JPH01196979A - Alignment device for solid-state image pickup element - Google Patents

Alignment device for solid-state image pickup element

Info

Publication number
JPH01196979A
JPH01196979A JP63021545A JP2154588A JPH01196979A JP H01196979 A JPH01196979 A JP H01196979A JP 63021545 A JP63021545 A JP 63021545A JP 2154588 A JP2154588 A JP 2154588A JP H01196979 A JPH01196979 A JP H01196979A
Authority
JP
Japan
Prior art keywords
solid
state image
diffracted light
image sensor
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63021545A
Other languages
Japanese (ja)
Inventor
Hiroo Uchiyama
博夫 内山
Hirokado Toba
鳥羽 広門
Norimitsu Matsuda
松田 則光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63021545A priority Critical patent/JPH01196979A/en
Publication of JPH01196979A publication Critical patent/JPH01196979A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alignment device adjusted with high accuracy by using a laser light and aligning a solid-state image pickup element. CONSTITUTION:A laser light of each color irradiated from laser oscillators 5, 7 is synthesized on the same axis, led to a color separation prism 1, the laser light is separated into each color and irradiated onto solid-state image pickup elements 3a-3c to cause a diffracted light. Then the diffracted light is subject to Fourier transformation by a Fourier transformation lens 14, + or -1st order diffracted light is selected by a spatial filter 15, the result is subject to inverse Fourier transformation by an inverse Fourier transformation lens 16 and the result is irradiated to the reference diffraction grating 17. Then the solid-state image pickup elements 3a-3c are adjusted so as to make the diffracted light brightest caused in this case for the alignment. Thus, the solid- state image pickup elements 3a-3c are aligned with high accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体撮像素子間の相対的な位置を調整するた
めの固体撮像素子の位置合わせ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device positioning device for adjusting the relative position between solid-state imaging devices.

従来の技術 従来、この種の固体撮像素子の位置合わせ装置としては
、第2図に示すような構成が知られている。以下、従来
の固体撮像素子の位置合わせ装置について第2図を参照
しながら説明する。
2. Description of the Related Art Conventionally, a configuration as shown in FIG. 2 has been known as a positioning apparatus for a solid-state image sensor of this type. Hereinafter, a conventional positioning apparatus for a solid-state image sensor will be described with reference to FIG. 2.

第2図に示すように支持台51上の一側に支持板52が
取り付けられ、支持板52に3個のプリズムからなり、
入射光を3つの光路に分割して出射する色分解プリズム
53が取り付けられ、その前方において結像用レンズ5
4が取り付けられている。支持板52には色分解プリズ
ム53の各出射面側において移動装置55が取り付けら
れ、各移動装置55の先端には色分解プリズム53の各
出射面に対峙して固体撮像素子56が取り付けられてい
る。支持台51上の他側には支持板57が取り付けられ
、支持板57には解像度測定用チャート58が支持され
ている。各固体撮像素子56から出力される信号は信号
処理回路59により処理され、モニタ60に画像出力さ
れると共に、測定器61に送られるようになっている。
As shown in FIG. 2, a support plate 52 is attached to one side of the support stand 51, and the support plate 52 is made up of three prisms.
A color separation prism 53 is attached that divides the incident light into three optical paths and outputs it, and an imaging lens 5 is installed in front of it.
4 is installed. A moving device 55 is attached to the supporting plate 52 on each output surface side of the color separation prism 53, and a solid-state image sensor 56 is attached to the tip of each moving device 55 facing each output surface of the color separation prism 53. There is. A support plate 57 is attached to the other side of the support stand 51, and a resolution measurement chart 58 is supported on the support plate 57. The signals output from each solid-state image pickup device 56 are processed by a signal processing circuit 59, and an image is output to a monitor 60, and is also sent to a measuring device 61.

次に上記従来例の動作について説明する。Next, the operation of the above conventional example will be explained.

解像度測定用チャート58を結像用レンズ54を介して
固体撮像素子56によって捕らえ、その出力を信号処理
回路59によって処理し、モニタ60に画像出力する。
The resolution measurement chart 58 is captured by the solid-state image pickup device 56 through the imaging lens 54, the output thereof is processed by the signal processing circuit 59, and the image is output to the monitor 60.

一方、信号処理回路59によって処理された信号は測定
器61にも送られる。
On the other hand, the signal processed by the signal processing circuit 59 is also sent to the measuring device 61.

そして、これらモニタ60 と測定器61の情報をもと
じして各固体撮像素子56を移動装置55によって移動
調整する。
Then, using the information from the monitor 60 and the measuring device 61, each solid-state image sensor 56 is moved and adjusted by the moving device 55.

このように、上記従来の固体撮像素子の位置合わせ装置
でも、各固体撮像素子56の出力を見ながらその位置合
わせを行うことができる。
In this way, even with the above-described conventional positioning apparatus for solid-state image sensors, positioning can be performed while viewing the output of each solid-state image sensor 56.

発明が解決しようとする課題 しかしながら、上記従来の固体撮像素子の位置合わせ装
置では、解像度測定用チャート58を結像用レンズ54
を介して固体撮像素子56で捕らえるようにしているた
め、画像化のための信号処理回路59や信号を処理する
測定器、結像用レンズ54、解像度測定用チャート58
などを必要とし、結像用レンズ54および解像度測定用
チャート58はその調整に手間を要し、精度を出しにく
いなどの問題があった。
Problems to be Solved by the Invention However, in the above-mentioned conventional positioning apparatus for a solid-state image sensor, the resolution measurement chart 58 is attached to the imaging lens 54.
Since the image is captured by the solid-state image sensor 56 through
etc., and the imaging lens 54 and the resolution measurement chart 58 require time and effort to adjust and have problems such as difficulty in achieving accuracy.

本発明は、このような従来の問題を解決するものであり
、レーザ光を用いることによって固体撮像素子の機械的
調整を可能とし、高精度に調整することができるように
した固体撮像素子の位置合わせ装置を提供することを目
的とするものである。
The present invention solves these conventional problems, and makes it possible to mechanically adjust the position of a solid-state image sensor by using a laser beam, thereby making it possible to adjust the position of the solid-state image sensor with high precision. The purpose of this invention is to provide a matching device.

課題を解決するための手段 本発明は上記目的を達成するために、入射光を複数の光
路に分割して出射する色分解プリズムの各出射面側で固
体撮像素子を移動させる移動装置と、青色、緑色、赤色
のレーザ光を発するレーザ発振器と、このレーザ発振器
から発した各色のレーザ光を同軸上に合成して色分解プ
リズムに導く光学系と、上記色分解プリズムにより分解
され、それぞれ上記固体撮像素子から反射して得られた
回折光の光路上に順次設けられたフーリエ変換レンズ、
回折光選択用の空間フィルタ、逆フーリエ変換レンズお
よび基準となる回折格子と、この回折格子からの回折光
の強度を検出する検出器とを備えたものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a moving device that moves a solid-state image sensor on each output surface side of a color separation prism that divides incident light into a plurality of optical paths and outputs the light. , a laser oscillator that emits green and red laser beams; an optical system that coaxially combines the laser beams of each color emitted from the laser oscillator and guides them to a color separation prism; Fourier transform lenses are sequentially installed on the optical path of the diffracted light obtained by reflection from the image sensor,
It is equipped with a spatial filter for selecting diffracted light, an inverse Fourier transform lens, a reference diffraction grating, and a detector that detects the intensity of the diffracted light from this diffraction grating.

作    用 本発明は、上記のような構成により次のような作用を有
する。すなわち、レーザ発振器から発した各色のレーザ
光を同軸上に合成し、色分解プリズムに導く、色分解プ
リズムではレーザ光を各色に分解して固体撮像素子に照
射して回折光を生じさせる。この回折光をフーリエ変換
レンズによりフーリエ変換した後、空間フィルタによっ
て±1次の回折光を選択する。更にこれを逆フーリエ変
換レンズによって逆フーリエ変換し、基準となる回折格
子に照射する。、このときに生じる回折光が最も明るく
なるように固体撮像素子と調整することにより、位置合
わせを行うことができる。
Effects The present invention has the following effects due to the above configuration. That is, laser beams of each color emitted from a laser oscillator are coaxially combined and guided to a color separation prism.The color separation prism separates the laser beam into each color and irradiates the solid-state image sensor to generate diffracted light. After this diffracted light is subjected to Fourier transformation using a Fourier transformation lens, ±1st-order diffracted light is selected using a spatial filter. Furthermore, this is subjected to inverse Fourier transform using an inverse Fourier transform lens, and is irradiated onto a reference diffraction grating. By adjusting the solid-state image sensor so that the diffracted light generated at this time becomes the brightest, alignment can be performed.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。第1図は本発明の一実施例の構成を示すものであ
る。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of an embodiment of the present invention.

第1図において、 11は色分解プリズムであり、3個
のプリズム2a 、 2b 、 2cからなり、入射光
を3つの光路に分割して出射することができる。
In FIG. 1, reference numeral 11 denotes a color separation prism, which is composed of three prisms 2a, 2b, and 2c, and is capable of dividing incident light into three optical paths and emitting the same.

3a 、 3b 、 3cは色分解プリズム1の各プリ
ズム2a 、 2b 、 2cの各出射面に対時するよ
うに配置された固体撮像素子、4a 、 4b 、 4
Gは各固体撮像素子3a 、 3b 、 3cの移動装
置、5は赤色のレーザ光6を発するレーザ発振器、7は
青色と緑色のレーザ光8を発するレーザ発振器、9は全
反射ミラーであり、レーザ発振器7から発する青色と緑
色のレーザ光8を反射する。10はハーフミラ−であり
、全反射ミラー9によって反射された青色と緑色のレー
ザ光8を透過させると共に、レーザ発振器5から発する
赤色のレーザ光6を反射させ、各色のレーザ光6,8を
同軸上に合成する。11は合成されたレーザ光12を反
射させて色分解プリズム1の入射匡に入射させるハーフ
ミラ−113はハーフミラ−11と色分解プリズム1の
入射面との間に設けられたハーフミラ−114、15、
16゜17は各固体撮像素3a 、 3b 、 3cか
ら反射して得られた回折光の光路上に順次設けられたフ
ーリエ変換レンズ、回折光選択用の空間フィルタ、逆フ
ーリエ変換レンズ16、基準となる回折格子であり、回
折格子17として、調整対象と同型の固体撮像素子が用
いられている。18は空間フィルタI5キ逆フーリエ変
換レンズ16との間に設けられたミラーであり、固体撮
像素子17に照射され、回折された光を反射する。19
はミラー18によって反射された光の強度を検出する光
強度検出器、20はハーフミラ−13を利用して固体撮
像素子3a 、 3b 、 3cの粗調整を行う拡大鏡
である。
3a, 3b, 3c are solid-state image pickup devices disposed so as to correspond to each exit surface of each prism 2a, 2b, 2c of the color separation prism 1; 4a, 4b, 4;
G is a moving device for each of the solid-state image sensors 3a, 3b, and 3c; 5 is a laser oscillator that emits a red laser beam 6; 7 is a laser oscillator that emits blue and green laser beams 8; 9 is a total reflection mirror; The blue and green laser beams 8 emitted from the oscillator 7 are reflected. 10 is a half mirror, which transmits the blue and green laser beams 8 reflected by the total reflection mirror 9, reflects the red laser beam 6 emitted from the laser oscillator 5, and coaxially transmits the laser beams 6 and 8 of each color. Combine on top. 11 is a half mirror 113 that reflects the combined laser beam 12 and makes it enter the input box of the color separation prism 1; half mirrors 114, 15 are provided between the half mirror 11 and the input surface of the color separation prism 1;
Reference numerals 16 and 17 denote a Fourier transform lens, a spatial filter for selecting the diffracted light, an inverse Fourier transform lens 16, and a reference lens, which are sequentially provided on the optical path of the diffracted light obtained by reflection from each solid-state image sensor 3a, 3b, and 3c. As the diffraction grating 17, a solid-state image sensor of the same type as the adjustment target is used. A mirror 18 is provided between the spatial filter I5 and the inverse Fourier transform lens 16, and reflects light that is irradiated onto the solid-state image sensor 17 and diffracted. 19
A light intensity detector detects the intensity of light reflected by the mirror 18, and a magnifying glass 20 uses the half mirror 13 to roughly adjust the solid-state image sensors 3a, 3b, and 3c.

次に上記実施例の動作について説明する。Next, the operation of the above embodiment will be explained.

まず、拡大鏡20を見ながら固体撮像素子3a。First, while looking at the magnifying glass 20, look at the solid-state image sensor 3a.

3b 、 3cの粗調整を行う。次にレーザ発振器7と
5からそれぞれ青色および緑色のレーザ光8と赤色のレ
ーザ光6を発する。青色および緑色のレーザ光8を全反
射ミラー9によりハーフミラ−10に導びく。一方、レ
ーザ発振器5から発した赤色のレーザ光6もハーフミラ
−10に導びき、上記青色および緑色のレーザ光8と同
軸上に合成する。
Make rough adjustments to 3b and 3c. Next, the laser oscillators 7 and 5 emit blue and green laser beams 8 and red laser beams 6, respectively. Blue and green laser beams 8 are guided to a half mirror 10 by a total reflection mirror 9. On the other hand, the red laser beam 6 emitted from the laser oscillator 5 is also guided to the half mirror 10 and combined coaxially with the blue and green laser beams 8.

合成したレーザ光12はハーフミラ−11により反射し
、ハーフミラ−13を透過して色分解プリズム1に導び
く。合成したレーザ光12は色分解プリズム1で赤色と
青色と緑色のレーザ光に分解し、それぞれ固体撮像素子
3a 、 3b 、 3Cに照射する。ここで生じた回
折光は色分解プリズム1、ハーフミラ−13、11を経
てフーリエ変換レンズ14によりフーリエ変換し、空間
フィルタ15 によって±1次の2本の回折光を選択す
る。これを逆フーリエ変換レンズ16によって逆フーリ
エ変換し、基準となる固体撮像素子17に照射する。
The combined laser beam 12 is reflected by the half mirror 11, transmitted through the half mirror 13, and guided to the color separation prism 1. The combined laser beam 12 is separated into red, blue, and green laser beams by the color separation prism 1, and is irradiated to the solid-state image sensors 3a, 3b, and 3C, respectively. The diffracted light generated here passes through the color separation prism 1, half mirrors 13 and 11, undergoes Fourier transformation by the Fourier transform lens 14, and is then subjected to Fourier transformation by the spatial filter 15, which selects two diffracted lights of the ±1st order. This light is subjected to inverse Fourier transform by an inverse Fourier transform lens 16, and is irradiated onto a solid-state image sensor 17, which serves as a reference.

ここで2本の回折光は同一方向に再び回折し、干渉を起
こす。この光をミラー18により反射させ、その強度を
光強度検出器19により検出し、その強度が最大となる
ように移動装置4a 、 4b 、 4cによって固体
撮像素子3a 、 3b 、 3cの位置を調整する。
Here, the two diffracted lights are diffracted again in the same direction and cause interference. This light is reflected by the mirror 18, its intensity is detected by the light intensity detector 19, and the positions of the solid-state image sensors 3a, 3b, 3c are adjusted by the moving devices 4a, 4b, 4c so that the intensity becomes maximum. .

発明の効果 以上述べたように本発明によれば、レーザ発振器から発
した各色のレーザ光を同軸上に合成し、色分解プリズム
に導く、色分解プリズムではレーザ光を各色に分解して
固体撮像素子に照射して回折光を生じさせ、この回折光
をフーリエ変換レンズによりフーリエ変換した後、空間
フィルタによって±1次の回折光を選択し、更にこれを
逆フーリエレンズによって逆フーリエ変換して基準とな
る回折格子に照射し、このときに生じる回折光が最も明
るくなるように固体撮像素子を調整することにより、位
置合わせを行うようにしている。したがって、従来のよ
うに固体撮像素子からの信号を処理する信号処理回路、
測定器、解像度測定用チャート、結像用レンズなどが不
必要となり、精度よく固体撮像素子の位置合わせな行う
ことができる。
Effects of the Invention As described above, according to the present invention, laser beams of each color emitted from a laser oscillator are combined on the same axis and guided to a color separation prism.The color separation prism separates the laser beam into each color and performs solid-state imaging. The element is irradiated to generate diffracted light, this diffracted light is Fourier-transformed by a Fourier transform lens, the ±1st-order diffracted light is selected by a spatial filter, and this is inversely Fourier-transformed by an inverse Fourier lens to be used as a reference. Positioning is performed by illuminating the diffraction grating and adjusting the solid-state imaging device so that the diffracted light generated at this time becomes the brightest. Therefore, a signal processing circuit that processes signals from a solid-state image sensor as in the past,
There is no need for a measuring device, a resolution measurement chart, an imaging lens, etc., and the positioning of the solid-state image sensor can be performed with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における固体撮像素子の位置
合わせ装置を示す概略図、第2図は従来の固体撮像素子
の位置合わせ装置を示す概略斜視図である。 ■・・・色分解プリズム、3a 、 3b 、 3c・
・・固体撮像素子、4a、 4b 、 4c・・・移動
装置、5,7・・・レーザ発振器、14・・・フーリエ
変換レンズ、15・・・空間フィルタ、16・・逆フー
リエ変換レンズ、17 ・・・回折格子(固体撮像素子
)、19・・・光強度検出器、20・・・拡大鏡。 代理人の氏名 弁理士 中 尾 敏 男 はか1名@l
  rM 4C 第2図
FIG. 1 is a schematic diagram showing a positioning device for a solid-state image sensor according to an embodiment of the present invention, and FIG. 2 is a schematic perspective view showing a conventional positioning device for a solid-state image sensor. ■...Color separation prism, 3a, 3b, 3c・
... Solid-state image sensor, 4a, 4b, 4c... Moving device, 5, 7... Laser oscillator, 14... Fourier transform lens, 15... Spatial filter, 16... Inverse Fourier transform lens, 17 ... Diffraction grating (solid-state image sensor), 19... Light intensity detector, 20... Magnifying glass. Name of agent: Patent attorney Toshio Nakao 1 person @l
rM 4C Figure 2

Claims (1)

【特許請求の範囲】[Claims]  入射光を複数の光路に分割して出射する色分解プリズ
ムの各出射面側で固体撮像素子を移動させる移動装置と
、青色、緑色、赤色のレーザ光を発する発振器と、この
レーザ発振器から発した各色のレーザ光を同軸上に合成
して色分解プリズムに導く光学系と、上記色分解プリズ
ムにより分解され、それぞれ上記固体撮像素子から反射
して得られた回折光の光路上に順次設けられたフーリエ
変換レンズ、回折光選択用の空間フィルタ、逆フーリエ
変換レンズおよび基準となる回折格子と、この回折格子
からの回折光の強度を検出する検出器とを備えたことを
特徴とする固体撮像素子の位置合わせ装置。
A moving device that moves a solid-state image sensor on each output surface side of a color separation prism that divides incident light into multiple optical paths and outputs it; an oscillator that emits blue, green, and red laser light; An optical system that coaxially combines the laser beams of each color and guides them to a color separation prism, and an optical system that is installed in sequence on the optical path of the diffracted light that is separated by the color separation prism and reflected from the solid-state image sensor, respectively. A solid-state image sensor comprising a Fourier transform lens, a spatial filter for selecting diffracted light, an inverse Fourier transform lens, a reference diffraction grating, and a detector that detects the intensity of the diffracted light from the diffraction grating. alignment device.
JP63021545A 1988-02-01 1988-02-01 Alignment device for solid-state image pickup element Pending JPH01196979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021545A JPH01196979A (en) 1988-02-01 1988-02-01 Alignment device for solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021545A JPH01196979A (en) 1988-02-01 1988-02-01 Alignment device for solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPH01196979A true JPH01196979A (en) 1989-08-08

Family

ID=12057955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021545A Pending JPH01196979A (en) 1988-02-01 1988-02-01 Alignment device for solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPH01196979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476870B2 (en) 1994-10-28 2002-11-05 Tvi Vision Oy Method for adjusting a photodetector array and a beam-splitting and detector structure for a line scan camera
JP2010098365A (en) * 2008-10-14 2010-04-30 Hitachi Kokusai Electric Inc Television camera device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476870B2 (en) 1994-10-28 2002-11-05 Tvi Vision Oy Method for adjusting a photodetector array and a beam-splitting and detector structure for a line scan camera
JP2010098365A (en) * 2008-10-14 2010-04-30 Hitachi Kokusai Electric Inc Television camera device

Similar Documents

Publication Publication Date Title
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
KR100685574B1 (en) Apparatus and method for evaluating a large target relative to the measuring hole of the sensor
US8902430B2 (en) Measuring apparatus and exposure device
US20050274913A1 (en) Object data input apparatus and object reconstruction apparatus
JP4090860B2 (en) 3D shape measuring device
CN113330299A (en) Imaging reflectometer
JP2558864B2 (en) Spectroscopic analyzer
JPH01503330A (en) Compact continuous wave wavefront sensor
JP2001021810A (en) Interference microscope
JP2000346612A (en) Interferometer and method for measuring interference
JP4826124B2 (en) Position measuring device
JPH01196979A (en) Alignment device for solid-state image pickup element
JP3143514B2 (en) Surface position detecting apparatus and exposure apparatus having the same
JPH03102249A (en) Method and apparatus for detecting foreign matter
JPH04144393A (en) Alignment device for solid-state image pickup element
JP2769405B2 (en) 2D light distribution measurement device for liquid crystal display panel
JPH07140046A (en) Inspection equipment for lens performance
JPH09269278A (en) Lens performance measuring method and measuring device
JP2001083101A (en) Optical pattern inspection device
JP2002311388A (en) Optical system
KR200263530Y1 (en) System for measuring moment image of 2 wavelength simultaneously
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects
JP3343969B2 (en) Multi-point position measuring device, multi-point position measuring method, and method of manufacturing solid-state imaging device
JP2667589B2 (en) Alignment device for optical exposure equipment
JPH0444940B2 (en)