JPH01197351A - Production of superconducting ceramic sintered body having high critical temperature and high toughness - Google Patents

Production of superconducting ceramic sintered body having high critical temperature and high toughness

Info

Publication number
JPH01197351A
JPH01197351A JP63019053A JP1905388A JPH01197351A JP H01197351 A JPH01197351 A JP H01197351A JP 63019053 A JP63019053 A JP 63019053A JP 1905388 A JP1905388 A JP 1905388A JP H01197351 A JPH01197351 A JP H01197351A
Authority
JP
Japan
Prior art keywords
powder
superconducting ceramic
sintered body
ceramic sintered
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63019053A
Other languages
Japanese (ja)
Inventor
Takuo Takeshita
武下 拓夫
Sadaaki Hagiwara
萩原 貞明
Takeshi Sakurai
健 桜井
Tadashi Sugihara
杉原 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63019053A priority Critical patent/JPH01197351A/en
Priority to PCT/JP1988/000956 priority patent/WO1989002880A1/en
Priority to KR1019890700906A priority patent/KR910009891B1/en
Priority to EP19880908347 priority patent/EP0354963A4/en
Publication of JPH01197351A publication Critical patent/JPH01197351A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a superconducting ceramic sintered body having high critical temp. and high toughness by incorporating a specified amt. of F into a sintered body forming a solid solution by compounding a specified amt. of a metal fluoride with starting material powder for the production of a Y-Ba-Cu-O type superconducting ceramic. CONSTITUTION:Powder of oxide of a rare earth element including Y (e.g., Y2O3, Er2O3), powder of oxide or carbonate of an alkaline earth metal (e.g., BaO), and powder of copper oxide, are mixed in a specified proportion of a specified composition, and 0.01-0.35wt.% (expressed in terms of amt. of F) powder of metal fluoride (e.g., BaF2, CuF2) is mixed with said mixture. Then, the obtd. powder mixture is converted to superconducting ceramic powder by executing calcination and pulverization each once or repeatedly >=2 times. A molded green compact of the ceramic powder is sintered. The title superconducting ceramic sintered body is obtd. by incorporating thus 0.01-0.3wt.% F into the sintered body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高臨界温度および高靭性を有する超電導セ
ラミックス焼結体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a superconducting ceramic sintered body having a high critical temperature and high toughness.

〔従来の技術〕[Conventional technology]

一般に、超電導セラミックス焼結体が、まず主要原料粉
末として、いずれも平均粒径: 10tHa以下のYを
含む希土類元素の酸化物(以下R2O3で示す)粉末、
アルカリ土類金属の炭酸塩または酸化物(以下ACO3
で示す)粉末、およびCuの酸化物(以下CuOで示す
)粉末を用意し、これらの原料粉末を所定の配合組成に
配合し、混合した後、例えば乾燥空気中、温度=850
〜950℃の範囲内の所定温度に加熱保持の条件での焼
成処理と粉砕処理を1回づつ、または2回以上繰り返し
行なって平均粒径:1〇−以下の超電導セラミックス粉
末とし、ついでこの超電導セラミックス粉末を圧粉体に
プレス成形し、この成形圧粉体を、酸素含有雰囲気中、
温度:900〜980℃の範囲内の所定温度に加熱保持
の条件で焼結することによって製造されることは良く知
られているところであり、また、この超電導セラミック
ス焼結体が、例えばAgやCu製などの管材内に装入し
、これにスウェージ加工や溝ロール加工、さらにダイス
加工などを施して線材や板材、あるいは条材や帯材など
の加工材に加工されることも知られている。
In general, a superconducting ceramic sintered body is first prepared by using a rare earth element oxide (hereinafter referred to as R2O3) powder containing Y with an average particle size of 10 tHa or less as the main raw material powder;
Carbonates or oxides of alkaline earth metals (hereinafter referred to as ACO3
) powder and Cu oxide (hereinafter referred to as CuO) powder are prepared, these raw material powders are blended into a predetermined composition, and after mixing, for example in dry air at a temperature of 850
Firing treatment and pulverization treatment under conditions of heating and holding at a predetermined temperature in the range of ~950°C are performed once or twice or more to obtain a superconducting ceramic powder with an average particle size of 10- or less, and then this superconducting ceramic powder is obtained. Ceramic powder is press-molded into a green compact, and the compacted compact is heated in an oxygen-containing atmosphere.
It is well known that the superconducting ceramic sintered body is manufactured by sintering under conditions of heating and holding at a predetermined temperature within the range of 900 to 980°C. It is also known that the material is charged into a pipe material such as a steel pipe, and then subjected to swaging, groove rolling, and die processing to be processed into processed materials such as wire rods, plates, strips, and strips. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の従来法によって製造された超電導セラミ
ックス焼結体は、相対的に脆く、十分な靭性をもつもの
でないことから、加工に際しては、割れや破断などの発
生を防止する目的で、低い加工率で、かつ遅い加工速度
での加工を強いられており、この結果加工に長時間を要
するようになるばかりでなく、細心の注意も要求される
のが現状である。
However, superconducting ceramic sintered bodies manufactured by the above-mentioned conventional methods are relatively brittle and do not have sufficient toughness. At present, machining is forced at high speeds and slow machining speeds, and as a result, machining not only takes a long time, but also requires careful attention.

〔課題を解決するだめの手段〕[Failure to solve the problem]

そこで、本発明者等は、上述のような観点から、超電導
セラミックス焼結体の高靭性化をはかるべく研究を行な
った結果、上記の通りの通常の方法での超電導セラミッ
クス焼結体の製造に際して、YF  やB a F 2
 、さらにCu F 2などの金属フッ化物を、粉末の
形で、原料粉末にフッ素(F)量で0.01−0.35
重量%の割合で配合してやると、製造された超電導セラ
ミックス焼結体は、0o01〜0.3重量%のF成分を
完全に固溶含有するようになり、この結果高靭性をもつ
ようになるほか、臨界温度も臨界電流特性を損なうこと
なく一段と上昇するようになるという知見を得たのであ
る。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to improve the toughness of superconducting ceramic sintered bodies. , YF and B a F 2
In addition, metal fluorides such as CuF2 are added to the raw material powder in the form of powder in an amount of 0.01-0.35 fluorine (F).
When blended in a proportion of 0% by weight, the manufactured superconducting ceramic sintered body will completely contain 001 to 0.3% by weight of the F component as a solid solution, and as a result, it will have high toughness as well as high toughness. We obtained the knowledge that the critical temperature can be further increased without impairing the critical current characteristics.

この発明は、上記知見にもとづいてなされたものであっ
て、主要原料粉末として、R2O3粉末、ACO3粉末
、およびCuO粉末を用い、これら原料粉末を所定の配
合組成に配合し、混合した後、焼成処理と粉砕処理を1
回づつ、または2回以上繰り返し行なって超電導セラミ
ックス粉末とし、ついでこの超電導セラミックス粉末の
成形圧粉体を焼結して超電導セラミックス焼結体を製造
するに際して、 上記原料粉末の配合時に、F量で0.01〜0.35重
量%の金属フッ化物粉末を配合し、前記金属フッ化物粉
末中のF成分を前記超電導セラミックス焼結体中に0.
01〜0.3重量%の割合で完全に固溶含有させること
により、超電導セラミックス焼結体の臨界温度の上昇お
よび靭性の向上を臨界電流値を損なうことなく、はかっ
た点に特徴を有するものである。
This invention was made based on the above knowledge, and uses R2O3 powder, ACO3 powder, and CuO powder as the main raw material powders, blends these raw material powders into a predetermined composition, mixes them, and then bakes them. Processing and crushing process 1
The process is repeated once or twice or more to produce a superconducting ceramic powder, and then the compacted compact of this superconducting ceramic powder is sintered to produce a superconducting ceramic sintered body. 0.01 to 0.35% by weight of metal fluoride powder is blended, and 0.01 to 0.35% by weight of the F component in the metal fluoride powder is added to the superconducting ceramic sintered body.
It is characterized by the fact that the critical temperature and toughness of the superconducting ceramic sintered body can be increased and the toughness improved without impairing the critical current value by completely incorporating the superconducting ceramic sintered body as a solid solution at a ratio of 01 to 0.3% by weight. It is.

なお、この発明の方法において、金属フッ化物粉末の配
合割合をF量で0.01〜0.35重量%と限定したの
は、その配合割合が0.01111f1%未満では、超
電導セラミックス焼結体における固溶F含有量も0.0
1重量%未満となってしまい、所望の臨界温度上昇効果
および靭性向上効果を確保することができず、一方その
配合割合が0.35重量%を越えると、超電導セラミッ
クス焼結体自体のF成分固溶限が0.3重量%であるこ
とから、素地中にF成分が析出するようになって、臨界
温度および臨界電流値が低下するようになるという理由
によるものである。
In addition, in the method of this invention, the blending ratio of the metal fluoride powder is limited to 0.01 to 0.35% by weight in terms of F amount, because if the blending ratio is less than 0.01111f1%, the superconducting ceramic sintered body The solid solution F content in is also 0.0
If the blending ratio is less than 1% by weight, the desired critical temperature raising effect and toughness improving effect cannot be secured. On the other hand, if the blending ratio exceeds 0.35% by weight, the F component of the superconducting ceramic sintered body itself This is because since the solid solubility limit is 0.3% by weight, the F component will precipitate in the matrix and the critical temperature and critical current value will decrease.

〔実 施 例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

原料粉末として、いずれも0.5〜lOtmの範囲内の
所定の平均粒径を有する各種のR2O3粉末、AC03
粉末、およびCuO粉末、さらに金属フッ化物粉末とし
てB a F 2粉末およびCu F 2粉末を用意し
、これらの原料粉末を、それぞれ第1表に示される配合
組成に配合し、ボールミルにて6時間乾式混合した後、
l ton/c−の圧力でプレス成形して圧粉体とし、
この圧粉体を、大気中、温度:900℃に10時間保持
の条件で1次焼成処理し、乳鉢で粗粉砕した後、再び前
記1次焼成処理と同じ条件で2次焼成処理し、湿式ボー
ルミルにて6時間の粉砕を行なって平均粒径:1.5μ
sの超電導セラミックス粉末を合成し、ついでこれを2
ton/c−の圧力で幅:8m+sX厚さ:4m+eX
長さ=40+usの寸法を有する圧粉体にプレス成形し
、この成形圧粉体を、大気中、980℃の温度に10時
間保持の条件で焼結することによって本発明法1〜12
および従来法1〜12をそれぞれ実施し、同じく第1表
に示される成分組成をもった超電導セラミックス焼結体
を製造した。
As the raw material powder, various R2O3 powders and AC03 each having a predetermined average particle size within the range of 0.5 to 1Otm are used.
Powder, CuO powder, and B a F 2 powder and Cu F 2 powder as metal fluoride powder were prepared, and these raw material powders were blended into the composition shown in Table 1, and heated in a ball mill for 6 hours. After dry mixing,
Press-molded at a pressure of l ton/c- to form a green compact,
This green compact was first fired in the air at a temperature of 900°C for 10 hours, coarsely ground in a mortar, and then subjected to a second firing under the same conditions as the first firing. Average particle size: 1.5μ after pulverization in a ball mill for 6 hours
s superconducting ceramic powder is synthesized, and then this is
Width: 8m+sX Thickness: 4m+eX at ton/c-pressure
Methods 1 to 12 of the present invention are carried out by press-forming into a compact having a length of 40+us, and sintering the compact in the atmosphere at a temperature of 980°C for 10 hours.
and Conventional Methods 1 to 12 were carried out, respectively, to produce superconducting ceramic sintered bodies having the same compositions shown in Table 1.

ついで、この結果得られた各種の超電導セラミックス焼
結体について、靭性を評価する目的で、理論密度比と抗
折強度を測定し、さらに臨界温度(Tc)と臨界電流値
(J e)を測定し、これらの測定結果を第1表に示し
た。
Next, for the purpose of evaluating the toughness of the various superconducting ceramic sintered bodies obtained as a result, the theoretical density ratio and bending strength were measured, and the critical temperature (Tc) and critical current value (Je) were also measured. The results of these measurements are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜12によって
製造された超電導セラミックス焼結体は、いずれも原料
粉末中に金属フッ化物粉末の配合がない、すなわちF成
分の含有がない従来法1〜12によって製造された超電
導セラミックス焼結体に比して、高い靭性を示し、かつ
ほとんど同じ臨界電流値で相対的に高い臨界温度を示す
ことが明らかである。
From the results shown in Table 1, it can be seen that the superconducting ceramic sintered bodies produced by methods 1 to 12 of the present invention were produced using the conventional method in which no metal fluoride powder was mixed in the raw material powder, that is, no F component was contained. It is clear that, compared to the superconducting ceramic sintered bodies manufactured by Nos. 1 to 12, they exhibit higher toughness and a relatively higher critical temperature at almost the same critical current value.

上述のように、この発明の方法によれば、従来超電導セ
ラミックス焼結体に比して、高い靭性と臨界温度を有す
る超電導セラミックス焼結体を製造することができるの
である。
As described above, according to the method of the present invention, it is possible to produce a superconducting ceramic sintered body having higher toughness and critical temperature than conventional superconducting ceramic sintered bodies.

Claims (1)

【特許請求の範囲】[Claims] (1)主要原料粉末として、Yを含む希土類元素の酸化
物粉末、アルカリ土類金属の炭酸塩または酸化物粉末、
およびCuの酸化物粉末を用い、これら原料粉末を所定
の配合組成に配合し、混合した後、焼成処理と粉砕処理
を1回づつまたは2回以上繰り返し行なって超電導セラ
ミックス粉末とし、ついでこの超電導セラミックス粉末
の成形圧粉体を焼結することにより超電導セラミックス
焼結体を製造するに際して、 上記原料粉末の配合時に、フッ素量で0.01〜0.3
5重量%の金属フッ化物粉末を配合し、もって前記超電
導セラミックス焼結体中に0.01〜0.30重量%の
フッ素を固溶含有せしめることを特徴とする高臨界温度
および高靭性を有する超電導セラミックス焼結体の製造
法。
(1) As the main raw material powder, rare earth element oxide powder containing Y, alkaline earth metal carbonate or oxide powder,
Using oxide powders of Cu and Cu, these raw material powders are blended into a predetermined composition, mixed, and then fired and pulverized once or twice or more to obtain superconducting ceramic powder. When manufacturing a superconducting ceramic sintered body by sintering a powder compact, when blending the raw material powder, the amount of fluorine is 0.01 to 0.3.
The superconducting ceramic sintered body contains 0.01 to 0.30% by weight of fluorine as a solid solution by blending 5% by weight of metal fluoride powder, and has a high critical temperature and high toughness. A method for producing superconducting ceramic sintered bodies.
JP63019053A 1987-09-24 1988-01-29 Production of superconducting ceramic sintered body having high critical temperature and high toughness Pending JPH01197351A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63019053A JPH01197351A (en) 1988-01-29 1988-01-29 Production of superconducting ceramic sintered body having high critical temperature and high toughness
PCT/JP1988/000956 WO1989002880A1 (en) 1987-09-24 1988-09-21 Process for producing superconductive ceramic sinter
KR1019890700906A KR910009891B1 (en) 1987-09-24 1988-09-21 Process for producing superconductive ceramic sinter
EP19880908347 EP0354963A4 (en) 1987-09-24 1988-09-21 Process for producing superconductive ceramic sinter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019053A JPH01197351A (en) 1988-01-29 1988-01-29 Production of superconducting ceramic sintered body having high critical temperature and high toughness

Publications (1)

Publication Number Publication Date
JPH01197351A true JPH01197351A (en) 1989-08-09

Family

ID=11988686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019053A Pending JPH01197351A (en) 1987-09-24 1988-01-29 Production of superconducting ceramic sintered body having high critical temperature and high toughness

Country Status (1)

Country Link
JP (1) JPH01197351A (en)

Similar Documents

Publication Publication Date Title
JPH0712981B2 (en) Method for manufacturing aluminum nitride sintered body
KR960011344B1 (en) Process for producing superconducting(bi,ti)-ca(sr,ba)cu-o ceramic
JPH01197351A (en) Production of superconducting ceramic sintered body having high critical temperature and high toughness
JPS5852950B2 (en) Method for manufacturing silicon nitride sintered body
JPH0515667B2 (en)
KR890002158B1 (en) Silicon mitride ceramic sintered body and the method for producing the same
KR910009891B1 (en) Process for producing superconductive ceramic sinter
JPH07157362A (en) Aluminum oxide-based ceramic having high strength and high toughness
JPH01212268A (en) Superconducting sintered body
JP2927919B2 (en) Crystallizing heat treatment method for silicon nitride sintered body
JPH0696471B2 (en) Method for manufacturing zirconia ceramics
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2792095B2 (en) Method for producing high-strength silicon nitride sintered body
JPH01164730A (en) Superconducting material and its production
JPH06128025A (en) Production of aluminum oxide-based ceramics having high strength and high toughness
JPH0234516A (en) Production of tl-ba-ca-cu-o type superconducting ceramics
JPS6058191B2 (en) Manufacturing method of silicon nitride sintered body
JPH01261261A (en) Production of bi-ca-sr-cu-o superconducting ceramics
JPH0345514A (en) Bi-based superconducting oxide powder and production of sintered compact using the same powder
JP2751230B2 (en) Method for producing Bi-based superconducting oxide sintered body containing lead
JPH01172259A (en) Production of ceramic superconducting molded body
EP0354963A1 (en) Process for producing superconductive ceramic sinter
JPS61158870A (en) Ceramic sintered body and manufacture
JPH0461828B2 (en)
JPS61158868A (en) Manufacture of ceramic sintered body