃で3〜6時間で硬化させることが好
ましい。
When vacuum-injecting the flame-retardant epoxy resin composition of the present invention into a wound coil, the components in the flame-retardant epoxy resin composition are mixed in advance into a base resin (an epoxy resin, a reactive epoxy resin as a diluent), and a reactive epoxy resin as a diluent. , red phosphorus, hydrated alumina, etc.)
and curing agents (acid anhydride curing agents, curing accelerators, etc.).
Each has an independent capacity with a stirring blade of 150 to 200
Place it in two tanks of 1, and achieve an ultimate vacuum of 1 to 3 torr.
, vacuum stirring and defoaming are performed at a temperature of 30 to 60°C for 2 hours or more. Next, the base material and curing agent are metered and mixed in predetermined amounts through a sealed metering pump into a coil set in a vacuum of 2 to 10 torr, and injected from a nozzle, and the coil, which has been returned to normal pressure, is carried into a furnace. and harden. The epoxy resin composition is preferably cured at 65-80°C for 3-6 hours and then at 100-120°C for 3-6 hours.

この注入に際し、主剤は粘度が約600〜120Qpo
ise (25℃)と高粘度となるため、含まれている
気泡を除去する目的で30〜60°Cに加温して200
〜300rμmの攪拌速度で真空脱泡が行われるが、タ
ンク容量が大きいほどこの攪拌脱泡の時間が長くなる。
During this injection, the viscosity of the base agent is approximately 600 to 120Qpo.
ISE (25°C), the viscosity is high, so in order to remove the bubbles contained, it was heated to 30-60°C and heated to 200°C.
Vacuum defoaming is performed at a stirring speed of ~300 rpm, and the larger the tank capacity, the longer the time for this stirring and defoaming.

従来の水和アルミナを使用する場合には攪拌脱泡時間が
長くなると水和アルミナの再粉砕が起こり、微粒子成分
が生成し、注入硬化させたコイルは捲線間への樹脂の含
浸性が著しく低下したものとなる。この従来の水和アル
ミナを使用する場合には主剤をタンク内から時間経過と
ともにサンプリングし、アセトンに溶解して試験管中で
水和アルミナの沈降速度を測定すると、攪拌脱泡時間の
長いほど沈降速度が遅く、すなわち微粒子成分の生成が
確認できる。これに対して本発明に用いられる水和アル
ミナの場合には攪拌脱泡時間が長くなっても沈降速度が
変わらず、微粒子成分の生成が極めて少なく、注入硬化
させたコイルは捲線間への樹脂の含浸性の低下が極めて
少ないものとなる。
When conventional hydrated alumina is used, if the stirring and defoaming time is prolonged, the hydrated alumina will be re-pulverized and fine particle components will be generated, and the impregnation of the resin between the windings of the injection hardened coil will be significantly reduced. It becomes what it is. When using this conventional hydrated alumina, the base material is sampled from inside the tank over time, dissolved in acetone, and the sedimentation rate of the hydrated alumina is measured in a test tube. The speed is slow, that is, the generation of fine particle components can be confirmed. On the other hand, in the case of the hydrated alumina used in the present invention, the sedimentation rate does not change even if the stirring and defoaming time increases, and the generation of fine particle components is extremely small, and the injection-hardened coil does not contain resin between the windings. The deterioration in impregnating properties is extremely small.

本発明の樹脂組成物中の水和アルミナの配合量は、前記
エポキシ樹脂100重量部当たり、80〜220重量部
が好ましく、120〜180重景部が特に重量しい。
The amount of hydrated alumina in the resin composition of the present invention is preferably 80 to 220 parts by weight, particularly 120 to 180 parts by weight, per 100 parts by weight of the epoxy resin.

本発明の難燃性エポキシ樹脂組成物には、例えばチタン
ホワイト、ベンガラ、酸化第二鉄、カーボン等の着色剤
、シラン系カップリング剤、チタン系カップリング剤、
シリコーン消泡剤等を必要に応じて配合することができ
る。
The flame-retardant epoxy resin composition of the present invention includes, for example, colorants such as titanium white, red iron oxide, ferric oxide, and carbon, silane coupling agents, titanium coupling agents,
A silicone antifoaming agent or the like may be added as necessary.

〔発明の効果〕〔Effect of the invention〕

本発明の難燃性エポキシ樹脂組成物は、捲線間への含浸
性に優れ、特に自動注入機を使用する際の長時間の真空
攪拌による捲線間への含浸性の低下を大幅に改善し、し
かも耐アーク性および耐トラツキング性にも優れ、難燃
性94V−0という特性を示す優れたものである。
The flame-retardant epoxy resin composition of the present invention has excellent impregnating properties between the windings, and in particular, significantly improves the decline in impregnating properties between the windings due to long-term vacuum stirring when using an automatic injection machine. Moreover, it has excellent arc resistance and tracking resistance, and exhibits flame retardancy of 94V-0.

本発明の難燃性エポキシ樹脂組成物は、フライバックト
ランス、イグニッションコイル、各種電源トランス、ソ
レノイドコイル等の高圧電気部品の含浸、注型用として
使用することができる。
The flame-retardant epoxy resin composition of the present invention can be used for impregnating and casting high-voltage electrical parts such as flyback transformers, ignition coils, various power transformers, and solenoid coils.

〔実施例〕〔Example〕

以下、本発明を実施例により詳説する。下記側中の1部
」は重量部を意味する。
Hereinafter, the present invention will be explained in detail with reference to Examples. "1 part" in the following means parts by weight.

各特性はそれぞれ以下に示す方法で測定された。Each characteristic was measured by the method shown below.

(1)充填剤の粒度分布:島津製作所社製セデイグラフ
5000ETを用い、試料濃度 約8重量%、スタート粒子径50μm、分散液ヘキサン
−メタリン酸ソーダ0゜1重量%、予備分散として超音
波洗浄 20分間を行い測定した。
(1) Particle size distribution of filler: using Sedaygraph 5000ET manufactured by Shimadzu Corporation, sample concentration approximately 8% by weight, starting particle size 50 μm, dispersion liquid hexane-sodium metaphosphate 0°1% by weight, ultrasonic cleaning 20 minutes as preliminary dispersion. The measurement was carried out for 1 minute.

(2)粘土:B型回転粘度計を用い、測定温度25°C
で測定した。
(2) Clay: Measured at 25°C using a B-type rotational viscometer.
It was measured with

(3)モデル沈降性:直径18mmのポリエチレン製試
験管に130mmの高さまで試料を注型し、75℃で3
時間さらに110 ℃で3時間で硬化させた後、硬化物の 上端および下端各1 cmの部分の灼熱残渣を測定し、
上下間の差を求めた。差 が大きいほど硬化中の充填剤の沈降が 大きいことを示す。
(3) Model sedimentation: A sample was poured into a polyethylene test tube with a diameter of 18 mm to a height of 130 mm, and the
After further curing at 110 °C for 3 hours, the burning residue was measured at 1 cm each of the upper and lower ends of the cured product.
The difference between the top and bottom was calculated. The larger the difference, the greater the settling of the filler during curing.

(4)モデル含浸性:直径15+maのポリエチレン製
試験管に平均粒子径60μmのガラ スピーズを40+nmの高さに加振しながら充填する。
(4) Model impregnability: A polyethylene test tube with a diameter of 15+ma is filled with glass beads having an average particle diameter of 60 μm while being vibrated at a height of 40+nm.

次いで10torrの減 圧下で80++nの高さまで試料を注入後、常圧下で(
3)と同じ硬化条件で硬化 させ、次式によりモデル含浸率を算出 した。
Next, the sample was injected to a height of 80++n under a reduced pressure of 10 torr, and then (
It was cured under the same curing conditions as in 3), and the model impregnation rate was calculated using the following formula.

W。W.

Wo:初期のガラスピーズ重量(g) Wl ;未含浸部のガラスピーズ重量(g)モデル含浸
率は硬化中、ガラスピーズ 中に含浸する試料の量を求めるもので、未含浸部のガラ
スピーズ重量が少なけ れば、含浸性が優れていることを示す。
Wo: Initial weight of glass beads (g) Wl: Weight of glass beads in unimpregnated area (g) Model impregnation rate is to calculate the amount of sample impregnated into glass beads during curing, and the weight of glass beads in unimpregnated area A small amount indicates excellent impregnating properties.

(5)実機含浸性−変性ポリフェニレンオキサイド製ボ
ビン(10スリツト)に直径0゜05mmのウレレン線
を各250タン捲付けたモデルコイルを作成し、ボビン を同一材質のケースに入れ、100 ”Cで1.5時間
予熱後、5torrの減圧下で35℃の試料を30秒で
注入後、 常圧に戻した。次いで前記硬化条件で 硬化させた後、中央部を切断、研磨し、捲線間への試料
の含浸率を顕微鏡で観 察した。含浸率は各スリットごとに次 式により算出した。
(5) Actual machine impregnability - A model coil was created by winding 250 strands of urelene wire with a diameter of 0.05 mm around a modified polyphenylene oxide bobbin (10 slits), and the bobbin was placed in a case made of the same material and heated at 100"C. After preheating for 1.5 hours, a sample at 35°C was injected for 30 seconds under a reduced pressure of 5 torr, and then returned to normal pressure.Then, after curing under the above curing conditions, the center part was cut, polished, and inserted between the windings. The impregnation rate of the sample was observed under a microscope.The impregnation rate was calculated for each slit using the following formula.

含浸率(%”)= (1−−)XI 00T:コイルの
接散 ■:コイル内のボイド数 平均含浸率は全スリットの含浸率の平 均値で示した。
Impregnation rate (%") = (1--)

実機含浸性は次の基準で評価した。Actual machine impregnation was evaluated using the following criteria.

O:含浸率 99%以上 Δ: 〃  99未満〜97% X:/797%未満 (6)モデル粉砕性:主剤(主にエポキシ樹脂、赤リン
および水和アルミナの混合物)500gを直径75mm
、高さ100mmの丸缶に入れ、ラボスターラー(ヤマ
ト科学社製LS−50型、ステンレス鋼、4枚羽根、直
径50胴)を用いて1000〜1300rμmの回転数
で4時間連続攪拌する。次いで攪拌処理した主剤10g
を直径18胴のガラス製試験管に入れ、アセトンで十分
に溶解させた後アセトンを試験管高さ100mmに合わ
せ、25°C中に1時間放置し、充填剤の沈降速度を測
定し、攪拌未処理品と比較して充填剤の再粉砕の有無を
調べた。すなわち連続攪拌により水和アルミナが再粉砕
して微粒子成分が発生している場合には沈降速度が遅く
、アセトンの上澄層の高さが小さくなる。
O: Impregnation rate 99% or more Δ: Less than 99 to 97%
, placed in a round can with a height of 100 mm, and stirred continuously for 4 hours at a rotation speed of 1000 to 1300 rpm using a lab stirrer (Model LS-50 manufactured by Yamato Kagaku Co., Ltd., stainless steel, 4 blades, 50 mm diameter). Then, 10g of the main ingredient was stirred.
was placed in a glass test tube with a diameter of 18 mm, thoroughly dissolved with acetone, the acetone was adjusted to a test tube height of 100 mm, and the mixture was left at 25°C for 1 hour to measure the sedimentation rate of the filler and stirred. The presence or absence of re-grinding of the filler was investigated in comparison with untreated products. That is, when hydrated alumina is re-pulverized by continuous stirring and fine particle components are generated, the sedimentation rate is slow and the height of the acetone supernatant layer becomes small.

モデル粉砕性(沈降性)の評価は1時 間放置後の上澄高さで行い、次の基準で評価した。Model crushability (sedimentability) rating is 1: The height of the supernatant after standing was evaluated using the following criteria.

○:アセトン上澄高さ 40mm以上 ×:アセトン上澄高さ 40am未満 一方攪拌処理した主剤に硬化剤(主に 酸無水物硬化剤と硬化促進剤の混合物)を所定量配合し
、前記(4)のモデル含浸率を測定した。
○: Height of acetone supernatant 40 mm or more ×: Height of acetone supernatant less than 40 am On the other hand, a predetermined amount of a curing agent (mainly a mixture of an acid anhydride curing agent and a curing accelerator) was blended into the stirred main ingredient, and the above (4) ) model impregnation rate was measured.

(7)耐アーク性:JIS  K6911に従って測定
した。
(7) Arc resistance: Measured according to JIS K6911.

(8)耐トラッキング性:IECpublicatio
  112に従って測定した。
(8) Tracking resistance: IECpublication
112.

(9)難燃性:UL94に従い、試験片厚み1.5・8
胴の試料で評価した。
(9) Flame retardancy: According to UL94, test piece thickness 1.5/8
Evaluation was made using a torso sample.

実施例1〜4 第1表に示す充填剤、水和アルミナAまたはBを用い、
第2表に示す主剤および硬化剤を第2表中に示す配合比
で配合して本発明の樹脂組成物を得、その特性を評価し
た。
Examples 1 to 4 Using the filler shown in Table 1, hydrated alumina A or B,
The resin composition of the present invention was obtained by blending the base resin and curing agent shown in Table 2 at the compounding ratio shown in Table 2, and its properties were evaluated.

本発明の樹脂組成物はいずれも沈降性が0.8〜1.5
%の範囲で小さく、モデル含浸性が94%以上と優れ、
実機含浸性も良好な結果を示した。攪拌粉砕性は強制攪
拌後の充填剤のアセトン沈降性が大きく、初期と比較し
て微粒子分の生成が少なく、さらにモデル含浸性も92
%と優れ、難燃性も94V−0を有していた。
All of the resin compositions of the present invention have a sedimentation property of 0.8 to 1.5.
%, and model impregnation is excellent at over 94%.
Actual machine impregnation also showed good results. Regarding the agitation and pulverization properties, the acetone sedimentation of the filler after forced stirring is large, and the generation of fine particles is small compared to the initial stage, and the model impregnation property is also 92.
%, and the flame retardancy was 94V-0.

比較例1〜5 第1表に示す充填剤C,D、B、FまたはCを用い、第
2表に示す主剤および硬化剤を第2表中に示す配合比で
配合して樹脂組成物を得、その特性を評価した。
Comparative Examples 1 to 5 Using fillers C, D, B, F, or C shown in Table 1, resin compositions were prepared by blending the main ingredients and curing agents shown in Table 2 at the compounding ratios shown in Table 2. obtained, and its properties were evaluated.

比較例1に使用した充填剤Cは3μm以下力月5%と微
粒子分の多い充填剤で、組成物の特性はモデル含浸性が
66%、実機含浸性が△(97〜99%)と含浸率が劣
った。
Filler C used in Comparative Example 1 is a filler with a high content of fine particles of 3 μm or less (5%), and the characteristics of the composition are that the model impregnation property is 66% and the actual machine impregnation property is △ (97 to 99%). The rate was poor.

比較例2に使用した充填剤りは5μm以下が6%、3μ
m以下が0%と微粒子分をほとんど含まない充填剤で、
組成物の特性はモデル含浸率および実機含浸率に優れて
いるが、粘度が2200ポアズと実施例の場合と比較し
て約2倍高(、作業性に劣り、さらに沈降性も4.7%
と大きく、硬化時の沈降が大きかった。
The filler used in Comparative Example 2 was 6% less than 5 μm, and 3 μm.
A filler that contains almost no particulate matter, with 0% of m or less.
The properties of the composition are excellent in model impregnation rate and actual machine impregnation rate, but the viscosity is 2200 poise, which is about twice as high as that of the example (it has poor workability and also has a settling property of 4.7%).
, and the sedimentation during curing was large.

比較例3に使用した充填剤Eは乾式粉砕法で作成したも
のであり、組成物の特性は沈降性に優れているが、モデ
ル含浸性が55%、実機含浸性が×(97%以下)と悪
(、さらに攪拌粉砕性がアセトン上澄高さがX(40m
m未満)で微粒子成分が生成しており、従ってモデル含
浸性が初期より大幅に低下していた。
Filler E used in Comparative Example 3 was created by a dry pulverization method, and the composition has excellent sedimentation properties, but the model impregnability is 55% and the actual machine impregnation is × (97% or less). and worse (furthermore, the acetone supernatant height is X (40 m).
(less than m), fine particle components were generated, and the model impregnability was therefore significantly lower than the initial level.

比較例4に使用した充填剤Fは乾式粉砕法で作成したも
ので、組成物の特性は沈降性、モデル含浸性および実機
含浸性が優れているが、攪拌粉砕性はアセトン上澄高さ
がX(40mm未満)で、微粒子成分が生成しており、
従ってモデル含浸性が初期より大幅に低下していた。
Filler F used in Comparative Example 4 was prepared by a dry pulverization method, and the composition has excellent sedimentation properties, model impregnation properties, and actual machine impregnation properties, but the agitation and pulverization properties are poor due to the height of the acetone supernatant. At X (less than 40 mm), fine particle components are generated,
Therefore, the model impregnability was significantly lower than the initial level.

比較例5に使用した充填剤Gは乾式粉砕法で作成したも
ので、15μm以下が80%(15μmを超えるものが
20%)と粗粒子分が多く充填剤で、組成物の特性は沈
降性が10.5%と大きく、硬化時には充填剤が大幅に
沈降し、さらに攪拌粉砕生はアセトン上澄高さがX(4
0+nm未満)で、微粒子成分が生成しており、従って
モデル含浸性(註)1)シェル化学社製 ビスフェノール型エポキシ樹脂 2)長瀬チバ社製 反応性希釈剤 商品名rDY−02243)燐化学社製 フェノールコート改質赤リン 4)日立化成社製 メチルテトラヒドロ無水フタル酸 5)四国化成社製 商品名「キュアゾール 2E4MZJ 6)日立化成社製 トリスジメチルアミノメチルフェノ ール
Filler G used in Comparative Example 5 was created by a dry pulverization method, and the filler has a large proportion of coarse particles, 80% of which are 15 μm or less (20% are larger than 15 μm), and the composition has a property of sedimentation. is as high as 10.5%, the filler significantly settles during hardening, and the acetone supernatant height of the agitated and crushed raw material is
(less than 0+nm), fine particle components are generated, and therefore model impregnability (Note) 1) Bisphenol type epoxy resin manufactured by Shell Chemical Co., Ltd. 2) Reactive diluent manufactured by Nagase Ciba Co., Ltd. Product name rDY-02243) Manufactured by Rin Kagaku Co., Ltd. Phenol-coated modified red phosphorus 4) Methyltetrahydrophthalic anhydride manufactured by Hitachi Chemical Co., Ltd. 5) Product name “Curezol 2E4MZJ” manufactured by Shikoku Chemical Co., Ltd. 6) Tris-dimethylaminomethylphenol manufactured by Hitachi Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、エポキシ樹脂、酸無水物硬化剤、硬化促進剤、赤リ
ンおよび充填剤を含有してなる難燃性エポキシ樹脂組成
物において、該充填剤として、析出湿式分級法により製
造され、平均粒子径が6〜10μmで、かつ粒子径が1
5μm以下の累積重量%が85%以上、粒子径が5μm
以下の累積重量%が15〜35%、粒子径が3μm以下
の累積重量%が13%以下の粒度分布を有する水和アル
ミナを用いてなる難燃性エポキシ樹脂組成物。
1. In a flame-retardant epoxy resin composition containing an epoxy resin, an acid anhydride curing agent, a curing accelerator, red phosphorus, and a filler, the filler is produced by a precipitation wet classification method and has an average particle size of is 6 to 10 μm, and the particle size is 1
Cumulative weight % of 5 μm or less is 85% or more, particle size is 5 μm
A flame-retardant epoxy resin composition comprising hydrated alumina having a particle size distribution in which the following cumulative weight % is 15 to 35% and the cumulative weight % of particles having a particle size of 3 μm or less is 13% or less.
JP2341088A 1988-02-03 1988-02-03 Flame-retardant epoxy resin composition Pending JPH01198658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2341088A JPH01198658A (en) 1988-02-03 1988-02-03 Flame-retardant epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2341088A JPH01198658A (en) 1988-02-03 1988-02-03 Flame-retardant epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH01198658A true JPH01198658A (en) 1989-08-10

Family

ID=12109728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2341088A Pending JPH01198658A (en) 1988-02-03 1988-02-03 Flame-retardant epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH01198658A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263146A (en) * 1988-04-14 1989-10-19 Nitto Denko Corp Epoxy resin composition for casting
JPH02212545A (en) * 1989-02-10 1990-08-23 Nitto Denko Corp Casting epoxy resin composition
WO1996028511A1 (en) * 1995-03-10 1996-09-19 Toshiba Chemical Corporation Halogen-free flame-retardant epoxy resin composition
US5883160A (en) * 1996-12-06 1999-03-16 Somar Corporation Flame-retardant epoxy resin composition for case potting of film capacitors
EP1907436B2 (en) 2005-07-26 2013-01-16 Huntsman Advanced Materials (Switzerland) GmbH Epoxy resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263146A (en) * 1988-04-14 1989-10-19 Nitto Denko Corp Epoxy resin composition for casting
JPH02212545A (en) * 1989-02-10 1990-08-23 Nitto Denko Corp Casting epoxy resin composition
WO1996028511A1 (en) * 1995-03-10 1996-09-19 Toshiba Chemical Corporation Halogen-free flame-retardant epoxy resin composition
US5883160A (en) * 1996-12-06 1999-03-16 Somar Corporation Flame-retardant epoxy resin composition for case potting of film capacitors
EP1907436B2 (en) 2005-07-26 2013-01-16 Huntsman Advanced Materials (Switzerland) GmbH Epoxy resin composition

Similar Documents

Publication Publication Date Title
DE19523897C2 (en) Use of silicone-modified epoxy resins as casting compounds for electrotechnical or electronic components
JP2000510497A (en) Epoxy resin casting composition
JPH01198658A (en) Flame-retardant epoxy resin composition
JPS6259626A (en) Epoxy resin composition
JPH0553810B2 (en)
JP2623823B2 (en) Epoxy resin composition
JP4053849B2 (en) Epoxy curing agent composition
JPH1060096A (en) Flame-retardant epoxy resin composition
JPH1171503A (en) Epoxy resin composition and insulation treatment of electric instrument using the same
JPH0749506B2 (en) Flame-retardant epoxy resin composition
JPS6228166B2 (en)
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH06239976A (en) Epoxy resin composition and sealed semiconductor device
JPH0455463A (en) Production of epoxy resin composition
JPH0528243B2 (en)
JPH039929B2 (en)
JPH09137042A (en) Epoxy resin composition and electric machinery and apparatus using the same
JPH0519806B2 (en)
JP2004346114A (en) Epoxy resin composition for impregnating and casting coil and coil using the same
JPH11323092A (en) Flame retarding epoxy resin composition for casting
JP3872038B2 (en) Casting epoxy resin composition, curing method thereof, and electric / electronic component device
JPH11323091A (en) Flame retarding epoxy resin composition for casting
JPH0525369A (en) Flame retardant epoxy resin composition
JPS61276816A (en) Epoxy resin composition
JPH1060229A (en) Flame-retardant epoxy resin composition