JPH011949A - How to regenerate electrophoresis gels - Google Patents

How to regenerate electrophoresis gels

Info

Publication number
JPH011949A
JPH011949A JP62-155447A JP15544787A JPH011949A JP H011949 A JPH011949 A JP H011949A JP 15544787 A JP15544787 A JP 15544787A JP H011949 A JPH011949 A JP H011949A
Authority
JP
Japan
Prior art keywords
gel
electrophoresis
fluorescent
dna
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-155447A
Other languages
Japanese (ja)
Other versions
JPS641949A (en
Inventor
秀記 神原
哲夫 西川
Original Assignee
株式会社日立製作所
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP62155447A priority Critical patent/JPS641949A/en
Priority claimed from JP62155447A external-priority patent/JPS641949A/en
Priority to DE3821454A priority patent/DE3821454A1/en
Priority to US07/211,284 priority patent/US4879012A/en
Publication of JPH011949A publication Critical patent/JPH011949A/en
Publication of JPS641949A publication Critical patent/JPS641949A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は蛍光標識を用いるDNA、RNAあるいは蛋白
質などの分離検出用電気泳動ゲルの再生法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for regenerating electrophoresis gels for separating and detecting DNA, RNA, proteins, etc. using fluorescent labels.

[従来の技術] 従来、DNAなどの分離にはゲル電気泳動が用いられて
いる。検出はDNAなどを放射性標識したり、蛍光標識
して検出している。この場合、−度分離測定を行なうと
標識された試料がゲル内に残留するため分離用ゲルはく
り返して使用はできない。このためゲルは測定の度に作
成している。
[Prior Art] Conventionally, gel electrophoresis has been used to separate DNA and the like. Detection is performed by radioactively or fluorescently labeling DNA and the like. In this case, the labeled sample remains in the gel when the -degree separation measurement is performed, so the separation gel cannot be used repeatedly. For this reason, a gel is prepared each time a measurement is made.

最近、放射性標識試料の場合を対象としてゲルをファル
ムで保持した使い捨てゲルが市販され出しており、ゲル
作成の手間を省く事ができるようになった。しかし、こ
のゲルを光検出に用いる事はできない、蛍光をIIIM
Lようとゲルに光を照射するとフィルム部から強い蛍光
が出て蛍光標raDNAからの蛍光を観測しに<<シて
しまうからである。
Recently, disposable gels in which gel is retained in a film have been commercially available for use with radioactively labeled samples, making it possible to save time and effort in gel preparation. However, this gel cannot be used for photodetection; fluorescence is
This is because when the gel is irradiated with light, strong fluorescence is emitted from the film section, making it impossible to observe the fluorescence from the fluorescent label raDNA.

[発明が解決しようとする問題点] DNA、RNAの塩基配列決定法や蛋白の検出法は従来
の放射性標識を用いる方法から蛍光標識を用いる方法へ
移行してゆくと考えられる。しかし、これまでのところ
、蛍光法に適した使い捨てゲルの開発も、ゲルを再生利
用する方法も提案されておらず、ゲルは測定の度毎に作
成する必要があり、手間がかかる難点があった。
[Problems to be Solved by the Invention] It is thought that DNA and RNA base sequencing methods and protein detection methods will shift from conventional methods using radioactive labels to methods using fluorescent labels. However, so far, neither the development of disposable gels suitable for fluorescence methods nor the method of recycling gels has been proposed, and gels must be prepared for each measurement, which is time-consuming and difficult. Ta.

本発明の目的は、蛍光標識を用いた場合に、ゲルを測定
の度毎に作成する手間を省き、−度作成したゲルをくり
返し活用することが可能な電気泳動ゲル再生法を提供す
る事にある。
An object of the present invention is to provide an electrophoresis gel regeneration method that eliminates the trouble of preparing a gel for each measurement when using a fluorescent label, and allows repeated use of gels prepared several times. be.

[問題点を解決するための手段] 上記目的は蛍光標識体として光分解しやすい物質を用い
、測定終了後ゲル中に残存する蛍光標識DNAなどに光
照射し、蛍光体を変質させて蛍光を発したい物質にする
ことにより達成される。
[Means for solving the problem] The above purpose is to use a substance that is easily photodegradable as a fluorescent label, and to irradiate light onto the fluorescently labeled DNA remaining in the gel after the measurement is completed, to change the quality of the fluorescent substance and make it fluoresce. This is achieved by making the substance you want to emit.

[作用] 一般に蛍光体は光照射されると励起されて蛍光を発する
が、同時に分解反応が進行する。分解され易さは蛍光体
により異なるが、FITC(fluoresceine
 1sothiocyanate ;励起波長494n
m、発光波長511nm)のように非常に分解しやすい
ものである。これら蛍光体でDNAなどを標識し、計測
後ゲル中に残存している蛍光標識物に強い光を当てると
分解を起こし蛍光を出さなくなる。もちろんDNAなど
はそのまま存在するが、光計側では検出されなくなるの
で再び分離検出用ゲルとして利用できる。
[Function] Generally, when a phosphor is irradiated with light, it is excited and emits fluorescence, but at the same time a decomposition reaction proceeds. Ease of decomposition varies depending on the phosphor, but FITC (fluoresceine
1sothiocyanate; excitation wavelength 494n
m, emission wavelength 511 nm), it is extremely easy to decompose. DNA or the like is labeled with these fluorescent substances, and when the fluorescent labels remaining in the gel are exposed to strong light after measurement, they decompose and no longer emit fluorescence. Of course, DNA and the like still exist, but since they are no longer detected by the optical meter, they can be used again as a gel for separation and detection.

[実施例] 以下、本発明の一実施例を第1図および第2図を用いて
説明する。第1図は塩基配列決定の原理説明図で第2図
は本発明の一実施例である。この実施例では蛍光標識を
用いたDNAの塩基配列決定を行なう。
[Example] An example of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is an explanatory diagram of the principle of base sequencing, and FIG. 2 is an embodiment of the present invention. In this example, DNA base sequencing is performed using a fluorescent label.

FITCで片方の末端を標識され、もう一方がアデニン
(A)、チタン(T)、シトシン(C)。
One end is labeled with FITC, and the other end is labeled with adenine (A), titanium (T), and cytosine (C).

あるいはグアニン(G)で終わる4種の断片群(A)、
(T) 、(C)、および(a)を蛍光泳動ゲル板10
の別々の泳動路上に泳動させる。電気泳動ゲル板10は
ゲル保持用ガラス板によって挟持され、両側端部にはス
ペーサ12が設けられている。加入泳動始点から一定の
所を蛍光物質検出用レーザ発生器3で発生したレーザ光
9で照射してここを通過する蛍光標識DNA7から出る
蛍光をフィルター13.集光レンズ14.イメージ増巾
器15を介してダイオードアレー16で受光する。DN
Aの長さが短いほど早く泳動するので発光時間から塩基
長がわかり、泳動路の種類から塩基種を判別して塩基配
列を決定する。配列決定用の励起光源3として10mW
のアルゴンレーザー(488nm)を使用している。通
常5〜6時間の泳動を行ない、300塩基程度までの配
列を決定している。終了後には泳動光点と光照射検出部
までの間に長い蛍光標識DNAが残存しており。
Or a group of four fragments (A) ending in guanine (G),
(T), (C), and (a) on a fluorescent gel plate 10
onto separate migration paths. The electrophoretic gel plate 10 is held between gel holding glass plates, and spacers 12 are provided at both ends. A certain area from the starting point of migration migration is irradiated with a laser beam 9 generated by a laser generator 3 for detecting a fluorescent substance, and the fluorescence emitted from the fluorescently labeled DNA 7 passing through the area is filtered through a filter 13. Condensing lens 14. The light is received by a diode array 16 via an image amplifier 15. D.N.
The shorter the length of A, the faster it migrates, so the length of the base can be determined from the luminescence time, and the type of base can be determined from the type of migration path to determine the base sequence. 10 mW as excitation light source 3 for sequencing
An argon laser (488 nm) is used. Typically, electrophoresis is performed for 5 to 6 hours, and sequences of up to about 300 bases are determined. After completion of the electrophoresis, a long length of fluorescently labeled DNA remains between the electrophoresis light spot and the light irradiation detection area.

このまま次の試料を測定しようとする前の試料に起因す
る信号が重複してくるので支障が生じる。
If the next sample is to be measured in this state, the signals caused by the previous sample will overlap, causing trouble.

そこで蛍光物質消去用レーザー源4から約IWのアルゴ
ンレーザー(488nm)を径1mmφ程度に絞り反射
ミラー5.稼動ミラー6を介して側面方向からゲル10
中にレーザ光8を入射し、稼動ミラー6を動かしてスキ
ャンさせてゲル10月平面を照射してFITCを分解し
た。このように処理した泳動板10は再利用可能であっ
た。しかし、これを適用するには標識物の分解断面積や
レーザー強度に制限があった6以下にこの点について考
察を加える。FITCの分解断面積を実al!Iすると
0.5X10””’cm2程度であった。IWのアルゴ
ンレーザーを1 m m 2の面積に絞ると光子密度は
約2.5 X 101g個/ m m ”・秒となる。
Therefore, an argon laser (488 nm) of about IW is focused from the fluorescent substance erasing laser source 4 to a reflection mirror 5.about.1 mm in diameter. Gel 10 from the side direction via movable mirror 6
A laser beam 8 was input into the gel, and the movable mirror 6 was moved and scanned to irradiate the gel surface to decompose the FITC. The electrophoresis plate 10 treated in this manner was reusable. However, in order to apply this method, there were limitations on the decomposition cross-sectional area of the labeled object and the laser intensity.This point will be considered below. Actual decomposition cross section of FITC! When I measured it, it was about 0.5 x 10"' cm2. When the IW argon laser is focused on an area of 1 mm 2 , the photon density is approximately 2.5 × 101 g/mm ”·sec.

分解断面積と光子密度からFITCはこの光路中で0.
1秒程度で分解する。完全に分解させるためには1mm
の長さあたり0.5秒位照射する必要がある。残留FI
TC標識体を光分解したい領域の長さは200mmであ
り、レーザー光8を2mm/秒の割合ですると全領域照
射に要する時間は100秒となる。レーザー源としてよ
り安価な100mW級のものを用いると1000秒で約
20分間を要する事になる。消去に要する時間は長くて
も1時間以内の必要がある。これ以上長時間を要する場
合にはゲル板を新らしく作成した方が早い事になるから
である。分解の断面積が小さいと消去に要する時間もか
かるため都合が悪くIQ−”2cm2程度が限界である
。この場合IWのレーザーを用いても先程と同様の消去
を行なうには1mm当り20秒が必要で全体消去には1
時間余を必要とする6一方、分解断面程は大き過ぎても
都合が悪い。通常、蛍光を発する断面積は10−1g0
m2程度であり1分解断面積が1010−2O0の物質
は分解するまでに平均10’個の蛍光を発することにな
る。分解断面積が大きいと分解までに発する蛍光量が少
なく高感度が得られない。
Based on the decomposition cross section and photon density, FITC is 0.0 in this optical path.
It decomposes in about 1 second. 1mm for complete disassembly
It is necessary to irradiate about 0.5 seconds per length. Remaining FI
The length of the region where the TC label is desired to be photodecomposed is 200 mm, and if the laser beam 8 is applied at a rate of 2 mm/sec, the time required to irradiate the entire region is 100 seconds. If a cheaper 100 mW laser source is used as a laser source, it will take about 20 minutes for 1000 seconds. The time required for erasing must be within one hour at most. This is because if it takes longer than this, it would be faster to create a new gel plate. If the cross-sectional area of the decomposition is small, it takes a long time to erase, which is inconvenient, and the limit is about IQ-2cm2.In this case, even if an IW laser is used, it takes 20 seconds per 1mm to erase the same way as before. Required and 1 to erase the whole
On the other hand, it is not convenient if the exploded cross section is too large. Normally, the cross-sectional area that emits fluorescence is 10-1g0
A substance with a size of about m2 and a decomposition cross section of 1010-200 will emit an average of 10' fluorescence before it decomposes. If the decomposition cross section is large, the amount of fluorescence emitted before decomposition is small and high sensitivity cannot be obtained.

通常のD N A分離検出の条件下ではDNAバンドが
0.5mm幅の照射検出領域を通過するのに要する時間
は20〜30秒である。この時間内に分解する量が高々
50%であるようにすれば検出上は支障ない。検出には
5〜10mWのアルゴンレーザを0 、5 m m ”
程度の断面積に絞って用いているので光子密度は約2〜
5X10”個/ m m 2・秒となる。光子密度をl
Xl0”個/ m m 2・秒とした場合1分解断面積
が10−19cm”の物質は約1秒で分解することにな
りこれ以上分解断面積が大きい事は好ましくない。
Under normal DNA separation and detection conditions, it takes 20 to 30 seconds for a DNA band to pass through a 0.5 mm wide irradiation detection area. If the amount decomposed within this time is at most 50%, there will be no problem in detection. For detection, a 5-10 mW argon laser was used at 0.5 mm.
The photon density is approximately 2~
The photon density is 5×10”/m m2・sec.The photon density is l
When Xl0'' pieces/mm 2 ·sec, a substance with a decomposition cross section of 10-19 cm'' decomposes in about 1 second, and it is not preferable for the decomposition cross section to be larger than this.

しかし、分解断面積が10−19〜10−22の範囲に
ある蛍光標識化合物を用いる場合には高感度は蛍光検出
と光分解によるゲル再利用を行なうことができる。
However, when using a fluorescent labeling compound with a decomposition cross section in the range of 10-19 to 10-22, highly sensitive fluorescence detection and gel reuse by photolysis can be performed.

光照射の方法はライン状に照射して、スィーブする方法
の他にランプを用いて全面を照射するなど種々の方法が
ある。
There are various methods of irradiating light, such as irradiating in a line and sweeping, and irradiating the entire surface using a lamp.

[発明の効果] 以上述べたように本発明によれば、蛍光標識化合物を用
いて泳動分離の様子を蛍光検出した後に泳動板中に残存
している蛍光標識物を光分解してゲル板の再利用を可能
とする。
[Effects of the Invention] As described above, according to the present invention, after the state of electrophoretic separation is detected by fluorescence using a fluorescent labeling compound, the fluorescent label remaining in the electrophoresis plate is photolyzed and the gel plate is removed. Enables reuse.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の概念図、第2図は本発明の実
施例の斜視図である。 3・・・蛍光物質検出用レーザー、4・・・蛍光物質消
去用レーザー、5・・・反射ミラー、6・・・稼動ミラ
ー。 7・・・DNA、8・・・消去用レーザー光線、9・・
・検出用レーザー光線、10・・・分離用ゲル板、11
・・・ゲル保持用ガラス板、12・・・透明スペーサー
、13・・・フィルター、14・・・集光レンズ、15
・・・イメージ増幅器、16・・・ダイオードアレー。 1θ 第7圓
FIG. 1 is a conceptual diagram of an embodiment of the present invention, and FIG. 2 is a perspective view of the embodiment of the present invention. 3... Laser for detecting fluorescent substance, 4... Laser for erasing fluorescent substance, 5... Reflecting mirror, 6... Operating mirror. 7...DNA, 8...Laser beam for erasing, 9...
・Laser beam for detection, 10...Gel plate for separation, 11
...Gel holding glass plate, 12...Transparent spacer, 13...Filter, 14...Condensing lens, 15
...Image amplifier, 16...Diode array. 1θ 7th circle

Claims (1)

【特許請求の範囲】 1、蛍光標識されたDNA、RNAあるいは蛋白質など
を電気泳動分離し光学的に検出するゲル分離部を光照射
して電気泳動ゲル中に残留する蛍光物質を破壊して電気
泳動ゲルの再利用を可能とする電気泳動ゲルの再生法。 2、特許請求の範囲第1項記載の方法において、蛍光標
識物として分解断面積が10^−^2^1cm^2以上
である物質を用いることを特徴とする電気泳動ゲルの再
生法。
[Scope of Claims] 1. The gel separation section that electrophoretically separates fluorescently labeled DNA, RNA, or protein and detects it optically is irradiated with light to destroy the fluorescent substance remaining in the electrophoresis gel and generate electricity. A regeneration method for electrophoresis gels that enables reuse of electrophoresis gels. 2. A method for regenerating an electrophoretic gel according to claim 1, characterized in that a substance having a decomposition cross section of 10^-^2^1 cm^2 or more is used as the fluorescent label.
JP62155447A 1987-06-24 1987-06-24 Regeneration of electrophoretic gel Pending JPS641949A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62155447A JPS641949A (en) 1987-06-24 1987-06-24 Regeneration of electrophoretic gel
DE3821454A DE3821454A1 (en) 1987-06-24 1988-06-24 METHOD FOR PROCESSING USED ELECTROPHORESE GELS FOR REUSE
US07/211,284 US4879012A (en) 1987-06-24 1988-06-24 Method for reutilization of electrophoresis gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62155447A JPS641949A (en) 1987-06-24 1987-06-24 Regeneration of electrophoretic gel

Publications (2)

Publication Number Publication Date
JPH011949A true JPH011949A (en) 1989-01-06
JPS641949A JPS641949A (en) 1989-01-06

Family

ID=15606239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62155447A Pending JPS641949A (en) 1987-06-24 1987-06-24 Regeneration of electrophoretic gel

Country Status (3)

Country Link
US (1) US4879012A (en)
JP (1) JPS641949A (en)
DE (1) DE3821454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026241A1 (en) * 2003-09-11 2005-03-24 Teijin Dupont Films Japan Limited Polyester film

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162654A (en) * 1991-02-01 1992-11-10 Wisconsin Alumni Research Foundation Detection apparatus for electrophoretic gels
US5439578A (en) * 1993-06-03 1995-08-08 The Governors Of The University Of Alberta Multiple capillary biochemical analyzer
US5986076A (en) * 1994-05-11 1999-11-16 Trustees Of Boston University Photocleavable agents and conjugates for the detection and isolation of biomolecules
US5643722A (en) 1994-05-11 1997-07-01 Trustees Of Boston University Methods for the detection and isolation of proteins
US5483075A (en) * 1994-11-01 1996-01-09 Perkin-Elmer Corporation Rotary scanning apparatus
US5748491A (en) * 1995-12-20 1998-05-05 The Perkin-Elmer Corporation Deconvolution method for the analysis of data resulting from analytical separation processes
US6008379A (en) 1997-10-01 1999-12-28 The Perkin-Elmer Corporation Aromatic-substituted xanthene dyes
US6583168B1 (en) 1997-11-25 2003-06-24 Applera Corporation Sulfonated diarylrhodamine dyes
US5936087A (en) 1997-11-25 1999-08-10 The Perkin-Elmer Corporation Dibenzorhodamine dyes
US6475361B1 (en) 1998-02-20 2002-11-05 Tetragen Sa Capillary electrophoresis apparatus having filling/refilling system and methods for use thereof
US6103083A (en) * 1998-02-20 2000-08-15 Tetragen Capillary electrophoresis apparatus and method
US6096875A (en) 1998-05-29 2000-08-01 The Perlein-Elmer Corporation Nucleotide compounds including a rigid linker
CA2425663C (en) * 2000-10-11 2009-12-29 Applera Corporation Fluorescent nucleobase conjugates having anionic linkers
AU2002310012A1 (en) 2001-05-21 2002-12-03 Monogram Biosciences, Inc. Methods and compositions for analyzing proteins
US7402398B2 (en) 2003-07-17 2008-07-22 Monogram Biosciences, Inc. Measuring receptor homodimerization
WO2005019470A2 (en) * 2003-08-11 2005-03-03 Monogram Biosciences, Inc. Detecting and profiling molecular complexes
ATE454476T1 (en) 2005-04-14 2010-01-15 Applied Biosystems Llc 3'-MODIFIED OLIGONUCLEOTIDES WITH PSEUDOISOCYTOSINE NUCLEOBASE DERIVATIVES AND THEIR APPLICATIONS AS PRIMERS OR PROBES

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729947A (en) * 1984-03-29 1988-03-08 The Board Of Regents Of The University Of Nebraska DNA sequencing
US4675300A (en) * 1985-09-18 1987-06-23 The Board Of Trustees Of The Leland Stanford Junior University Laser-excitation fluorescence detection electrokinetic separation
JPH06162843A (en) * 1992-09-22 1994-06-10 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Manufacture of bi oxide superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026241A1 (en) * 2003-09-11 2005-03-24 Teijin Dupont Films Japan Limited Polyester film

Similar Documents

Publication Publication Date Title
JPH011949A (en) How to regenerate electrophoresis gels
JP3127238B2 (en) Methods and detectors for separation processes
JP3975247B2 (en) Molecular imaging
US4879012A (en) Method for reutilization of electrophoresis gel
AU601048B2 (en) Scanning fluorescent detection system
EP0488422B1 (en) Apparatus for reading fluorescent-labelled gel electrophoresis patterns
DE69500580D1 (en) Device for real-time analysis of polynucleotide fragments by fluorescent scanning electrophoresis
US5294323A (en) Apparatus for gel electrophoresis
US5616228A (en) Capillary electrophoresis apparatus for detecting emitted fluorescence from a sample without employing an external light source device
US4888695A (en) Signal processing method in autoradiography
GB2246197A (en) Detection and imaging in biochemical assays using phosphorescent screens
JPH01112147A (en) Method for determining base sequence of nucleic acid
JP2002168864A (en) Apparatus and cartridge for detecting biopolymer
JPS60220860A (en) Method of determining arrangement of dna
US20020028521A1 (en) Biochemical analyzing method, biochemical analysis apparatus, biochemical analysis unit used therefor and target detecting apparatus for detecting target from biochemical analysis unit
US4852050A (en) Signal processing method in autoradiography
JP2002181708A (en) Microarray chip reading method and apparatus therefor
JPH07113606B2 (en) Nucleotide sequencer
EP0275440A2 (en) Photo detection system for DNA base analysis
JP3965714B2 (en) Capillary electrophoresis chip
JPH09512102A (en) Method and apparatus for electrophoretic analysis
JP2001296626A (en) Image-reading device
JPH08261988A (en) Stacked migration medium and light detecting electrophoretic device
Rank Automated DNA Sequencers: The Next Generation
JPS62184352A (en) Autoradiographic measurement method