JPH01195665A - Ready to use type lead-acid battery - Google Patents

Ready to use type lead-acid battery

Info

Publication number
JPH01195665A
JPH01195665A JP63019183A JP1918388A JPH01195665A JP H01195665 A JPH01195665 A JP H01195665A JP 63019183 A JP63019183 A JP 63019183A JP 1918388 A JP1918388 A JP 1918388A JP H01195665 A JPH01195665 A JP H01195665A
Authority
JP
Japan
Prior art keywords
electrode plate
ready
moisture
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63019183A
Other languages
Japanese (ja)
Inventor
Toshiyuki Muramatsu
村松 敏之
Tadashi Yoneda
米田 忠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP63019183A priority Critical patent/JPH01195665A/en
Publication of JPH01195665A publication Critical patent/JPH01195665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • H01M4/23Drying or preserving electrodes after forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To keep the instant use performance at a high level over a long period without accelerating the generation of a high-resistance material on the interface between the substrate and active material of a positive electrode plate in storage by setting the moisture quantity of the positive electrode plate to 0.25wt.% or below and storing a constituted electrode plate group in a battery jar. CONSTITUTION:An electrode plate group using a positive electrode plate with the moisture quantity of 0.1-0.25wt.% when measured on the dry condition of 120 deg.C.1hr is stored and sealed in a battery jar. The moisture accelerating the reduction of the instant use performance is mainly the physical absorption water, it is important to remove this physical absorption water, the growth of a high-resistance material on the interface between a positive electrode plate substrate and an active material is suppressed when the moisture of the positive electrode plate is set to 0.1-0.25wt.% or below, and the instant use performance is kept at a high level over a long period.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は即用式鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications This invention relates to improvements in ready-to-use lead acid batteries.

従来の技術 従来即用式鉛蓄電池は、陽極板および陰極板を化成し、
水洗−乾燥後構成される極板群を電槽に収納密封保存し
、使用時に電解液を注入する電池である。即用式鉛蓄電
池に必要とされる性能は、注液後数分で自動車のエンジ
ンを始動させるに十分な電圧と容量を有することであり
、特に電圧の確保が重要である。即用式鉛蓄電池は、保
存中に陽極板の基板−活物質界面での高抵抗体の生成に
により即用性能が徐々に低下する。即用性能の低下は温
度や水分等により加速される。そのため即用性能の低下
を抑制するために電池を低温で保存することや、極板を
十分乾燥して極板群を電槽に収納する方法が採用されて
いる。
Conventional technology Conventional ready-to-use lead-acid batteries have chemically formed anode plates and cathode plates.
In this battery, after washing and drying, the electrode plate group is stored and sealed in a battery case, and an electrolyte is injected when it is used. The required performance of a ready-to-use lead-acid battery is that it has enough voltage and capacity to start a car engine within a few minutes after injection, and securing the voltage is especially important. The ready-to-use performance of a ready-to-use lead-acid battery gradually deteriorates during storage due to the formation of a high resistance material at the substrate-active material interface of the anode plate. Deterioration of ready-to-use performance is accelerated by temperature, moisture, etc. Therefore, in order to suppress the deterioration of ready-to-use performance, methods have been adopted, such as storing batteries at low temperatures or thoroughly drying the electrode plates and storing the electrode plates in a battery case.

発明が解決しようとする課題 即用式鉛蓄電池は、充電済みの陽極板および陰極板を水
洗・乾燥製作された極板群を電槽収納密封している。し
かし極板、特に陽極板は、水分を含んだ状態で電池が製
造された時は陽極板の基体−活物質界面での高抵抗体の
生成が加速され、早期に即用性能の低下を招くという欠
点を有していた。第1表に36820系の即用式鉛蓄電
池の構成部材の含有する水分量を示す。ただし、陽極板
の水分量は120℃で1時間乾燥した前後の重量差を活
物質量に対する割合で示した(他の場合でも全て同様に
測定したものを示す)。陰極板の場合は酸化防止のため
120℃で真空乾燥し同様に算出した。セパレータの場
合60’で乾燥を行った。
Problems to be Solved by the Invention In a ready-to-use lead-acid battery, a charged anode plate and a cathode plate are washed and dried, and then a group of electrode plates is stored and sealed in a battery case. However, when a battery is manufactured with the electrode plate, especially the anode plate, containing moisture, the formation of a high-resistance element at the interface between the substrate and active material of the anode plate is accelerated, leading to an early decline in the ready-to-use performance. It had the following drawback. Table 1 shows the amount of water contained in the components of 36820 series ready-to-use lead-acid batteries. However, the water content of the anode plate is expressed as the difference in weight before and after drying at 120° C. for 1 hour as a ratio to the amount of active material (all other cases were measured in the same manner). In the case of the cathode plate, it was vacuum dried at 120° C. to prevent oxidation and calculated in the same manner. In the case of a separator, drying was performed at 60'.

第  1  表 構成部材の水分量 ()内はwtχ 活物質量(55Qに対して第1表から
明らかなように、陽極板の水分が多くセパレータは少な
く、陰極ではほとんど水分を含有しない。そのため、陽
極板の水分が重要であることがわかる。
Moisture content of constituent members in Table 1 () is wtχ Amount of active material (for 55Q, as is clear from Table 1, the anode plate has more moisture and the separator has less moisture, and the cathode contains almost no moisture. Therefore, It can be seen that the moisture content of the anode plate is important.

第1図に、36B20系電池の陽極板を乾燥後大気中(
温度25℃、相対湿度6096)に放置した時の水分量
の変化を示した。水分量は第1表に示す場合と同様に1
20℃で乾燥した時の乾燥前後の重量差より求めた。乾
燥した直後の陽極板の水分量は0.15wt%と非常に
少なく物理吸着水はほとんど除去されているが、大気中
に放置すると、非常に速く大気中の水分の陽極板への吸
着が起こり、30分後で0.50wt%程度に増加する
。乾燥不十分の場合も含めこの様な状態で極板群として
電槽に収納されると、保存中の即用性能の低下が大きく
なる。
Figure 1 shows the anode plate of a 36B20 series battery placed in the atmosphere after drying (
The graph shows the change in moisture content when the sample was left at a temperature of 25°C and a relative humidity of 6096. The water content is 1 as shown in Table 1.
This was determined from the difference in weight before and after drying at 20°C. Immediately after drying, the moisture content of the anode plate is very low at 0.15 wt%, and most of the physically adsorbed water has been removed, but if left in the atmosphere, moisture in the atmosphere will be adsorbed to the anode plate very quickly. , increases to about 0.50 wt% after 30 minutes. If a group of electrode plates is stored in a battery case in such a state, even if it is not sufficiently dried, the performance for immediate use will be greatly reduced during storage.

課題を解決するための手段 本発明は上記の如き欠点を除去するもので、陽極板の水
分量を0.25wt%以下にして、構成された極板群を
電槽に収納するものである。
Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks by reducing the moisture content of the anode plate to 0.25 wt% or less, and storing the constructed electrode plate group in a battery case.

作用 保存中の陽極板の基体−活物質界面の高抵抗体の生成が
加速されることなく、即用性能が長期間高いレベルに保
たれる。
The ready-to-use performance is maintained at a high level for a long period of time without accelerating the formation of a high-resistance material at the substrate-active material interface of the anode plate during operation and storage.

実施例 化成の終了した陽極板を流水中で30分水洗後120℃
、30分乾燥した。この時の水分量は0.15Wt96
である。この陽極板を、大気中の水分を吸い水分量が増
加しないように、乾燥後直ちに構成の極板群の状態で電
槽に収納して、密封した。
Example After washing the anode plate after chemical formation in running water for 30 minutes, it was heated to 120°C.
, and dried for 30 minutes. The water content at this time is 0.15Wt96
It is. Immediately after drying, this anode plate was placed in a battery case in the form of an electrode plate group, and the container was sealed to prevent the moisture content from increasing by absorbing moisture from the atmosphere.

相対湿度が30%以下であれば、温度が変化しても陽極
板の水分量はほとんど変化せず温度の影響は少ない。陽
極板を保存する場合も、水分の吸着を防止するため同様
の条件にする必要がある。本発明によって得られた:、
 36 B 20系の電池Aを60℃で加速保存試験(
保存後O℃で15OA放電)を行なった。比較として、
同時に、従来どうり大気中(20℃6096)で陽極板
−陰極板およびセパレータ1なる従来の電池Bを試験に
供した。
If the relative humidity is 30% or less, the moisture content of the anode plate will hardly change even if the temperature changes, and the influence of temperature will be small. When storing anode plates, similar conditions must be used to prevent moisture adsorption. Obtained by the present invention:
36 B Accelerated storage test of 20 series battery A at 60°C (
After storage, 15OA discharge was performed at 0°C. As a comparison,
At the same time, a conventional battery B consisting of an anode plate, a cathode plate, and a separator 1 was subjected to a test in the atmosphere (20° C. 6096° C.) as before.

その結果を第2図に示す。本発明によって得られた電池
Aは7日目で5秒目端子電圧が8.5v程度であったが
、従来の電池Bは2日目で約8Vになり、7日目では約
7vまで低下し本発明によって得られた電池Aは保存中
の即用性能の低下が小さいことがわかる。
The results are shown in FIG. Battery A obtained by the present invention had a terminal voltage of about 8.5V at the 5th second on the 7th day, whereas the conventional battery B had a terminal voltage of about 8V on the 2nd day and decreased to about 7V on the 7th day. However, it can be seen that battery A obtained according to the present invention shows little deterioration in ready-to-use performance during storage.

次に、陽極板の水分量を変化させて電池を作製し、60
℃で7日間保存した後の即用性能(0℃150A放電)
を第3図に示す。水分量を測定するための温度を100
℃・120℃・140℃とした。100℃の場合、陽極
板水分量と5秒目端子電圧は直線関係にあり水分量がQ
 wt96に近づくと最高値を示す。120℃の場合、
水分量が0.25wt%以下では8.5v程度で一定で
あるが、0.25Wt96以上の範囲では水分量が増加
すると5秒目端子電圧が低下する。140℃の場合、0
.45wt96以下では8.5v程度で一定であるが、
やはり、0.45wt%以上では即用性能の低下が大き
くなる。100℃のQwt96.120℃の0.25w
t%および140℃の0.45Wt96の水分量は、物
理吸着水の吸着がないレベ少を示し、それ以下の水分量
は、化学吸着水および活物質の分解による減量を含んで
いる。そのため、即用性能の低下を加速する水分は、主
に物理吸着水であることより、この物理吸着水を除去す
ることが重要である。100℃では、水分量を3wt9
46以下にするわけであるが0wt%以下は測定できな
い。また、140℃の場合は、活物質の分解等の影響が
大きくなり、水分量即ち、物理吸着水の量が正確に測定
されずバラツキが大きくなる。120℃の場合、物理吸
着水がとれた0、25Wt96から化学吸着水が一部と
れた0、1wt%の範囲に安定領域が見られることによ
り、この範囲で電池を製造すればよい。各温度とも、水
分量が減少してくると即用性能が低下するのは過剰乾燥
により保存前から性能が低いためである。
Next, batteries were fabricated by changing the moisture content of the anode plate, and
Ready-to-use performance after storage for 7 days at ℃ (150A discharge at 0℃)
is shown in Figure 3. The temperature for measuring moisture content is 100
℃・120℃・140℃. At 100℃, there is a linear relationship between the moisture content of the anode plate and the 5th second terminal voltage, and the moisture content is Q.
It shows the highest value when approaching wt96. In the case of 120℃,
When the moisture content is 0.25 wt % or less, it is constant at about 8.5 V, but in the range of 0.25 Wt 96 or more, as the moisture content increases, the 5th second terminal voltage decreases. At 140℃, 0
.. Below 45wt96, it is constant at around 8.5v,
As expected, if the content is 0.45 wt% or more, the immediate performance will be significantly degraded. Qwt96 at 100℃.0.25w at 120℃
The water content of 0.45Wt96 at t% and 140° C. indicates a low level with no adsorption of physically adsorbed water, and the water content below this level includes weight loss due to chemically adsorbed water and decomposition of the active material. Therefore, since the moisture that accelerates the deterioration of ready-to-use performance is mainly physically adsorbed water, it is important to remove this physically adsorbed water. At 100℃, the moisture content is 3wt9
Although it is intended to be 46 or less, it is not possible to measure 0wt% or less. Moreover, in the case of 140° C., the influence of decomposition of the active material becomes large, and the amount of water, that is, the amount of physically adsorbed water, cannot be measured accurately and the variation becomes large. In the case of 120° C., a stable region is found in the range of 0.25 Wt96, where physically adsorbed water is removed, to 0.1 wt %, where some chemically adsorbed water is removed, and batteries may be manufactured within this range. At each temperature, as the moisture content decreases, the ready-to-use performance deteriorates because the performance is low even before storage due to excessive drying.

発明の効果 上述したように、本発明により、陽極板の水分を01〜
0.25wt%以下にすることにより、陽極板基体−活
物質界面の高抵抗体の成長が抑制され、即用性能が長期
間高いレベルに保たれる等工業的価値共だ大なるもので
ある。
Effects of the Invention As described above, according to the present invention, the moisture content of the anode plate can be reduced to
By controlling the content to 0.25 wt% or less, the growth of high-resistance elements at the anode plate substrate-active material interface is suppressed, and immediate performance is maintained at a high level for a long period of time, which has great industrial value. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は陽極板の吸湿特性図、第2図は本発明により得
られた電池と従来の電池における60℃での保存試験結
果を示す比較図、第3図は電池の陽甑板水分量と60℃
・7日間保存後の即用性能の関係を示す説明図である。 時間(分)            保存時間(町ff
f&板水分1(wt%)
Figure 1 is a moisture absorption characteristic diagram of the anode plate, Figure 2 is a comparison diagram showing the results of a storage test at 60°C between a battery obtained by the present invention and a conventional battery, and Figure 3 is the moisture content of the battery positive plate. and 60℃
- It is an explanatory diagram showing the relationship between ready-to-use performance after storage for 7 days. Time (minutes) Storage time (town ff
f & board moisture 1 (wt%)

Claims (1)

【特許請求の範囲】[Claims] 陽極板および陰極板を化成、水洗、乾燥後構成される極
板群を電槽に収納密封する即用式蓄電池において、12
0℃・1時間の乾燥条件で測定した時の水分量が0.1
〜0.25wt%の陽極板を使用した極板群を電槽に収
納密封することを特徴とする即用式鉛蓄電池。
In a ready-to-use storage battery, the anode plate and the cathode plate are chemically formed, washed with water, dried, and then the electrode plate group is stored and sealed in a battery case.12
Moisture content is 0.1 when measured under drying conditions of 0°C and 1 hour.
A ready-to-use lead-acid battery characterized in that a group of electrode plates using ~0.25 wt% of anode plates is housed and sealed in a battery case.
JP63019183A 1988-01-29 1988-01-29 Ready to use type lead-acid battery Pending JPH01195665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63019183A JPH01195665A (en) 1988-01-29 1988-01-29 Ready to use type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019183A JPH01195665A (en) 1988-01-29 1988-01-29 Ready to use type lead-acid battery

Publications (1)

Publication Number Publication Date
JPH01195665A true JPH01195665A (en) 1989-08-07

Family

ID=11992223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019183A Pending JPH01195665A (en) 1988-01-29 1988-01-29 Ready to use type lead-acid battery

Country Status (1)

Country Link
JP (1) JPH01195665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167079A (en) * 2019-03-29 2020-10-08 古河電池株式会社 Lead-acid battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521427A (en) * 1975-06-24 1977-01-07 Shin Kobe Electric Machinery Positive electrode plate for readyyforruse type lead storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521427A (en) * 1975-06-24 1977-01-07 Shin Kobe Electric Machinery Positive electrode plate for readyyforruse type lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167079A (en) * 2019-03-29 2020-10-08 古河電池株式会社 Lead-acid battery

Similar Documents

Publication Publication Date Title
US6074782A (en) Lead storage battery containing a negative electrode active substance including a negative electrode additive
Maxfield et al. Energy Density, Power Density, and Polarization Studies of the Partially Oxidized (“p‐Doped”) Polyacetylene Cathode
JP2008288028A (en) Electrode for electrochemical cell and electrochemical cell
US4309490A (en) Long life thionyl chloride cell
Meissner et al. Reversible capacity decay of positive electrodes in lead/acid cells
JPH01195665A (en) Ready to use type lead-acid battery
US2759037A (en) Dry charged batteries
US3963520A (en) Primary cell corrosion inhibitor
KR100537604B1 (en) Electrolyte for a lithium polymer battery and a lithium polymer battery using the same
JP2001155723A (en) Sealed lead acid storage battery and method of fabricating it
JPS58115764A (en) Electrode active substance for lead storage battery
US3967980A (en) Method for forming a dry charge-type battery itself
US4020239A (en) Cathode for hydrazine/air cell
US2715150A (en) Electric storage battery
JP2729644B2 (en) Negative electrode for lead-acid battery
US20240055194A1 (en) Electric double-layer capacitor and its manufacturing method
US2715149A (en) Electric storage battery
De Rossi et al. The Hexamethonium‐Silver Iodide Reversible Cell
US3291641A (en) Method of making dry-charged leadacid battery elements by treating the assembled battery
JP3838298B2 (en) Charging method of sealed lead-acid battery using antimony alloy lattice
US1445503A (en) Galvanic battery
JPH05314983A (en) Manufacture of alkaline storage battery
JPH0197374A (en) Manufacture of lead-acid battery anode plate
CN113363601A (en) Storage method of lithium ion battery
KR20220017642A (en) Method for manufacturing secondary battery