JPH01197058A - Heat exchanger made of aluminum - Google Patents

Heat exchanger made of aluminum

Info

Publication number
JPH01197058A
JPH01197058A JP1912988A JP1912988A JPH01197058A JP H01197058 A JPH01197058 A JP H01197058A JP 1912988 A JP1912988 A JP 1912988A JP 1912988 A JP1912988 A JP 1912988A JP H01197058 A JPH01197058 A JP H01197058A
Authority
JP
Japan
Prior art keywords
alloy
tube
brazing
aluminum
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1912988A
Other languages
Japanese (ja)
Inventor
Tsutomu Tomioka
富岡 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP1912988A priority Critical patent/JPH01197058A/en
Publication of JPH01197058A publication Critical patent/JPH01197058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve corrosion preventing effect and strength by composing a solder alloy by a low m.p. Zn-Fe alloy in case of joining and Al tube and Al fin via the solder alloy. CONSTITUTION:Plural holes are formed on the flat tube of a capacitor by providing plural partition walls at the inner part along the flowing direction of a refrigerant, the core bar thereof is made of an Al alloy and the brazing filler metal 6 consisting of Zn-Fe alloy is coated on the outer surface thereof. The skeleton of the capacitor is made by bending this tube 2 in meandering state by keeping specified intervals, the corrugated fin 3 in extremely thin thickness of Al alloy is interposed between the parallel parts of the tube 2, heated in a vacuum furnace and by brazing it a core part 1 is formed. The corrosion preventing performance is thus improved and the product life can be extended by the Zn-Fe alloy brazing filler metal coated on the outer surface of the tube.

Description

【発明の詳細な説明】 <S業上の利用分野) 本(!明は自動車用空調装置のコンデンサ、エバポレー
ク等の熱交換器に関し、その防食効果と強度の向上を主
目的とするものである。
[Detailed Description of the Invention] <Field of Application in the S Industry> This book relates to heat exchangers such as condensers and evaporative lakes for automobile air conditioners, and its main purpose is to improve the anti-corrosion effect and strength of the condensers and heat exchangers such as evaporative lakes. .

(従来技術) 近年、自動車は重ffi軽減による燃費性向上が重要な
技術課題として取り上げられ、空調装置用コンデンサ、
エバポレータ等の熱交換器においても、軽量化や経済性
に優れているアルミニウム又はアルミニウム合金の使用
が一般的になってきている。
(Prior art) In recent years, improving fuel efficiency by reducing heavy FFI has been taken up as an important technical issue for automobiles, and condensers for air conditioners,
Also in heat exchangers such as evaporators, the use of aluminum or aluminum alloys, which are lightweight and economical, has become common.

この種の熱交換器は第1図、I’55図に示すように、
−数的にアルミニウム合金からなるチコ、−ブ2の平行
部間の間隙に、極く薄いアルミニウム合金材のコルゲー
ト形のフィン3を挿入し、この組み合わせ構造を保持さ
せた。L:で全体を加熱炉内に納めて、チューブ又はフ
ィンに被覆されているろう材の溶融温度まで加熱するこ
とによって、各部材間をろう接合して熱交換器を完成さ
せている。
This type of heat exchanger is shown in Fig. 1, I'55,
A very thin corrugated fin 3 made of an aluminum alloy material was inserted into the gap between the parallel parts of the fins 2 made of an aluminum alloy to maintain this combined structure. The entire heat exchanger is placed in a heating furnace at L: and heated to the melting temperature of the brazing material covering the tubes or fins, thereby joining each member by brazing to complete the heat exchanger.

熱交換器の表面にはクロメート処理による化成皮膜7を
施すのが一般的であり、更に塗装置を施す場合もある。
The surface of the heat exchanger is generally coated with a chemical conversion coating 7 by chromate treatment, and may also be coated.

このアルミニウム合金による熱交換器は自然環境中に広
汎に存在する塩分によりて腐食し易く、特に電気的腐食
(電食)に対して弱い性能を有している。
Heat exchangers made of this aluminum alloy are easily corroded by salts that are widely present in the natural environment, and are particularly susceptible to electrical corrosion.

したがってコンデンサのような高温で使用され、しかも
前記の環境に曝され易い雰囲気中に設置される熱交換器
では、特に腐食が発生して進行し易く、それによって冷
媒洩れとなる問題があった。
Therefore, in a heat exchanger such as a condenser, which is used at high temperatures and installed in an atmosphere that is easily exposed to the above-mentioned environment, corrosion is particularly likely to occur and progress, resulting in a problem of refrigerant leakage.

アルミニウム製熱交換器の防食性としては、例えば特公
昭57−18119号公報にもあるように、従来は冷媒
通路となるチューブの材料に対し、フィンを卑なる電位
を有するZnやMgを含むアルミニウム合金材にAl−
5i系合金のろう材を被覆さきた構Jλとして、フィン
材の犠牲効果によってチューブめ腐食を防11−するよ
う1こしているが、真空ろう付法による高温TI空でろ
う付する場合には、チューブ、フィンに添加したZnと
ろう材に含イjするZ n h<蒸気化して残留Zn檗
度が低くなり、電食に対する防食効果が低下する傾向が
あるので、厳しい環境下での使用に制約が加えられてい
た。
Regarding the corrosion resistance of aluminum heat exchangers, for example, as stated in Japanese Patent Publication No. 57-18119, conventionally, the fins were made of aluminum containing Zn or Mg, which has a base potential, compared to the material of the tubes that serve as refrigerant passages. Al- in alloy material
The structure Jλ is coated with 5i alloy brazing material, and the sacrificial effect of the fin material is used to prevent tube corrosion. , Zn added to tubes and fins and Zn contained in the brazing filler metal are vaporized and the residual Zn density decreases, which tends to reduce the corrosion protection effect against electrolytic corrosion, so it cannot be used in harsh environments. restrictions were added to.

又Al−5!合金のろう材によるろう付は比較的容易で
あるが、融点が580’C近辺にあるので、ろう付時の
加熱温度は上記融点より高い6006C程度に設定する
ことになり、この温度はフィン材の融点約660”Cに
近いのでフィン材が軟化し、フィン強度を低下させるよ
うになり、これに加えてフィンに被覆されているS!酸
成分ろう付時の高温下で、フィン材の中に拡散してフィ
ン自体の材料強度を低下させる。したがって、フィンの
座屈現象が発生し、ろう付不良を招くような問題があっ
た。その対策として、特開昭62−87736号公報に
は、低融点のろう材としてZnを被覆したチューブで4
11Rして、ろう付を施した熱交換器が示されている。
Also Al-5! Brazing with an alloy brazing material is relatively easy, but since the melting point is around 580'C, the heating temperature during brazing must be set to about 6006C, which is higher than the above melting point. The melting point of S! is close to 660"C, which softens the fin material and reduces the strength of the fin. In addition, the S! acid component coated on the fin is heated at high temperatures during brazing, causing the inside of the fin material to soften. This causes the material strength of the fin itself to decrease.As a result, buckling of the fin occurs, leading to poor brazing.As a countermeasure, Japanese Patent Laid-Open No. 62-87736 discloses 4 with a tube coated with Zn as a low melting point brazing material.
11R and a brazed heat exchanger is shown.

(9,明が解決しようとする課題) しかしながら、Zn被覆チューブを使用して真空ろう付
法により完成させる熱交換器は前、T8Al−5■系ろ
う材を使用するものに比較して、低い加熱温度(約42
0’C)でろう付が可能となるので、フィンの強度低下
が少なくなり、Znの蒸発揮散量も低減されて防食効果
は向」;するが、厳しい腐食環境下、例えば中近東とか
塩害地域のような条件下では防食効果は尚十分でなく、
史に防食性能の高い熱交換器が要求されている。
(9. Problems that Ming is trying to solve) However, heat exchangers completed by vacuum brazing using Zn-coated tubes have a lower cost than those using T8Al-5■ brazing filler metal. Heating temperature (approximately 42
Since brazing can be performed at 0'C), there is less deterioration in the strength of the fins, and the amount of evaporation and loss of Zn is also reduced, which improves the corrosion protection effect. Under such conditions, the anticorrosion effect is still insufficient,
Heat exchangers with high anti-corrosion performance have been in demand for a long time.

そこで本発明は、上記の問題点に鑑みてなされたもので
、アルミニウム製熱交換器のフィンの座屈現象の減少及
び防食性能を格段に向上させる事を目的とする。
The present invention has been made in view of the above problems, and aims to reduce the buckling phenomenon of the fins of an aluminum heat exchanger and to significantly improve the anti-corrosion performance.

(課題を解決するための手段) 本9i明の要旨はアルミニウム材チューブと該チューブ
間に介装したアルミニウム材フィンとを、ろう合金を介
して炉中ろう付法により相互に接合してなるコア部を備
えたアルミニウム製熱交換器において、前記ろう合金を
低融点のZn−Fe合金で構成して、防食性及び強度を
向トさせるようにした事である。
(Means for Solving the Problems) The gist of this 9i is to provide a core formed by joining aluminum tubes and aluminum fins interposed between the tubes to each other via a brazing alloy by furnace brazing. In the aluminum heat exchanger equipped with an aluminum heat exchanger, the brazing alloy is made of a low melting point Zn-Fe alloy to improve corrosion resistance and strength.

(作用) 上記した技術手段において、Zn−Fe合金のろう材は
ZnにFeを少Q含有させる事により、Zn−Fe合金
の外表面の腐食電流が分散されて、防食性能が向上する
という知見に基づき、第3図に示す実験で確認されたも
ので、Zn被覆の熱交換器に比較して格段の防食効果が
得られるようになる。そしてフィン側にAl−5i系の
ろう材を被覆することなく、アルミニウム製のチューブ
とフィンとをろう付できるので、フィン材への31拡散
に起因するフィン材の強度低下も発生せず、又Zn−F
e系合金からなる低融点ろう材の使用により、ろう対温
度を十分低下させることができる。これによって高温加
熱に起因するフィン材の強度低下が抑制できるようにな
り、フィンの座屈を回避できるものであり、上記目的を
達する。ことができる。
(Function) In the above-mentioned technical means, it was found that when the Zn-Fe alloy brazing filler metal contains Zn with a small amount of Fe, the corrosion current on the outer surface of the Zn-Fe alloy is dispersed and the anticorrosion performance is improved. Based on this, it was confirmed in the experiment shown in Fig. 3 that a marked anti-corrosion effect can be obtained compared to a Zn-coated heat exchanger. Furthermore, since the aluminum tube and fin can be brazed without coating the fin side with Al-5i brazing material, there is no reduction in the strength of the fin material due to diffusion of 31 into the fin material. Zn-F
By using a low melting point brazing filler metal made of an e-based alloy, the brazing temperature can be sufficiently lowered. This makes it possible to suppress a decrease in the strength of the fin material due to high-temperature heating, thereby avoiding buckling of the fins, thereby achieving the above objective. be able to.

(実施例) 本発明のアルミニウム製熱交換器をコンデンサの実施例
について、第1図乃至第4図に基づき説明する。
(Example) An example of the aluminum heat exchanger of the present invention as a condenser will be described based on FIGS. 1 to 4.

コンデンサの偏平チューブには冷媒の流れ方向に沿って
内部に複数の仕切り壁を設けて複数の穴が形成され、そ
の芯材はJISA100O系のAll合金らなり、その
外表面にZn−Fe合金(Z n 99 、5〜99 
、7%−F e O* 3〜O−5%)からなるろう材
6が、例えば5〜lOμm被覆されており、このチュー
ブ2は所定間隔を保って蛇行状に折り曲げることによっ
て、コンデンサの骨格が構成されており、このチューブ
2の平行部間にはJISA3003系のAI倉金の極く
薄厚でコルゲート形のフィン3を挟持させ、真空炉内で
加熱(420〜450″C)し、ろう付することにより
コア部1を形成している。チューブ2の両開口端には、
冷凍サイクルの冷媒配管に接続するためのバイブ接手4
.5がろう接合されている。このろう付されたコンデン
サは、外表面をクロム噸系のクロメート処理により化成
皮II 7が形成されている。
The flat tube of the condenser has a plurality of partition walls and a plurality of holes formed inside along the flow direction of the refrigerant, the core material of which is made of JISA100O alloy, and the outer surface is made of Zn-Fe alloy ( Zn 99, 5-99
, 7%-F e O An extremely thin corrugated fin 3 made of JISA 3003 type AI ware is sandwiched between the parallel parts of the tube 2, heated in a vacuum furnace (420 to 450"C), and brazed. By doing so, the core portion 1 is formed.At both open ends of the tube 2,
Vibe joint 4 for connecting to the refrigerant pipe of the refrigeration cycle
.. 5 are soldered together. This brazed capacitor has a chemical skin II 7 formed on its outer surface by chromate treatment.

尚上記実施例では、Zn−Fc合金からなるろう材をチ
ューブに被覆しているが、フィンの表面に被覆してろう
符しても良く、又チューブ、フィンの相方に被覆してろ
う付してもよい。
In the above embodiment, the tube is coated with a brazing filler metal made of Zn-Fc alloy, but it may also be coated on the surface of the fin and soldered, or it may be coated on the tube and the fin and brazed together. You can.

上記#1成における防食効果について説明する。The anticorrosive effect of the #1 composition will be explained.

チJ、−ブの外表面に被覆されたZn−Fe合金ろう材
はFe含有驕が第3図に示すように、0.3〜0.5%
に最大の防食性能を有し、Znの3倍以上の性能が得ら
れる事から採用したもので、Znに比較して著しく優れ
ている。
The Zn-Fe alloy brazing filler metal coated on the outer surface of the chip has an Fe content of 0.3 to 0.5%, as shown in Figure 3.
It was chosen because it has the highest anti-corrosion performance, more than three times the performance of Zn, and is significantly superior to Zn.

尚第3図はZnとZn−Fc合金の防食性能を表す線図
で、横軸にZnとZn−Fe合金のFe含有量を表し、
縦軸に11SZ2371塩水噴霧試験によるチューブ素
地の腐食発生までの時間を表している。又最表面に形成
されているクロメート処理による化成皮膜はチューブ表
面のZn−Fe合金皮膜と相乗的な効果が得られている
。即ち第4図に示す腐食試験による結果で解るように、
チューブの最大孔食深さは本発明晶Aが従来品Bに比し
1710程度に減少している。尚第4図はHaSo4を
0.05%含むN a c 15%水溶液に2分間浸潤
し、4B”Cで2時間乾燥するサイクル腐食試験を表す
線図で、横軸にそのサイクル数、M軸にチューブの最大
孔食深さを表している。
Furthermore, Figure 3 is a diagram showing the anticorrosion performance of Zn and Zn-Fc alloy, and the horizontal axis represents the Fe content of Zn and Zn-Fe alloy.
The vertical axis represents the time until corrosion of the tube base occurs in the 11SZ2371 salt spray test. Moreover, the chemical conversion film formed on the outermost surface by chromate treatment has a synergistic effect with the Zn-Fe alloy film on the tube surface. That is, as can be seen from the results of the corrosion test shown in Figure 4,
The maximum pitting depth of the tube is reduced to about 1710 mm for crystal A of the present invention compared to conventional product B. Fig. 4 is a diagram showing a cyclic corrosion test in which immersion in a 15% aqueous solution of Nac containing 0.05% HaSo4 for 2 minutes and drying in 4B"C for 2 hours is shown. The horizontal axis represents the number of cycles, and the M axis represents the cycle corrosion test. represents the maximum pitting depth of the tube.

次にフィン接合部の座屈強度については、生産治!4を
使用した状態でのテストで、従来例では時々発生するが
、本実施例では発生しなかった。このように低融点のZ
n−Fc合金ろう材を被覆して真空ろう付された熱交換
器はチューブ表面の2n−Fe合金がチヱーブ材より腐
食電位が卑であり犠牲効果を持つと共に、表面の腐食型
)AEが分数されて、防食効果を著しく向上することが
実証された。
Next, regarding the buckling strength of the fin joint, let's talk about the buckling strength of the fin joint! In a test using 4, this problem sometimes occurred in the conventional example, but it did not occur in this example. In this way, Z with a low melting point
In a heat exchanger coated with an n-Fc alloy brazing material and vacuum brazed, the 2n-Fe alloy on the tube surface has a less corrosion potential than the tube material, which has a sacrificial effect, and the corrosion type (AE) on the surface is fractional. It was demonstrated that the anti-corrosion effect was significantly improved.

(発明の効果) 以上詳述した如く、Zn−Fc合金からなるろう材の採
用により、Zn被覆品より防食性能が格段に向上し、厳
しい腐食′fEi境下での製品寿命を延ばすことができ
るようになった。Zn−Fe合金ろう材は低南点であり
、ろう対温度も従来の2/3程度に低下したのでフィン
の座屈現象によるろう付不良、強度不足も解消され、フ
ィンの薄厚化が可能となり1iffi化に貢献している
(Effects of the invention) As detailed above, by using a brazing filler metal made of Zn-Fc alloy, the anticorrosion performance is significantly improved compared to Zn-coated products, and the product life can be extended under severe corrosion conditions. It became so. The Zn-Fe alloy brazing material has a low south point, and the brazing temperature has been reduced to about 2/3 of that of conventional brazing materials, which eliminates poor brazing and lack of strength due to fin buckling, making it possible to make the fins thinner. 1iffi.

史にZnの蒸気化による飛散も減少し、炉内の汚染によ
る保全工数が低減する。
In addition, scattering due to Zn vaporization is also reduced, and maintenance man-hours due to contamination inside the furnace are reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるアルミニウム製熱交換
器を示す平面図、第2図は第1図の要部拡大断面図、第
3図は本9i明の実施例におけるZn−Fe合金被覆の
防食性能を表す線図、第4図は本発明の実施例における
熱交換器の腐食試験結果を表す線図、第5図は従来例の
熱交換器の要部拡大断面図。 1・・・コア部、  2・・・チューブ、  3・・・
フィン、 6・・・Zn−Fc合金、 7・・・化成皮
膜、 8・・・塗装皮膜。 出願人  ヂーゼル機器株式会社
Fig. 1 is a plan view showing an aluminum heat exchanger in an embodiment of the present invention, Fig. 2 is an enlarged sectional view of the main part of Fig. 1, and Fig. 3 is a Zn-Fe alloy coating in an embodiment of the present invention. FIG. 4 is a diagram showing the corrosion test results of the heat exchanger in the embodiment of the present invention, and FIG. 5 is an enlarged cross-sectional view of the main part of the conventional heat exchanger. 1... Core part, 2... Tube, 3...
Fin, 6... Zn-Fc alloy, 7... Chemical conversion film, 8... Paint film. Applicant: Diesel Equipment Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  アルミニウム材チューブと該チューブ間に介装したア
ルミニウム材フィンとを、ろう合金を介して炉中ろう付
法により相互に接合してなるコア部を備えたアルミニウ
ム製熱交換器において、前記ろう合金を低融点のZn−
Fe合金で構成して、防食性及び強度を向上させる事を
特徴とするアルミニウム製熱交換器
In an aluminum heat exchanger having a core formed by joining aluminum tubes and aluminum fins interposed between the tubes to each other via a brazing alloy by furnace brazing, the brazing alloy is used. Low melting point Zn-
An aluminum heat exchanger that is made of Fe alloy and has improved corrosion resistance and strength.
JP1912988A 1988-01-29 1988-01-29 Heat exchanger made of aluminum Pending JPH01197058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1912988A JPH01197058A (en) 1988-01-29 1988-01-29 Heat exchanger made of aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1912988A JPH01197058A (en) 1988-01-29 1988-01-29 Heat exchanger made of aluminum

Publications (1)

Publication Number Publication Date
JPH01197058A true JPH01197058A (en) 1989-08-08

Family

ID=11990853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1912988A Pending JPH01197058A (en) 1988-01-29 1988-01-29 Heat exchanger made of aluminum

Country Status (1)

Country Link
JP (1) JPH01197058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181797A (en) * 1989-12-08 1991-08-07 Showa Alum Corp Heat exchanger made of aluminum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181797A (en) * 1989-12-08 1991-08-07 Showa Alum Corp Heat exchanger made of aluminum

Similar Documents

Publication Publication Date Title
JP2883698B2 (en) Tube and fin assembly for heat exchange in power plants
US8152047B2 (en) Method of producing a corrosion resistant aluminum heat exchanger
US5005285A (en) Method of producing an aluminum heat exchanger
US20160014929A1 (en) Aluminum heat exchanger
JP2010249426A (en) Method of manufacturing aluminum heat exchanger for exhaust gas and heat exchanger
KR19980080522A (en) Aluminum Alloy Heat Exchanger
JP2011257084A (en) All-aluminum heat exchanger
KR20050084231A (en) Aluminum alloy brazing material, brazing member, brazed article and brazing method therefor using said material, brazing heat exchanging tube, heat exchanger and manufacturing method thereof using said brazing heat exchanging tube
JP5597513B2 (en) Aluminum clad material for heat exchanger
JPH01197058A (en) Heat exchanger made of aluminum
JP4411803B2 (en) Brazing method for aluminum heat exchanger and aluminum member brazing solution
JP3704178B2 (en) Aluminum material for brazing and drone cup type heat exchanger using the material and excellent in corrosion resistance
JPH09176767A (en) Al brazing sheet for vacuum brazing
JPS63223499A (en) Heat exchanger having superior anti-corrosion characteristic
JP3151152B2 (en) Evaporator with excellent corrosion resistance
JPH01217197A (en) Heat exchanger made of aluminum
JPS60230953A (en) Composite plate made of aluminum material for heat exchanger
JPH04309795A (en) Aluminum heat exchanger with excellent corrosion resistance
JP2017155308A (en) Aluminum alloy-made brazing fin material for heat exchanger and aluminum alloy-made heat exchanger using the same
JPS5995397A (en) Core of heat exchanger made of aluminum
JPS60227970A (en) Aluminum made heat exchanger
JPS60110836A (en) Al alloy for core material of fin for heat exchanger
JPH07115164B2 (en) Method for manufacturing heat exchanger made of aluminum alloy
JPS5812333B2 (en) Aluminum alloy for heat exchanger tube
JPS60155897A (en) Heat exchanger of aluminum