JPH01198329A - Manufacture of aerofoil of rotor blade twisted in three dimension - Google Patents

Manufacture of aerofoil of rotor blade twisted in three dimension

Info

Publication number
JPH01198329A
JPH01198329A JP63306790A JP30679088A JPH01198329A JP H01198329 A JPH01198329 A JP H01198329A JP 63306790 A JP63306790 A JP 63306790A JP 30679088 A JP30679088 A JP 30679088A JP H01198329 A JPH01198329 A JP H01198329A
Authority
JP
Japan
Prior art keywords
fiber
rotor blade
airfoil
strands
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63306790A
Other languages
Japanese (ja)
Inventor
Berhard Wohrl
ベルハルド・ヴェール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of JPH01198329A publication Critical patent/JPH01198329A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/26Fabricated blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/566Winding and joining, e.g. winding spirally for making tubular articles followed by compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/84Heating or cooling
    • B29C53/845Heating or cooling especially adapted for winding and joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE: To arrange fibers in respective directions to hold and press them and to prevent the slip of them to eliminate the positional change of the fibers by pressing fiber strands impregnated with a resin matrix by a fiber pressing roll and immediately curing the resin matrix by a pre-cure device. CONSTITUTION: The fiber strands 9 unwound from a fiber reel 10 are pulled by a fiber pressing roll 11 through a fiber supply conduit 12 and, at the same time, a matrix material is supplied to the fiber strands 9 in a constant quantity from a weighing device 14. The fiber strands 9 are accurately arranged to the advance passage on a core 1a along with the matrix material to be precured (gelled) by a precure device 15 and the surfaces of the strands are driven. By this constitution, the fiber strands are fixed so as to be arranged on a curved track. Separate fiber layers are further arranged on the precured fiber strands in an abitrary direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、樹脂含浸繊維材料でコアを包む ことによっ
て立体的に捻じられたロータブレードのエーロフオイル
を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an airfoil for a three-dimensionally twisted rotor blade by wrapping the core with a resin-impregnated fibrous material.

〔従来の技術とその課題〕[Conventional technology and its issues]

繊維技術の構成部材は、その優れた特性に基づいて、ま
ずます優れた技術的な意義を得つつある。
Components of textile technology are gaining ever greater technical significance due to their excellent properties.

その低い密度、高い引張強度及び比較的容易な造形(F
ormgestaltung)以前は金属材料に留保さ
れた頭載にまで繊維材料の利用が進むことを可能にする
。それ故、繊維強化材料航空機に適用されるに到ってお
り、特に動的に高度に負荷されるブレードのニーフォイ
ル及びプロペラ又はプロプファンのエーロフオイルに適
用されるに至る。
Its low density, high tensile strength and relatively easy fabrication (F
(orngestaltung) allows the use of textile materials to advance to a level previously reserved for metallic materials. Therefore, fiber-reinforced materials have found application in aircraft, in particular in the knee foils of blades and in the airfoils of propellers or propfans, which are subjected to high dynamic loads.

繊維強化材料の別の優れた特性は、好ましい方向に繊維
を配置することによって構成部材の特性に影響を及ぼし
、それ故異なる方向で例えば弾性係数或いは減衰定数に
ついての材料データを得る可能性があることである。
Another advantageous property of fiber-reinforced materials is the possibility of influencing the properties of the component by arranging the fibers in a preferred direction and thus obtaining material data, for example on the elastic modulus or damping constant, in different directions. That's true.

しかし、表面が立体的に捻しられており、特に部分的に
凹部に形成されており、異なる方向で種々の強さ及び振
動特性が要求される繊維強化材料製の複合化された成形
された構成部材は技術的に疑わしい。これは特に最近の
ターボエンジンのファン或いはプロプファンのブレート
について見られ、ブレードのエーロフオイルをブレード
の根部乃至はロータに取り付けることは別の特別な問題
を提出する。
However, composite molded materials made of fiber-reinforced materials whose surfaces are three-dimensionally twisted, in particular partially recessed, and which require different strength and vibration properties in different directions, The components are technically questionable. This is particularly the case with modern turbo engine fan or prop fan blades, where attaching the blade airfoil to the blade root or rotor presents another special problem.

このような構成部材の従来の装造は、高度の費消と結合
されており、この費消はまた高い製造コストに帰着する
。それは所謂プリプレグであり、マトリックス材料が化
含浸せしめられた繊維板が中空型内に移され、更に圧力
と温度によって硬化せしめられる。その場合、原理上可
能な構成部材の特性への意識的な影響が製造方法におい
て、非常に高い費消の下でのみ可能であることは不利で
ある。
Conventional equipping of such components is associated with a high degree of consumption, which also results in high manufacturing costs. It is a so-called prepreg, in which a fiberboard impregnated with a matrix material is transferred into a hollow mold and further hardened by pressure and temperature. It is disadvantageous in this case that the conscious influence on the properties of the component, which is possible in principle, is only possible in the manufacturing process at very high consumption.

本発明の課題は簡単に且つ迅速に製造することを可能に
し、目的とする繊維の配置によって目的とする構成部材
の特性を手際よく扱うことが出来る、立体的に捻じられ
たロータブレードエーロフオイルを製造する方法を提供
することである。
The object of the present invention is to provide a three-dimensionally twisted rotor blade airfoil that can be manufactured simply and quickly, and that allows the desired properties of the component to be easily controlled by the desired fiber arrangement. An object of the present invention is to provide a method for manufacturing.

〔課題を解決するための手段及びその作用〕この課題は
、本発明に従って樹脂含浸繊維材料でコアrLを包むこ
とによって立体的に捻じられたロータブレードエーロフ
オイルを製造する方法において、樹脂71へリソクスが
含浸せしめられた繊維ストランド9が繊維押さえロール
11でコア1に押しく−Jげられ、繊維押さえロール1
1に連結されたプリキュア装置15が押し付け後直ちに
樹脂マトリックスを硬化することを特徴とする立体的に
捻じられたロータプレートエーロフオイルの製造方法に
よって解決される。
[Means for Solving the Problems and Their Effects] This problem is solved by the method of manufacturing a three-dimensionally twisted rotor blade airfoil by wrapping the core rL with a resin-impregnated fiber material according to the present invention. The fiber strand 9 impregnated with Lysox is pushed onto the core 1 by the fiber presser roll 11, and the fiber strand 9 is pushed onto the core 1 by the fiber presser roll 11.
The present invention is solved by a method for manufacturing a three-dimensionally twisted rotor plate airfoil, which is characterized in that a precure device 15 connected to a precure device 15 immediately cures the resin matrix after pressing.

本発明において、プリキュア装置15が赤外線照射装置
として形成されている。
In the present invention, the precure device 15 is formed as an infrared irradiation device.

本発明において、繊維ストランド9が繊維押さえロール
11を用いて繊維供給導管12を通して引っ張られ、該
繊維供給導管12においてマトリックス材料が繊維スト
ランドに供給される。
In the present invention, the fiber strand 9 is pulled using a fiber presser roll 11 through a fiber feed conduit 12 in which matrix material is fed to the fiber strand.

本発明による方法は、任意の成形されたロータブレード
のエーロフオイル上に簡単な方法で各方向に繊維を配置
し、そこで保って押さえ、すべって位置が変わることが
決して無いと云う利益をもたらす。
The method according to the invention provides the advantage that the fibers can be placed in a simple manner in each direction on the airfoil of any shaped rotor blade and held there and held down so that they never slip and change position.

硬化後繊維は凹面に成形された面上にも接着して留まり
、それ故正確なしかも迅速な繊維の配置が補償される。
After curing, the fibers also remain adhered to the concavely shaped surface, thus ensuring accurate and rapid fiber placement.

必要に応じて異なる方向或いは同方向で多数の繊維層を
重ねて取り付けることが出来る。プリキュア装置15は
、その位置で繊維は固着されるが、繊維7トリソクス混
合物は硬化されないようにマトリックス材料をゲル化す
る。更に巻かれた構成部材は仕上げ寸法に型内で圧縮さ
れ、炉内で硬化せしめられる。
Multiple fiber layers can be applied one on top of the other in different directions or in the same direction as desired. The precure device 15 gels the matrix material so that the fibers are fixed in place but the fiber 7 trisox mixture is not cured. The rolled component is then compressed to the finished size in a mold and hardened in an oven.

更に繊維技術の捻じられた構成部材の製造に必要な時間
は従来の方法に比して著しく短縮される。
Furthermore, the time required to produce twisted components of textile technology is significantly reduced compared to conventional methods.

さらに本質的なことは、凹面に成形されたブレードを簡
単にしかも正確に繊維の層で覆うことが出来、このこと
は従来の繊維の取り付け方法では満足になしえなかった
ことである。
What is also essential is that the concavely shaped blade can be simply and accurately covered with a layer of fibers, which could not be achieved satisfactorily with conventional fiber attachment methods.

それ故有利に巻き付け方法の著しい簡単化がもタラされ
、完全自動化されたコンピュータ及びロボット制御され
た製造の実施に適している。
Advantageously, therefore, a significant simplification of the winding method is also achieved, making it suitable for fully automated, computer- and robot-controlled production implementations.

繊維ストランド9は有利に選ばれた軌道に沿って敷設す
ることが出来る。これによって、異方性の構成部材の構
造を得ることが出来、安定性と強度に恵まれた配置を造
ることが出来る。これによって、特に困難な問題を解消
することが出来る。
The fiber strands 9 can be laid along an advantageously chosen trajectory. This makes it possible to obtain an anisotropic component structure and to create an arrangement that is endowed with stability and strength. This allows particularly difficult problems to be solved.

本発明の有利な形成において、ロータブレードのエーロ
フオイルをブレードの相部6に固定するために繊維スト
ランド、多数のブレードの根部6に設けられた保持用節
部5に巻きイ」けられる。これによって、駆動中に作用
する遠心力のブレードの根部6への特に有利な伝達が生
ずることを可能にする。
In an advantageous embodiment of the invention, fiber strands are wound around retaining knots 5 provided at the roots 6 of a number of blades in order to fix the airfoil of the rotor blades on the phase 6 of the blades. This makes it possible for a particularly advantageous transmission of the centrifugal forces acting during the drive to the blade root 6 to occur.

〔実施例〕〔Example〕

本発明を添付の図面に照らして詳細に説明する。 The invention will be explained in detail in the light of the accompanying drawings.

図面において、第1図はファンのブレードを例示する斜
視口、第2図は繊維を敷設する装置を例示する斜視図、
第3図は太軸門形ロボット(six−示されている。第
1図には配置されるべき繊維の好ましい方向:主引張方
向2及び斜め方向の層3及び4が描写されている。繊維
は好ましくはブレードの根部6上に設けられている複数
の保持用節部(Ilaltenoppen) 5に括り
つけられている。これによって二つの部分間の良好な結
合が達成され、また駆動中にブレードに生ずる引張力が
ブレードの根部6に良好に導かれる。
In the drawings, FIG. 1 is a perspective view illustrating a fan blade, FIG. 2 is a perspective view illustrating a fiber laying device,
FIG. 3 shows a thick-axis portal robot (six-). FIG. 1 depicts the preferred direction of the fibers to be placed: the main tension direction 2 and the diagonal layers 3 and 4. Fibers are preferably fastened to a plurality of retaining joints 5 which are provided on the blade root 6. This achieves a good connection between the two parts and also ensures that the blade does not hold during the drive. The resulting tensile forces are better guided to the root 6 of the blade.

第2図に繊維を敷設する装置8が図示されており、この
装置は本質的に繊維リール10、繊維供給導管12、繊
維押さえロール11 (Faserandrjckro
lle)及びプリキュア装置15からなる。繊維リール
10から巻き出された繊維ストランド(Faserst
rang) 9は、繊維供給導管12を通して繊維押さ
えロール11によって引っ張られ、同時に繊維供給導管
12において□はマトリックス(Matrix)材料が
71〜リノクス計量装置14からマトリックス供給装置
13を通して繊維ストランド9に一定量で供給される。
FIG. 2 shows a device 8 for laying fibers, which essentially consists of a fiber reel 10, a fiber supply conduit 12, a fiber presser roll 11
lle) and the Precure device 15. The fiber strand (Fasrst) unwound from the fiber reel 10
Rang) 9 is pulled by the fiber pressing roll 11 through the fiber supply conduit 12, and at the same time, in the fiber supply conduit 12, □ is a matrix material 71~Linox metering device 14 passes through the matrix supply device 13 to the fiber strand 9 in a constant amount. Supplied by

マトリックス材料は、貯蔵容器16からフレキシブルな
供給管路17を通してマトリックス計量装置14に供給
される。そのとき、繊維の単位長当たり供給されるマト
リックスの容量は、好ましくは、繊維の送り速度(Fa
serdurchsatz)に適合するように調整され
る。そのように濡らされた繊維は、構成部材のコアll
1lL上の上記した進路に正確に配置され、プリキュア
装置15によってプリキュアされ(ゲル化され)、表面
が乾かされる。このようにして繊維が湾曲した軌道(B
ahn)に配置されるように固定される。プリキュアさ
れた繊維の上に更に別の繊維層が任意の方向に配置され
る。
Matrix material is supplied from storage container 16 through flexible supply line 17 to matrix metering device 14 . The capacity of matrix fed per unit length of fiber is then preferably determined by the fiber feed rate (Fa
serdurchsatz). The fibers so wetted are then exposed to the core of the component.
It is precisely placed in the above-mentioned path on 1 liter, is precure (gelled) by the precure device 15, and the surface is dried. In this way, the fiber curved trajectory (B
ahn). Further fiber layers are placed on top of the precure fibers in any direction.

第3図に示されているように、ここで模式的に図示され
ている繊維を敷設する装置8は太軸門形ロボット7の手
首(Handgelenk)に結合されており、このよ
うにしてコンピュータ制御の下で予め計算された軌道に
沿って完全に自動的に構成部材のコア上に繊維ストラン
ド9を敷設することが出来る。これによって繊維の敷設
の非常に正確な再現(<Q、2mm)を達成することが
出来る。
As shown in FIG. 3, the device 8 for laying the fibers, here schematically illustrated, is connected to the wrist of a wide-axis portal robot 7 and is thus computer-controlled. It is possible to lay the fiber strands 9 on the core of the component completely automatically along the pre-calculated trajectory under. This makes it possible to achieve a very accurate reproduction of the fiber laying (<Q, 2 mm).

このように作られた半製品(Rohteil)が完全に
巻かれた後、更にそれは型内に運ばれ、圧力及び温度に
よって通常の方法で硬化せしめられる。
After the semi-finished product produced in this way has been completely rolled up, it is further conveyed into molds and hardened in the usual manner under pressure and temperature.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば、任意の成形されたロータ
ブレードのエーロフオイル上に簡単な方法で各方向に繊
維を配置し、そこで保って押さえ、すべって位置が変わ
ることが決して無いという利益をもたらすものである。
As mentioned above, according to the present invention, the fibers can be placed in a simple manner in each direction on the airfoil of any shaped rotor blade and held there, with the benefit of never slipping and changing position. It is something that brings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はファンのブレードを例示する斜視図、第2図は
繊維を敷設する装置を例示する斜視図、第3図は、六輪
門形ロボット(six−axis portalrob
ot )を例示する斜視図である。 1・・・・・・ロータブレードのエーロフオイル、2・
・・・・・主引張方向、3.4・・・・・・斜め方向の
層、5・・・・・・保持用節部、6・・・・・・ブレー
ドの根部、7・・・・・・太軸門形ロボット、8・・・
・・・繊維を敷設する装置、9・・・・・・繊維ストラ
ンド、10・・・・・・繊維リール、11・・・・・・
繊維押さえロール、12・・・・・・繊維供給導管、1
3・・・・・・マトリックス供給装置、14・・・・・
・7トリソクス計量装置、15・・・・・・プリキュア
装置、16・・・・・・貯蔵容器、17・・・・・・フ
レキシブルな供給管路、1ル −コア。
FIG. 1 is a perspective view illustrating fan blades, FIG. 2 is a perspective view illustrating a fiber laying device, and FIG. 3 is a six-axis portal robot.
ot) is a perspective view illustrating an example. 1... Aerof oil for rotor blades, 2.
...Main tensile direction, 3.4 ... Diagonal layer, 5 ... Holding knot, 6 ... Root of blade, 7 ... ...Thick-axis gate-shaped robot, 8...
... Fiber laying device, 9... Fiber strand, 10... Fiber reel, 11...
Fiber presser roll, 12...Fiber supply conduit, 1
3... Matrix supply device, 14...
・7 Trisox metering device, 15...Precure device, 16...Storage container, 17...Flexible supply conduit, 1 Lu-core.

Claims (4)

【特許請求の範囲】[Claims] (1)樹脂含浸繊維材料でコアを包むことによって立体
的に捻じられたロータブレードエーロフォイルを製造す
る方法において、樹脂マトリックスが含浸せしめられた
繊維ストランドが繊維押さえロール11でコアに押し付
けられ、繊維押さえロール11に連結されたプリキュア
装置15が押し付け後直ちに樹脂マトリックスを硬化す
ることを特徴とする立体的に捻じられたロータブレード
のエーロフォイルの製造方法。
(1) In a method of manufacturing a three-dimensionally twisted rotor blade airfoil by wrapping a core with a resin-impregnated fiber material, a fiber strand impregnated with a resin matrix is pressed against the core with a fiber presser roll 11, and the fiber A method for manufacturing an airfoil of a three-dimensionally twisted rotor blade, characterized in that a precure device 15 connected to a presser roll 11 cures the resin matrix immediately after pressing.
(2)ロータブレードのエーロフォイルをブレードの根
部6に固定するために繊維ストランド、多数のブレード
の根部6に設けられた保持用節部5に巻き付けられるこ
とを特徴とする請求項1に記載の立体的に捻じられたロ
ータブレードのエーロフォイルの製造方法。
(2) A fiber strand is wound around a retaining knurl 5 provided in a plurality of blade roots 6 to secure the airfoil of the rotor blade to the blade root 6. A method of manufacturing a three-dimensionally twisted rotor blade airfoil.
(3)プリキュア装置が赤外線照射装置として形成され
ていることを特徴とする請求項1に記載の立体的に捻じ
られたロータブレードのエーロフォイルの製造方法。
3. A method for producing an airfoil of a three-dimensionally twisted rotor blade according to claim 1, characterized in that the precure device is configured as an infrared irradiation device.
(4)繊維ストランドが繊維押さえロール11を用いて
繊維供給導管を通して引っ張られ、該繊維供給導管にお
いてマトリックス材料が繊維ストランドに供給されるこ
とを特徴とする請求項1乃至3の何れか一つの請求項に
記載の立体的に捻じられたロータブレードのエーロフォ
イルの製造方法。
(4) The fiber strand is pulled through a fiber supply conduit using a fiber presser roll 11, in which the matrix material is supplied to the fiber strand. A method of manufacturing a three-dimensionally twisted rotor blade airfoil as described in paragraphs.
JP63306790A 1987-12-22 1988-12-02 Manufacture of aerofoil of rotor blade twisted in three dimension Pending JPH01198329A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3743485.3 1987-12-22
DE19873743485 DE3743485A1 (en) 1987-12-22 1987-12-22 METHOD FOR PRODUCING A SPACIOUSLY WINDED ROTOR BLADE

Publications (1)

Publication Number Publication Date
JPH01198329A true JPH01198329A (en) 1989-08-09

Family

ID=6343233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306790A Pending JPH01198329A (en) 1987-12-22 1988-12-02 Manufacture of aerofoil of rotor blade twisted in three dimension

Country Status (5)

Country Link
JP (1) JPH01198329A (en)
DE (1) DE3743485A1 (en)
FR (1) FR2624786A1 (en)
GB (1) GB2213793A (en)
IT (1) IT1227931B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006400A (en) * 2005-03-03 2012-01-12 Coriolis Composites Fiber coating machine
JP2013240882A (en) * 2011-02-23 2013-12-05 Airbus Operations Ltd Composite structural body

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002087A1 (en) * 1990-01-25 1991-08-08 Messerschmitt Boelkow Blohm DEPOSING FIBER TAPES ON DOUBLE-CURVED BODIES OR SURFACES
US5273602A (en) * 1990-12-19 1993-12-28 Hercules Incorporated Ribbonizing method for selectively heating a respective one of a plurality of fiber tows
EP0534092B1 (en) * 1991-07-31 1996-09-18 Hercules Incorporated Cure-on-the-fly system
GB2269800B (en) * 1992-08-22 1995-10-11 Ferodo Caernarfon Ltd Fabrication of friction elements
US5266139A (en) * 1992-10-02 1993-11-30 General Dynamics Corporation, Space Systems Division Continuous processing/in-situ curing of incrementally applied resin matrix composite materials
FR2865156B1 (en) * 2004-01-19 2006-11-10 Dcmp DEVICE FOR REMOVING FLOOR OR WIRES IN A MOLD FOR MANUFACTURING PARTS OF COMPOSITE MATERIALS
FR2878779B1 (en) 2004-12-02 2007-02-09 Eads Ccr Groupement D Interet DEVICE FOR DRAPING PRE-IMPREGNATED FLEXIBLE BANDS
DE102006006337A1 (en) * 2006-02-11 2007-08-16 Kümpers GmbH & Co. KG Spatial textile component structure on high-strength threads, as well as methods for their production
FR2912680B1 (en) 2007-02-21 2009-04-24 Coriolis Composites Sa METHOD AND DEVICE FOR MANUFACTURING PARTS OF COMPOSITE MATERIAL, IN PARTICULAR AIRBORNE FUSELAGE STRINGS
FR2912953B1 (en) 2007-02-28 2009-04-17 Coriolis Composites Sa FIBER APPLICATION MACHINE WITH FLEXIBLE FIBER DELIVERY TUBES
FR2913365B1 (en) 2007-03-06 2013-07-26 Coriolis Composites Attn Olivier Bouroullec FIBER APPLICATION HEAD WITH PARTICULAR FIBER CUTTING SYSTEMS
WO2009156157A1 (en) * 2008-06-25 2009-12-30 Zsk Stickmaschinen Gmbh Device and method for applying a band-shaped material
FR2943943A1 (en) 2009-04-02 2010-10-08 Coriolis Composites METHOD AND MACHINE FOR APPLYING A FIBER BAND TO CONVEXED SURFACES AND / OR WITH AREES
FR2948058B1 (en) 2009-07-17 2011-07-22 Coriolis Composites FIBER APPLICATION MACHINE COMPRISING A FLEXIBLE COMPACTION ROLL WITH THERMAL CONTROL SYSTEM
EP2404742A1 (en) * 2010-07-09 2012-01-11 Siemens Aktiengesellschaft Method to manufacture a component of a composite structure
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
DE102013208471B4 (en) * 2013-05-08 2015-08-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for producing a molded component
DE202014101350U1 (en) * 2014-03-24 2015-03-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. fiber feeding
FR3034338B1 (en) 2015-04-01 2017-04-21 Coriolis Composites FIBER APPLICATION HEAD WITH PARTICULAR APPLICATION ROLLER
DE102015215669A1 (en) * 2015-08-18 2017-02-23 Bayerische Motoren Werke Aktiengesellschaft Method for producing a fiber composite component by means of impregnated fiber rovings
FR3043010B1 (en) 2015-10-28 2017-10-27 Coriolis Composites FIBER APPLICATION MACHINE WITH PARTICULAR CUTTING SYSTEMS
WO2017090551A1 (en) * 2015-11-25 2017-06-01 株式会社Adeka Molding machine, production method, and fiber-reinforced resin material
FR3048373B1 (en) 2016-03-07 2018-05-18 Coriolis Group PROCESS FOR MAKING PREFORMS WITH APPLICATION OF A BINDER ON DRY FIBER AND CORRESPONDING MACHINE
FR3056438B1 (en) 2016-09-27 2019-11-01 Coriolis Group METHOD FOR PRODUCING COMPOSITE MATERIAL PARTS BY IMPREGNATING A PARTICULAR PREFORM
US10865769B2 (en) * 2017-11-21 2020-12-15 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US11926099B2 (en) 2021-04-27 2024-03-12 Continuous Composites Inc. Additive manufacturing system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL26368A (en) * 1965-09-08 1970-02-19 Balzaretti Modigliani Spa Continuous production of a fibrous tubular structure
DE1619039A1 (en) * 1966-01-19 1969-09-18 Ferro Corp Resin-impregnated fiberglass composition and process for making the same
DE2421619C3 (en) * 1974-05-04 1982-07-08 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Process for producing a glass fiber reinforced plastic molded part and device for carrying out the process
US4170505A (en) * 1976-09-24 1979-10-09 General Electric Company Method for making and applying irradiation curable glass banding
ZA827460B (en) * 1981-12-28 1983-08-31 United Technologies Corp Method of manufacturing a filament wound article
DE3211417C2 (en) * 1982-03-27 1986-12-18 Uranit GmbH, 5170 Jülich Device for producing cross-wound layers for fiber-reinforced, rotationally symmetrical wound bodies
JPS63112142A (en) * 1986-10-28 1988-05-17 フイリツプス ピトロ−リアム カンパニ− Method and device for manufacturing thermoplastic structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006400A (en) * 2005-03-03 2012-01-12 Coriolis Composites Fiber coating machine
JP2013240882A (en) * 2011-02-23 2013-12-05 Airbus Operations Ltd Composite structural body

Also Published As

Publication number Publication date
DE3743485A1 (en) 1989-07-13
GB8826325D0 (en) 1988-12-14
IT8822738A0 (en) 1988-11-25
FR2624786A1 (en) 1989-06-23
IT1227931B (en) 1991-05-14
GB2213793A (en) 1989-08-23

Similar Documents

Publication Publication Date Title
JPH01198329A (en) Manufacture of aerofoil of rotor blade twisted in three dimension
CN105848860B (en) Wind turbine blade
US3657040A (en) Method of fabricating reinforced plastic bows having different draw weights
CN109641409B (en) Strip made of prefabricated elements with a substrate and method for producing same
EP2314445B1 (en) A method for manufacturing a composite body and a composite body manufacturing arrangement
US3943020A (en) Filament wound blade and method for manufacturing same
US4401495A (en) Method of winding composite panels
US20120009069A1 (en) Method to manufacture a component of a composite structure
CN101663155B (en) Method for manufacture of a complex part of a composite material with long fibers and heat-curable matrix
US4463044A (en) Composite panel of varied thickness
CN109054296A (en) A kind of high-strength carbon fiber composite material bar material of surface resin rib and preparation method thereof
US5091029A (en) Method of manufacturing a unitary, multi-legged helicopter rotor flexbeam made solely of composite materials
JPS59101359A (en) Fiber reinforced plastic board and its manufacture
CN101786327A (en) Method for placing in-situ cured fiber by rotary wet process and device therefor
US8375996B2 (en) Method and an apparatus for producing a multiaxial fabric
US10647421B2 (en) Method of fabricating a spar for a blade, a method of fabricating a blade, and a blade
JPS6034832A (en) Method and device for manufacturing high strength composite structure
US4459171A (en) Mandrel for forming a composite panel of varied thickness
US3736202A (en) Composite sheets and processes of manufacturing the same
TW201641772A (en) Method and apparatus for producing a preform
CN114829117A (en) Improvements relating to wind turbine blade manufacture
CN116394539A (en) Method for manufacturing prefabricated blade root
EP0667228A1 (en) Method and device for molding spirally grooved frp product
GB1498892A (en) Racket manufacture
US20180106268A1 (en) Blade component